
Cao et al. Advances in Difference Equations  (2016) 2016:307 
DOI 10.1186/s13662-016-1033-x

R E S E A R C H Open Access

Exponential stability of impulsive
stochastic genetic regulatory networks with
time-varying delays and reaction-diffusion
Boqiang Cao1, Qimin Zhang1* and Ming Ye2

*Correspondence:
zhangqimin64@sina.com
1School of Mathematics and
Statistics, Ningxia University,
Yinchuan, 750021, P.R. China
Full list of author information is
available at the end of the article

Abstract
We present a mean-square exponential stability analysis for impulsive stochastic
genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion
driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional
and using linear matrix inequality for stochastic analysis we derive sufficient
conditions to guarantee the exponential stability of the stochastic model of impulsive
GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained
for the GRNs with constant time delays and standard Brownian motion. An example is
presented to illustrate our results of the mean-square exponential stability analysis.
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1 Introduction
A genetic regulatory network (GRN) is a dynamic system to depict the interactions be-
tween genes (mRNA) and proteins. Since GRNs play a key role in the area of cell and
molecular biology, they have received increasing attention in the community of mathe-
matical biology in recent years (see references [–]). An important topic related to math-
ematical analysis of GRNs is to investigate the stability of GRNs. Wu et al. [] and Wang []
conducted robust stability analysis of GRNs by using stochastic analysis approach. Wang
et al. [] investigated the mean-square exponential stability of stochastic GRNs with time-
varying delays by constructing a Lyapunov-Krasovskii functional. Although this stability
analysis leads to conclusions on whether solutions of GRNs converge to an equilibrium
point when a GRN system becomes stable, this analysis does not give the convergence
rate of the system. For many GRN systems, slow convergence rates are undesirable, and
high convergence rates (e.g., exponential rates) are needed. Therefore, it is necessary to
study the exponential stability for a GRN system.

The aim of this study is to investigate the mean-square exponential stability of the solu-
tion of a GRN model with diffusion process, impulses, degradation reactions, time-varying
delays, and fBm of extrinsic noise. Stability analysis for such a comprehensive GRN model
is rare in the literature. For example, Wu et al. [], Wang [], Wang et al. [], and Wang
et al. [] studied the stability and convergence of GRNs with stochastic perturbation and
time delays but without diffusion and reaction. Although Ma et al. [, ] investigated
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the asymptotic stability of GRNs with diffusion, reaction, and delays, the systems of their
study [, ] are deterministic. In [], finite-time robust stochastic stability was consid-
ered under stochastic perturbation, reaction, diffusion, and delays. In addition, like in [,
–], the stochastic perturbation in [] was described using a standard Brownian motion
instead of a fractional Brownian motion.

Our study uses fBm to describe extrinsic noise introduced into the GRNs for mean-
square exponential stability analysis, which is a novelty of this paper. We denote an fBm as
BH (t), where H is the Hurst parameter. The fBm has a long-memory in comparison with
standard Brownian motion (H = 

 ) []. In [], it was shown that a fractional Brownian
motion can be used to describe a subdiffusive dynamics process. Experimental data of
chromatin mobilizations show that an fBm is more appropriate to model gene movements
than a standard Brownian motion []. Therefore, introducing the long-term correlations
described by an fBm in GRNs is an important contribution to the literature.

Another contribution of this study is to introduce impulses into stochastic GRNs to
describe sudden changes in the amount of mRNA and proteins. According to [–], an
impulse is referred to the phenomenon that a system state is changed abruptly at a given
time. The changes may be caused by abrupt change of physical environments, such as
intake of drug or nutriment and exertion of the external force. For example, it was pointed
out in [] that metaphase progression can be controlled by external mechanical impulses
through different mechano-chemical cellular reactions. We have not found references of
stability analysis of stochastic GRNs with impulses. Therefore, out study differs from the
existing studies (e.g., Zhou et al. [], Wang et al. [], Ma et al. [], Han et al. []) on the
following two aspects: (a) a diffusion-reaction process driven by a fractional Brownian
motion is considered, and (b) the impulses are involved.

The rest of this paper is organized as follows: In Section , we introduce the impulsive
stochastic GRNs and define the exponential stability. Sufficient conditions of exponential
stability in the mean-square sense for trivial solutions of GRNs are established in Section .
Section  illustrates our analysis by a numerical example.

2 GRNs and preliminaries
In Section ., we first define a deterministic GRN with time-varying delays and then in-
troduce an impulse and stochastic perturbation into the deterministic model to define
the model that is investigated in this study. The preliminaries needed for the exponential
stability analysis are given in Section ..

2.1 Deterministic and stochastic GRNs
A deterministic GRN is defined as follows []:

⎧
⎨

⎩

∂m̃i(t,x)
∂t =

∑l
k=

∂
∂xk

(Dik
∂m̃i(t,x)

∂xk
) – aim̃i(t, x) +

∑n
j= wijgj(p̃j(t – σ (t), x)) + qi,

∂ p̃i(t,x)
∂t =

∑l
k=

∂
∂xk

(D∗
ik

∂ p̃i(t,x)
∂xk

) – cip̃i(t, x) + bim̃i(t – τ (t), x), i = , , . . . , n,
()

where m̃i(t, x) and p̃i(t, x) denote the concentrations of the ith mRNA and protein, respec-
tively; x = (x, x, . . . , xl)T ∈ Q ⊂ Rl ; Q = {x : |x| ≤ Lk , k = , , . . . , l} is a compact set in Rn

with smooth boundary ∂Q; Lk is a positive constant; Dik >  and D∗
ik >  are diffusion co-

efficient matrices of mRNA and protein, respectively; bi is a constant; ai and ci represent



Cao et al. Advances in Difference Equations  (2016) 2016:307 Page 3 of 17

the degradation rates of the mRNA and protein, respectively; wij is defined as follows:

wij =

⎧
⎪⎨

⎪⎩

δij, j is an activator of gene i,
–δij, j is a repressor of gene i,
, there is no link from gene j to i,

where δij is the dimensionless transcriptional rate of transcriptional factor j to gene i; gj is
the activation function of the gj(s) = sh

+sh , where h is the Hill coefficient; qi =
∑

j∈Ij
δij, where

Ij denote the set of all repressors of gene j; and σ (t) and τ (t) are the time-varying delays
satisfying

 ≤ τ (t) ≤ τ̄ , τ̇ (t) ≤ μ < ,

 ≤ σ (t) ≤ σ̄ , σ̇ (t) ≤ μ < ,
()

where τ̄ , σ̄ , μ, and μ are nonnegative real numbers, and μ̄ = μ ∨ μ is assumed.
Considering the time delays, we can give the initial conditions associated with () as

follows:

m̃i(t, x) = ϕi(t, x), x ∈ Q, s ∈ [–d, ], i = , , . . . , n,

p̃i(t, x) = ϕ∗
i (t, x), x ∈ Q, s ∈ [–d, ], i = , , . . . , n,

where d = σ̄ ∨ τ̄ , and ϕi(t, x),ϕ∗
i (t, x) ∈ C([–d, ]×Q, R). Moreover, the following Dirichlet

boundary conditions are considered:

m̃i(t, x) = , x ∈ ∂Q, t ∈ [–d, ],

p̃i(t, x) = , x ∈ ∂Q, t ∈ [–d, ].

Let m∗ = (m∗
 , m∗

, . . . , m∗
n) and p∗ = (p∗

 , p∗
, . . . , p∗

n) denote the unique solution of () and
the equilibrium point (m∗, p∗) of system () to the origin. Using the transformations
mi = m̃i – m∗

i and pi = p̃i – p∗
i (i = , , . . . , n), we can transform () into the matrix form as

follows:
⎧
⎨

⎩

∂m(t,x)
∂t =

∑l
k=

∂
∂xk

(Dk
∂m(t,x)

∂xk
) – Am(t, x) + Wf (p(t – σ (t), x)),

∂p(t,x)
∂t =

∑l
k=

∂
∂xk

(D∗
k

∂p(t,x)
∂xk

) – Cp(t, x) + Bm(t – τ (t), x),
()

where

A = diag(a, a, . . . , an), B = diag(b, b, . . . , bn), C = diag(c, c, . . . , cn),

Dk = diag(Dk , Dk , . . . , Dnk), m(t, x) =
(
m(t, x), m(t, x), . . . , mn(t, x)

)T ,

D∗
k = diag

(
D∗

k , D∗
k , . . . , D∗

nk
)
, p(t, x) =

(
p(t, x), p(t, x), . . . , pn(t, x)

)T ,

f
(
p
(
t – σ (t), x

))
=

(
f
(
p
(
t – σ (t), x

))
, f

(
p

(
t – σ (t), x

))
, . . . , fn

(
p
(
t – σ (t), x

)))T ,

fi
(
p
(
t – σ (t), x

))
= gi

(
pi

(
t – σ (t), x

)
+ p∗

i
)

– gi
(
p∗

i
)
, i = , , . . . , n.
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Now we introduce impulses and stochastic perturbation into account, and equations ()
become

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dm(t, x) =
∑l

k=
∂

∂xk
(Dk

∂m(t,x)
∂xk

) dt – Am(t, x) dt + Wf (p(t – σ (t), x)) dt
+ S(t, m(t, x), p(t, x)) dBH(t), t �= tk , t ≥ ,

dp(t, x) =
∑l

k=
∂

∂xk
(D∗

k
∂p(t,x)
∂xk

) dt – Cp(t, x) dt + Bm(t – τ (t), x) dt, t �= tk , t ≥ ,
Δm(tk , x) = m(t+

k , x) – m(tk , x) = Ukm(tk , x), k ∈ N ,
Δp(tk , x) = p(t+

k , x) – m(tk , x) = Vkp(tk , x), k ∈ N ,

()

where m(t+
k , x) = limt→t+

k
m(t, x), p(t+

k , x) = limt→t+
k

p(t, x), tk represent the moments when
impulses occur, tk < tk+, limt→∞ tk = ∞, and BH(t) denotes an n-dimensional fBm with
Hurst parameter H ∈ (, 

 ].

2.2 Preliminaries
In this section, we introduce some necessary definitions, assumptions, and lemmas
needed for the subsequent discussion. Let (Ω ,F , P) be a complete probability space with
filtration {Ft}t≥ satisfying the usual conditions (i.e., it is increasing and right continuous,
and F contains all P-null sets). For convenience, let AT denotes the transpose of a matrix
A, λmax(A) and λmin(A) denote the largest and smallest eigenvalues of a square matrix A,
respectively.

The vector norm ‖ · ‖ is defined as

∥
∥y(t, x)

∥
∥ =

(∫

Q
yT (t, x)y(t, x) dx

)/

, ∀y(t, x) ∈ C([, +∞] × Q, Rn),

∥
∥z(t, x)

∥
∥

d =
(∫

Q
sup

–d≤t≤
zT (t, x)z(t, x) dx

)/

, ∀z(t, x) ∈ C([–d, ] × Q, Rn),

and for a real square matrix A = (aij)n×n, its norm ‖A‖p (p = , ,∞) is defined as

‖A‖ = max
j

n∑

i=

|aij|, ‖A‖ =
√

λmax
(
AT A

)
, ‖A‖∞ = max

i

n∑

j=

|aij|,

and we write ‖A‖p = ‖A‖ (p = , ,∞) without causing any confusion.

Definition  According to [], the trivial solution of system () with initial values ϕ(t, x),
ϕ∗(t, x) ∈ C([–d, ] × Q, Rn) is said to be exponentially stable in the mean-square sense if
there exist constants α,α′, M, M′ >  such that

E
∥
∥m(t, x)

∥
∥ ≤ M‖ϕ‖e–αt , E

∥
∥p(t, x)

∥
∥ ≤ M′∥∥ϕ∗∥∥e–α′t , t ≥ ,

where

‖ϕ‖ = sup
s∈[–τ̄ ,],x∈Q

∥
∥m(s, x)

∥
∥,

∥
∥ϕ∗∥∥ = sup

s∈[–σ̄ ,],x∈Q

∥
∥p(s, x)

∥
∥.

Furthermore, we assume that ‖ψ‖ = ‖ϕ‖∨‖ϕ∗‖. As a result, the following lemma follows
directly from Green’s second identity [].
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Lemma  Let R >  and R >  be a pair of diagonal matrices. Then

∫

Q

∂mT (t, x)
∂t

R

l∑

k=

∂

∂xk

(

Dk
∂m(t, x)

∂xk

)

dx

=
∫

Q
mT (t, x)R

l∑

k=

∂

∂xk

(

Dk
∂m(t, x)

∂xk

)

dx,

∫

Q

∂pT (t, x)
∂t

R

l∑

k=

∂

∂xk

(

D∗
k
∂p(t, x)

∂xk

)

dx

=
∫

Q
pT (t, x)R

l∑

k=

∂

∂xk

(

D∗
k
∂p(t, x)

∂xk

)

dx.

Lemma  Let x, y ∈ Rn be two n-dimensional column vectors, and A = (aij) ∈ Rn×n be a
positive definite matrix. Then we have

xT Ay ≤ xT Ax + yT Ay,

where A = 
 diag(

∑
i |ai|,∑i |ai|, . . . ,

∑
i |ain|) and A = 

 diag(
∑

i |ai|,∑i |ai|, . . . ,
∑

i |ani|) are positive definite diagonal matrices, and |a| is the absolute value of a real
number a.

Proof

xT Ay = (x, . . . , xn)

⎛

⎜
⎜
⎝

a · · · an
...

...
an · · · ann

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

y
...

yn

⎞

⎟
⎟
⎠

≤ 

[(|a|x

 + |a|x
 + · · · + |an|x


)

+
(|a|x

 + |a|x
 + · · · + |an|x


)

+ · · · +
(|an|x

n + |an|x
n + · · · + |ann|x

n
)

+
(|a|y

 + |a|y
 + · · · + |an|y

n
)

+
(|a|y

 + |a|y
 + · · · + |an|y

n
)

+ · · · +
(|an|y

 + |an|y
 + · · · + |ann|y

n
)]

= xT diag

(



∑

i

|ai|, . . . ,



∑

i

|ain|
)

x + yT diag

(



∑

i

|ai|, . . . ,



∑

i

|ani|
)

y

= xT Ax + yT Ay.

The proof is completed. �

To investigate the mean-square exponential stability of trivial solution for system (),
we introduce the following conditions:

(A) The function f (p(t, x)) satisfies the Lipschitz condition: there exists a positive con-
stant K such that

∥
∥f

(
p(t, x)

)
– f

(
p(s, x)

)∥
∥ ≤ K

∥
∥p(t, x) – p(s, x)

∥
∥, ∀s, t ∈ [, +∞).



Cao et al. Advances in Difference Equations  (2016) 2016:307 Page 6 of 17

(A) The noise intensity S(t, m(t, x), p(t, x)) in equation () satisfies the condition

trace
[
ST(

t, m(t, x), p(t, x)
)
S
(
t, m(t, x), p(t, x)

)]

≤ mT (t, x)Am(t, x) + pT (t, x)Ap(t, x),

where A and A are known matrices.
(A) There exist positive definite matrices P, P, Q, Q such that the following linear

matrix inequalities are satisfied:

–
π


PDL – PA + Q +


 – μ̄

Q + HtH–Q > ,

–
π


PD∗

L – PC + Q +
K

 – μ̄
Q + HtH–Q > ,

()

where Q, Q, Q, Q of the same forms as A, A in Lemma  are positive definite
diagonal matrices, and

DL = diag

( l∑

k=

Dk

L
k

,
l∑

k=

Dk

L
k

, . . . ,
l∑

k=

Dnk

L
k

)

,

D∗
L = diag

( l∑

k=

D∗
k

L
k

,
l∑

k=

D∗
k

L
k

, . . . ,
l∑

k=

D∗
nk

L
k

)

.

(A) ρ ≡ supk∈N (tk – tk–) < ∞,

 < λρ < – ln

[

λ(β + β) +
d

 – μ̄
(λK + λ)

]

, ()

where β ≡ supk∈N ‖I + Uk‖, β ≡ supk∈N ‖I + Vk‖, λ = max{λmax(P),λmax(P)},
λ = λmax(Q), λ = λmax(Q).

(A∗) ρ ≡ supk∈N (tk – tk–) < ∞,  < λρ < – ln[λ(β + β) + d(λK + λ)].
(A) There exists a positive constant η such that

ln(/λ)
tk – tk–

≤ η ≤ α, k = , , . . . , ()

where λ = min{λmin(P),λmin(P)}, and α will be defined in ().

3 Exponential stability
In this section, we establish conditions of the exponential stability for system () by con-
structing a suitable Lyapunov function.

Theorem  If assumptions (A)-(A) hold, then the trivial solution of system () is globally
exponentially stable in the mean-square sense.

Proof Define a Lyapunov function as follows:

V
(
t, m(t, x), p(t, x)

)
= V

(
m(t, x), p(t, x)

)
+ V(t) + V(t),
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where

V
(
m(t, x), p(t, x)

)
=

∫

Q

(
mT (t, x)Pm(t, x) + pT (t, x)Pp(t, x)

)
dx,

V(t) =


 – μ̄

∫

Q

∫ t

t–σ (t)
f T(

p(s, x)
)
Qf

(
p(s, x)

)
ds dx,

V(t) =


 – μ̄

∫

Q

∫ t

t–τ (t)
mT (s, x)Qm(s, x) ds dx.

Using Itô’s formula, we have

dV = 
∫

Q
mT (t, x)P

[ l∑

k=

∂

∂xk

(

Dk
∂m(t, x)

∂xk

)

dt – Am(t, x) dt

+ Wf
(
p
(
t – σ (t), x

))
dt + S

(
t, m(t, x), p(t, x)

)
dBH (t)

]

dx

+ HtH–
∫

Q
trace

(
ST(

t, m(t, x), p(t, x)
)
PS

(
t, m(t, x), p(t, x)

))
dx dt

+ 
∫

Q
pT (t, x)P

[ l∑

k=

∂

∂xk

(

D∗
k
∂p(t, x)

∂xk

)

– Cp(t, x) + Bm
(
t – τ (t), x

)
]

dx dt

= 
l∑

k=

∫

Q
mT (t, x)P

∂

∂xk

(

Dk
∂m(t, x)

∂xk

)

dx dt – 
∫

Q
mT (t, x)PAm(t, x) dx dt

+ 
∫

Q
mT (t, x)PWf

(
p
(
t – σ (t), x

))
dx dt + 

∫

Q
pT (t, x)PBm

(
t – τ (t), x

)
dx dt

+ 
l∑

k=

∫

Q
pT (t, x)P

∂

∂xk

(

D∗
k
∂p(t, x)

∂xk

)

dx dt – 
∫

Q
pT (t, x)PCp(t, x) dx dt

+ HtH–
∫

Q
trace

(
ST(

t, m(t, x), p(t, x)
)
PS

(
t, m(t, x), p(t, x)

))
dx dt

+ 
∫

Q
S
(
t, m(t, x), p(t, x)

)
dx dBH (t). ()

According to the Dirichlet boundary conditions, Green’s formula, and Lemma , we have


l∑

k=

∫

Q
mT (t, x)P

∂

∂xk

(

Dk
∂m(t, x)

∂xk

)

dx

= 
l∑

k=

∫

Q

∂

∂xk

(

mT (t, x)PDk
∂m(t, x)

∂xk

)

dx

– 
l∑

k=

∫

Q

(
∂mT (t, x)

∂xk
PDk

∂m(t, x)
∂xk

)

dx

= 
l∑

k=

∫

∂Q

(

mT (t, x)PDk
∂m(t, x)

∂xk

)l

k=
· n dx
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– 
l∑

k=

∫

Q

(
∂mT (t, x)

∂xk
PDk

∂m(t, x)
∂xk

)

dx

= –
l∑

k=

∫

Q

(
∂mT (t, x)

∂xk
PDk

∂m(t, x)
∂xk

)

dx

≤ –
π



∫

Q
mT (t, x)PDLm(t, x) dx, ()

where n denotes the outer normal vector of ∂Q, and

(

mT (t, x)PDk
∂m(t, x)

∂xk

)l

k=

=
(

mT (t, x)PD
∂m(t, x)

∂x
, mT (t, x)PD

∂m(t, x)
∂x

, . . . , mT (t, x)PDl
∂m(t, x)

∂xl

)

.

Similarly, we get


l∑

k=

∫

Q
pT (t, x)P

∂

∂xk

(

D∗
k
∂m(t, x)

∂xk

)

dx ≤ –
π



∫

Q
pT (t, x)PD∗

Lp(t, x) dx. ()

Substituting () and () into () and using Lemma , we obtain

dV ≤ –
π



∫

Q
mT (t, x)PDLm(t, x) dx dt – 

∫

Q
mT (t, x)PAm(t, x) dx dt

+ 
∫

Q
mT (t, x)Qm(t, x) dx dt + 

∫

Q
f T(

p
(
t – σ (t), x

))
Qf

(
p
(
t – σ (t), x

))
dx dt

–
π



∫

Q
pT (t, x)PD∗

Lp(t, x) dx dt – 
∫

Q
pT (t, x)PCp(t, x) dx dt

+ 
∫

Q
pT (t, x)Qp(t, x) dx dt +

∫

Q
mT(

t – τ (t), x
)
Qm

(
t – τ (t), x

)
dx dt

+ HtH–
∫

Q
mT (t, x)Qm(t, x) dx dt + HtH–

∫

Q
pT (t, x)Qp(t, x) dx dt

+ 
∫

Q
S
(
t, m(t, x), p(t, x)

)
dx dBH (t). ()

Now, we calculate the differential of V(t) and V(t):

dV =


 – μ̄

∫

Q
f T(

p(t, x)
)
Qf

(
p(t, x)

)
dx dt

–
( – σ̇ (t))

 – μ̄

∫

Q
f T(

p
(
t – σ (t), x

))
Qf

(
p
(
t – σ (t), x

))
dx dt

≤ K
 – μ̄

∫

Q
pT (t, x)Qp(t, x) dx dt

– 
∫

Q
f T(

p
(
t – σ (t), x

))
Qf

(
p
(
t – σ (t), x

))
dx dt, ()
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and

dV =


 – μ̄

∫

Q
mT (t, x)Qm(t, x) dx dt

–
( – τ̇ (t))

 – μ̄

∫

Q
mT(

t – τ (t), x
)
Qm

(
t – τ (t), x

)
dx dt

≤ 
 – μ̄

∫

Q
mT (t, x)Qm(t, x) dx dt

– 
∫

Q
mT(

t – τ (t), x
)
Qm

(
t – τ (t), x

)
dx dt, ()

where Lemma  is applied. Combining (), (), and () and taking the expectation of
both sides, we derive that

EdV =
∑

i=

EdVi

≤ –
π


E

∫

Q
mT (t, x)PDLm(t, x) dx dt – E

∫

Q
mT (t, x)PAm(t, x) dx dt

+ E
∫

Q
mT (t, x)Qm(t, x) dx dt +

K
 – μ̄

E

∫

Q
pT (t, x)Qp(t, x) dx dt

–
π


E

∫

Q
pT (t, x)PD∗

Lp(t, x) dx dt – E
∫

Q
pT (t, x)PCp(t, x) dx dt

+ E
∫

Q
pT (t, x)Qp(t, x) dx dt +


 – μ̄

E

∫

Q
mT (t, x)Qm(t, x) dx dt

+ HtH–
E

∫

Q
mT (t, x)Qm(t, x) dx dt

+ HtH–
E

∫

Q
pT (t, x)Qp(t, x) dx dt

= E

∫

Q
mT (t, x)Πm(t, x) dx dt + E

∫

Q
pT (t, x)Πp(t, x) dx dt, ()

where Π = – π

 PDL – PA + Q + 
–μ̄

Q + HtH–Q, Π = – π

 PD∗
L – PC + Q +

K
–μ̄

Q + HtH–Q. This implies that

EdV ≤ λE
∥
∥m(t, x)

∥
∥ + λE

∥
∥p(t, x)

∥
∥

≤ λ
(
E

∥
∥m(t, x)

∥
∥ + E

∥
∥p(t, x)

∥
∥), ()

where λ = λmax(Π), λ = λmax(Π), and λ = max{λ,λ}.
On the other hand, for V (t, m(t, x), p(t, x)), we have the estimates

EV
(
t, m(t, x), p(t, x)

) ≥ EV
(
m(t, x), p(t, x)

)

= E

∫

Q

(
mT (t, x)Pm(t, x) + pT (t, x)Pp(t, x)

)
dx

≥ λ
(
E

∥
∥m(t, x)

∥
∥ + E

∥
∥p(t, x)

∥
∥)
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and

EV
(
t, m(t, x), p(t, x)

) ≤ λ
(
E

∥
∥m(t, x)

∥
∥ + E

∥
∥p(t, x)

∥
∥)

+
λK
 – μ̄

∫ tk

tk –σ (tk )
E

∥
∥p(s, x)

∥
∥ ds

+
λ

 – μ̄

∫ tk

tk –τ (tk )
E

∥
∥m(s, x)

∥
∥ ds, k = , , , . . . , ()

where λ, λ, λ, and λ were defined in assumption (A) and (A), respectively. Thus, we
obtain

E
∥
∥m(t, x)

∥
∥ + E

∥
∥p(t, x)

∥
∥ ≤ 

λ
EV

(
t, m(t, x), p(t, x)

)
. ()

Substituting () into (), we have

EdV
(
t, m(t, x), p(t, x)

) ≤ λ

λ
EV

(
t, m(t, x), p(t, x)

)
dt

≡ λEV
(
t, m(t, x), p(t, x)

)
dt, ()

where λ = λ
λ

. Integrating the both sides of inequality () from tk– to t (t ∈ (tk–, tk], k =
, , . . .), we obtain

EV
(
t, m(t, x), p(t, x)

) ≤ V
(
, m(, x), p(, x)

) · eλt , t ∈ [, t], ()

and

EV
(
t, m(t, x), p(t, x)

)

≤ V
(
t+
k–, m

(
t+
k–, x

)
, p

(
t+
k–, x

)) · eλ(t–tk–), t ∈ (tk–, tk], k = , , . . . . ()

We define the function r as follows:

r(z) = (z + λ)ρ + ln

[

λ(β + β) +
d

 – μ̄
(λK + λ)ezd

]

, z ∈ [, +∞).

Then, we have

r′(z) = ρ +
d(λK + λ)ezd

λ( – μ̄)(β + β) + d(λK + λ)ezd > , z ∈ [,∞),

and r(z) → +∞ (z → +∞). Moreover, from () we have r() < . Thus, there exists a
unique positive number α such that r(α) = , that is,

(α + λ)ρ = – ln

[

λ(β + β) +
d

 – μ̄
(λK + λ)eαd

]

. ()
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For t ∈ [, t], we have by () that

EV
(
t, m(t, x), p(t, x)

) ≤ λ
(
E

∥
∥m(, x)

∥
∥ + E

∥
∥p(, x)

∥
∥)

+
λK
 – μ̄

∫ 

–σ ()
E

∥
∥p(s, x)

∥
∥ ds

+
λ

 – μ̄

∫ 

–τ ()
E

∥
∥m(s, x)

∥
∥ ds

≤
(

λ +
d

 – μ̄
(λK + λ)

)

‖ψ‖eλt .

Therefore,

E
∥
∥m(t, x)

∥
∥ ≤ 

λ
EV

(
t, m(t, x), p(t, x)

) ≤ 
λ

(

λ +
d

 – μ̄
(λK + λ)

)

‖ψ‖eλt

=

λ

(

λ +
d

 – μ̄
(λK + λ)

)

e(λ+α)ρ‖ψ‖e–αρ

≤ M

λ
‖ψ‖e–αt , t ∈ [, t], ()

where M = (λ + d
–μ̄

[λK + λ])e(λ+α)ρ > , and α is defined in (). Similarly, we can
conclude that

E
∥
∥p(t, x)

∥
∥ ≤ M‖ψ‖e–αt , t ∈ [, t]. ()

Equations () and () then yield

sup
t–τ (t)≤s≤t,x∈Q

E
∥
∥m(t, x)

∥
∥ ≤ M

λ
‖ψ‖e–α(t–τ (t)) ≤ M

λ
‖ψ‖e–αt eατ̄ ,

sup
t–σ (t)≤s≤t,x∈Q

E
∥
∥p(t, x)

∥
∥ ≤ M

λ
‖ψ‖e–α(t–σ (t)) ≤ M

λ
‖ψ‖e–αt eασ̄ .

()

From the last two equations of system () we conclude that

E
∥
∥m

(
t+
k , x

)∥
∥ = E

∥
∥(I + Uk)m(tk , x)

∥
∥

≤ ∥
∥(I + Uk)

∥
∥ ·E∥

∥m(tk , x)
∥
∥ ≤ βE

∥
∥m(tk , x)

∥
∥,

E
∥
∥p

(
t+
k , x

)∥
∥ = E

∥
∥(I + Vk)p(tk , x)

∥
∥ ()

≤ ∥
∥(I + Vk)

∥
∥ ·E∥

∥p(tk , x)
∥
∥ ≤ βE

∥
∥p(tk , x)

∥
∥,

k = , , . . . .

Thus, according to ()-(), we have

EV
(
t+
 , m

(
t+
 , x

)
, p

(
t+
 , x

))

≤ λ
(
E

∥
∥m

(
t+
 , x

)∥
∥ + E

∥
∥p

(
t+
 , x

)∥
∥)
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+
λK
 – μ̄

∫ t

t–σ (t)
E

∥
∥p(s, x)

∥
∥ ds +

λ

 – μ̄

∫ t

t–τ (t)
E

∥
∥m(s, x)

∥
∥ ds

≤ λ
(
βE

∥
∥m(t, x)

∥
∥ + βE

∥
∥p(t, x)

∥
∥)

+
λK
 – μ̄

∫ t

t–σ (t)
E

∥
∥p(s, x)

∥
∥ ds +

λ

 – μ̄

∫ t

t–τ (t)
E

∥
∥m(s, x)

∥
∥ ds

≤
[

λ(β + β) +
λK σ̄

 – μ̄
eασ̄ +

λτ̄

 – μ̄
eατ̄

]
M

λ
‖ψ‖e–αt

≤
[

λ(β + β) +
d

 – μ̄
(λK + λ)eαd

]
M

λ
‖ψ‖e–αt

= e–(λ+α)ρ M

λ
‖ψ‖e–αt . ()

Now, we will show that

EV
(
t+
k , m

(
t+
k , x

)
, p

(
t+
k , x

)) ≤ e–(λ+α)ρ M

λk


‖ψ‖e–αtk , k = , , . . . . ()

It is obvious that () is true when k =  by (). We assume that () holds for k = i, that
is,

EV
(
t+
i , m

(
t+
i , x

)
, p

(
t+
i , x

)) ≤ e–(λ+α)ρ M

λi


‖ψ‖e–αti .

Then, for t ∈ (ti, ti+], we get

E
∥
∥m(t, x)

∥
∥ ≤ 

λ
EV

(
t, m(t, x), p(t, x)

) ≤ 
λ

EV
(
t+
i , m

(
t+
i , x

)
, p

(
t+
i , x

))
eλ(t–ti)

≤ e–(λ+α)ρ M

λi+


‖ψ‖e–αti eλρ = e–αρ M

λi+


‖ψ‖e–αti

≤ e–α(t–ti) M

λi+


‖ψ‖e–αti =
M

λi+


‖ψ‖e–αt . ()

Similarly, we have

E
∥
∥p(t, x)

∥
∥ ≤ M

λi+


‖ψ‖e–αt . ()

In addition, from () and () it follows directly that

sup
ti+–τ̄≤s≤ti+,x∈Q

E
∥
∥m(t, x)

∥
∥ ≤ M

λi+


‖ψ‖e–α(ti+–τ (ti+)) ≤ M

λi+


‖ψ‖e–αti+ eατ̄ ,

sup
ti+–σ̄≤s≤ti+,x∈Q

E
∥
∥p(t, x)

∥
∥ ≤ M

λi+


‖ψ‖e–α(ti+–σ (ti+)) ≤ M

λi+


‖ψ‖e–αti+ eασ̄ .
()

By (), (), and ()-() we obtain

EV
(
t+
i+, m

(
t+
i+, x

)
, p

(
t+
i+, x

))

= λ
[
E

∥
∥m

(
t+
i+, x

)∥
∥ + E

∥
∥p

(
t+
i+, x

)∥
∥] +

λK
 – μ̄

∫ ti+

ti+–σ (ti+)
E

∥
∥p(s, t)

∥
∥ ds
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+


 – μ̄

∫ ti+

ti+–τ (ti+)
E

∥
∥m(s, t)

∥
∥ ds

≤ λ
[
βE

∥
∥m(ti+, x)

∥
∥ + βE

∥
∥p(ti+, x)

∥
∥]

+
λK
 – μ̄

∫ ti+

ti+–σ (ti+)
E

∥
∥p(s, t)

∥
∥ ds

+
λ

 – μ̄

∫ ti+

ti+–τ (ti+)
E

∥
∥m(s, t)

∥
∥ ds

≤
[

λ(β + β) +
λK σ̄

 – μ̄
eασ̄ +

λτ̄

 – μ̄
eατ̄

]
M

λi+


‖ψ‖e–αti+

≤
[

λ(β + β) +
d

 – μ̄
(λKλ)eαd

]
M

λi+


‖ψ‖e–αti+

= e–(λ+α)ρ M

λi+


‖ψ‖e–αti+ ,

which shows that () holds for k = i+. Therefore, () is true for every k = , , . . . . Hence,
for t ∈ (tk , tk+], we can conclude by () that

E
∥
∥m(t, x)

∥
∥ ≤ 

λ
EV

(
t, m(t, x), p(t, x)

) ≤ 
λ

EV
(
t+
k , m

(
t+
k , x

)
, p

(
t+
k , x

))
eλ(t–tk )

≤ e–(λ+α)ρ M

λk+


‖ψ‖e–αtk eλρ = e–αρ M

λk+


‖ψ‖e–αtk

≤ e–α(t–tk ) M

λk+


‖ψ‖e–αtk =
M

λk+


‖ψ‖e–αt

≤ M

λ
eηtk ‖ψ‖e–αt ≤ M

λ
‖ψ‖e–(α–η)t , k = , , . . . . ()

Similarly, we have

E
∥
∥p(t, x)

∥
∥ ≤ M

λk+


‖ψ‖e–αt ≤ M

λ
‖ψ‖e–(α–η)t , k = , , . . . , ()

which, together with (), (), and (), show that the trivial solution of system () is
globally exponentially stable in the mean square sense. �

Remark  If the time delays are constant functions with respect to t, that is, τ (t) = τ ,
σ (t) = σ , then Theorem  reduces to the following result.

Corollary  If assumptions (A)-(A), (A∗), and (A) hold, then the trivial solution of
system () with τ (t) = τ , σ (t) = σ is globally exponentially stable in the mean-square sense.

Remark  Because the fBm becomes the standard Brownian motion when H = 
 , the ex-

ponential stability conditions derived in Theorem  for the GRNs with fBm will become
mean-square exponential stability conditions for the GRNs with standard Brownian mo-
tion, which, to the best our knowledge, has not been reported in the literature. Based on
Theorem , the following result for the GRNs with standard Brownian motion can be ob-
tained.
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Corollary  If assumptions (A), (A), (A), and (A) hold and Eq. () in (A) is replaced
by the equations

–
π


PDL – PA + Q +


 – μ̄

Q +



Q > ,

–
π


PD∗

L – PC + Q +
K

 – μ̄
Q +




Q > ,

then the trivial solution of system () is globally exponentially stable in the mean-square
sense.

4 Numerical simulations
In this section, we illustrate our results in a numerical example. Without loss of generality,
we consider a two-dimensional system (n = , l = ) and choose the parameters of system
() as follows:

A =

[
. 
 .

]

, B =

[
. 
 .

]

,

C =

[
. 
 .

]

, D =

[
. 
 .

]

,

D∗
k =

[
. 
 .

]

, Uk =

[
. 

 .

]

,

Vk =

[
. 
 .

]

, W =

[
. 
 .

]

,

σ (t) =

[
. + .| sin t|
. + .| sin t|

]

, τ (t) =

[
. + .| sin t|
. + .| sin t|

]

,

f (x) =
x

 + x , tk = .k, H = ., S(t, m, p) = –.(m + p).

By using MATLAB to solve the inequalities given in conditions (A)-(A), we get the fol-
lowing feasible solution:

P =

[
. 

 .

]

, P =

[
. 

 .

]

,

Q =

[
. 

 .

]

, Q =

[
. 

 .

]

,

Π =

[
. 

 .

]

, Π =

[
. 

 .

]

.

We know that the conditions of Theorem  are satisfied. By Theorem  we can conclude
that the trivial solution of system () is exponential stability in the mean-square sense.

In order to show the exponential stability of the trivial solution of system (), the sys-
tem is solved numerically using the Euler method. The numerical results are presented in
Figures -. Figures (b), (b), (b), (b) plot the exponential stability of the trivial solution
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Figure 1 Contour plot and sectional view of mRNA concentration m1(t, x).

Figure 2 Contour plot and sectional view of mRNA concentration m2(t, x).

Figure 3 Contour plot and sectional view of protein concentration p1(t, x).
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Figure 4 Contour plot of and sectional view protein concentration p2(t, x).

at x = .. The four figures show that the concentrations of both mRNA and protein are
exponentially stable, indicating effectiveness of the results derived in Theorem .

5 Conclusions
In this paper, we analyze the mean-square exponential stability for the comprehensive
GRNs with (a) diffusion-reaction, (b) time-varying delay, (c) impulsive control, and (d) fBm
for extrinsic noise. The stability analysis is a more challenging than the previous analysis
reported in the literature that considered only one or two of the four model components.
Our derived conditions of the mean-square exponential stability have a simple form and
can be used for evaluating the exponential stability of GRNs in a numerically straightfor-
ward manner.
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