- Formulas useful in astronomy

] HUGH THURSTON
Notation ’

A: the vernal equinox point on the celestial sphere
B: the northerly pole of the ecliptic B
'E, N, S, W: the eastern, northern, southern and western points on the horizon (which
is the circle in which the horizontal plane through the observer cuts the celestial sphere).
O: the centre of the celestial sphere - |
P the north celestial pole
' Z: the observer’s zenith | , ,
X*: the point where the meridian (a semicircle from pole to pole) through a point X
on the celestial sphere cuts the celestial equator.

: right ascension

: celestial la.titude;

: declination

: the obliquity of the ecliptic

: azimuth, measured eastward from no
hour angle - :
sidereal time

: celestial longitude

: altitude ,

: the observer’s latitude
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N.B. I use Greek letters for angles: ¢ and 7 are not standard notation. Throughout I
neglect the fact that the earth is not a perfect sphere. For some purposes we can take the

centre of the celestial sphere to be the observer instead of the centre of the earth. Only if

. . . . ' p y ItS para-ua.x matta‘s -




Definitions (Ilustrated in diagram 1)
Sidereal noon is the instant when A is at Z* (due south)

Sidereal time is the time since then and is measured by the angle Z*0A a;t 15° per
hour. : ' .

The hour angle of X is the angle XPZ (= angle X*0Z") measured eastward. Then
f=n+a ’ , ey

Orthogonal coordinates

B and A form a pair of orthogonal coordinates fixed in space; so do § and a. We can
transform between them as follows.

) g_in t f
sin§ = sinfcose +cosfsinrsine  —90° <5< @)
tana = (sin Acose — tan fsine) sec A 3)

Choose the value of o that gives cosc the same sign as cosA. If cosA = 0, a is 90° or
270°; a diagram éasilyshowswhich.

G and ) intermsofé anda
sinf =sin§cose — cosfsincsine —90°$ﬂ$90° (4)
tanA = (sinccose + tand sine) seca | (5)

Chobsethemluedfkthatgivwcoﬂthesamesigna.scosa. lfcosa=0,;\is90° or
270°; a diagram easily shows which.
We have also '

co8 6 cos @ = cos 3 cos A ' (6)
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7 and ¢ form a pair of orthogonal coordmata fixed w1th respect to the earth; so do § and

n. We can transform between them as follows.

1_and ( in terms of § and 7.
sinT =gingsind + cospcosdcosy —90° < < 90°
tan ¢ = sin7/(sin ¢ cosn — cos @ tan §)

~

Chpose the value of ¢ that gives sin¢ and _sinn}oppos.ite signs
S andn intermsof 7 and | ¢.
sind =singsinT +cospcosrcoa{  —90° < 6§ < 90°
tann = sin{/(sin ¢ cos { — cos @ tan )

Choose the value of 1 that gives siny and smC opposxte sxgns
We have also

cosTsin = —cosdsing
Sidergé.l time
At sidereal time 4:-

The degree of the ecliptic on the horizon is given by

—tanA = cosG/(s:n@cose+ta.n¢sxne)

VOne solution gives the degree that is nsmg the other gives the degree that is setting.

The degree of the ecliptic that is culminating is given by

tan )\ = tanf sece

8

(9)

(10)

)

(12)

(13)




The angle between the northward horizon and the upward ecliptic is
arc cos(cos e sin ¢ — sin € cos ¢ sin §) | (14)

It is 90° + ¢ + ¢ at sunrise on the vernal equinax and at sunset on the autumn equinox
(provided that the equinox occurs at sunrise or sunset respectively). This is the maximum

value. The mxmmumls90°+¢—e at sunrise on the autumn equinox and atsunseton the
vernal equinox.

Miscellaneous
The hgg;‘ angle of a star on the horizon is given by
‘ cosn = —tandtan¢ ' . (15)
and its azimuth by
cos( = sin.é sec ¢ : (16)
In each case, one solution gives the value at rising; the other gives the ‘va.lue at setting.

e longitude of int on the ecliptic with right ion « is given by
tanA =tanasece ~ | 17)
and its declination by
tand =sinatane ' (18)

N.B. This is the point on the echptm that culminates with any star whose right ascension
is o; its longitude is the polar longitude of such a star

The altitude of the sun when the earth has rotated through an angle 1 since noon is
given by |

sinr = sin @ sin & + cos ¢ cos § cos P (19)
The length d of daylight in hours when the sun has declination § is given by
cos(15¢/2) = ~ tan¢ tan § ~ | (20)




The rates of change § and & of § and o caused by precession at rate ) are given by

§ = Acosasine (21)

& = A(cose + tan §sinasine) (22)

The changes in 7_and § caused by refraction or parallax are found as follows. If 7

changes to 77, causing 77 and § to change to n* and §*, then

cotn® = cot 7] + cos ¢ cos reserysec§(tan T — tanT) | (23)

sin§* =sindcos7" secT +-singcos7"(tant* — tanr) - (24)

Location of a point with respect to a circle

If we know the angles subtended by arcs PQ and QI? of a circle at the centre O and
at a point E, we can locate E.

Let the radius of the circle be r. Let the angles subtended at E by PQ, QI? and
RP be a, 8 and v, all measured in the same direction, so that « + B+ v = 360°. Let
A=POQ -a,p=QO0R—f and v =ROP —~. Then

OFE?*  sin® A +sin® u + sin? v + 2 cosasin pusiny + 2cos@sinvsin A + 2cosysin Asin g

r? _sin2a+sin2ﬁ+sinzz/+ZCosAsin,Hsilw-{—2cosusin'ysina+20081/sinasinﬂ (25)
and
tan QEO = Sin'asin,u — sin #sin A
cosasiny + cosBsin A +siny (26)

Note: two points satisfy these equations, equally far from O in opposite directions.

We need to calculate the angles subtended at each to pick the right one.




The azimuth of 'a star on the horizon is given by

cosf = sinl sing (27)

One solution gives the azimuth at rising, the other at setting.




Orientation

If ¢ is the angle between the line from the observer to the pole and a vertical plane
through the observer with azimuth ¢, then

sinf = sin( sec ¢ o (28)

Comments

If a building is being oriented north-to-south by using a vertical alignment thought to

pass through the pole, (2§) gives the error in orientation caused by an error in the position
of the pole. ' '

Hipparchus’s Exegesis on Aratus gave, for many stars, the degree of the ecliptic that
rises, sets or culminates when the star rises, sets or culmjnatés. This cannot be observed
directly but can be calculated from « and §, coordiﬁates used by Hipparchus.

The hour angle of the star when it rises or sets is given by (15); the hour angle is z&o

when it culm'inai.:es. Then (1) gives the sidereal time. The degree of the ecliptic that rises
or sets then is given by (12) and the degree that culminates by (13).

.AT fact useful in constructing an astrolabe is that the projection of a circle on the
celestial sphere from a pole onto the plane of the equator is always a circle. I give a proof
of this in the appendix after proofs of the formulas. ’

Formula Proof on page
2 to © 3

7 to 11 4

12 5

13 and 15 to 18 6

14 7

19 8

20 9

21 and 22 11

23 and 24 12

25 to 27 13 and 14
28 15




Diagram 1.

L e ..

"o :angle AOX" measured eastward (comta.clom in this diagramjv
6 : angle X*0OX
n: angle Z°0X"
6 : angle Z*0OA

¢ : angle ZOZ*
~ Relative to the earth the sky rotates westward, carrying with it the points X, A and X*.

The points P; Z and Z* remain fixed. The angle Z*OA increases at 360° per day.




Appendix

Let A, B, and C be the angles of a spherical triangle, and let a, b, and c

‘be its sides. The following formulas, with proofs, are in any book of

spherical trigonometry. The sine etc. of an arc is the sine etc. of the

angle subtended at the centre of the sphere.

sina
sinA

]

sinb - sinc
sinB sinC

cosa = cosb.cosc + sinb.sinc.cosa

cosAd = -~ cosB.cosC + sinB.sinC.cosa
tanB = — SinC,
sina.cotb - cosa.cosC
si
tanb = 104

cosa.cosC + cotB.sinC

If arcs of great circles are as in the diagram below, then

sinu'_ sinp' sinv'
siny  sinp ° sin(v + v')

sipy - sinp sin(o + g')
sin(y + pu') ~ sin(p + p') “ sing'

(I)

(1II)

(I11)
(IV)

(V)

(V1)

(VII)




Orthogonal coordinates
Given a great circle C on the sphere, a point A on the circle from ﬁhich'to
measure, a dlrectlon in whlch to measure, and a point B on the sphere, centre
0, such that OB is perpendicular to the plane of C,
orthogonal coordinates of a point X on the sphere
are found as follows. Let the great circle from B
~via X first cut C in X*. The coordinate around |
is the angle AOX*. The coordinate across is the
angle XOX*, It is positive if X is on the same
side of the plane of C as B. Clearly
-90° s XOX* s 90°.

Transformation ~ .
Suppose that we have two systems of orthogonal coordinates on theisphere,_
whose basic circles intersect in A. Let the
coordinates around and across be a, 8 for the o )
first systam and vy, & for the saecond. Lat D

play the part of B for the second system. Lat 3(
€ be the angle between the two great circles.

‘let a and y both be measured from A towards ﬁ 'y
the points Q-and R where the great circle from ~ =

- B via D first cuts the basic circles. ‘
Introduce cartesian coordinates x, y, z with axes 0Q, OA, OB for the first
system, and cecrdinates u, v, w with axes OR, OA,. OD for the second, and
apply the transformation for a rotation of € about the y-axis. Take the
radius of the sphere to be 1. ' '

X = cosf.sina u = cosf.siny u = X.cose -~ z.sine
y = cosf.cosa v = cosd.cosy vsy
z = ging w = ging ¥ = x.sine + z.cose

‘Then _ \
cos$§.siny -'cosB.siha.eose - 8inB.sine
cosd.cosy = cosa.cosf

sind = cosB.sina.sine + sinB.cose

cany = sina.cose - tanB.sine

- cosa

om

0




(1f cosa = 0, X is on the great circle through B and D, and v and § are most

easily found from a diagram.)

8 and 5 are both between -90° and 90° (unless either is # 90°) and so have

i values
positive cosines. Then cosa and cosy have the same sign. Of the two value

for Yy choose the one that gives cosy the same sign as cosa.

If either a or vy is measuréd in the opposite direction, change its sign. If

either is not measured from A, subtract the appropriate constant.

Now apply these formulas to astronomy, using the notation listed earlier

To transform from ecliptical coordinates to equatorial, we use (VIII) with

A for a and a for v.

sind =.sinB.cosc + cosf.sine.sinA -90° s §.5 90°
cosd.cosa = cosf.cosA
cosdé.sina = cosB.cose.sinl - sinB.sine

cose.sinA - tanf.sine
cosA

tana = if cosh # 0

choose the value of o that gives COsa the same sign as cosA.
To transform from equatorial coordinates to ecliptical interchange \,B with
@,d8 and change -the sign of €.
sinf = sind.cose - cosé.sine.sina -90° s B 5 90°
cosf.cosA = cosd.cosa
cosf,sind = cosd.cose.sina + sind.sine

E. a + 8.si .
tan\ = S9S Lsizosu tand.sine if cosa # 0

choose the value of A that gives COSA the same sign as cosa.




.Sidereal time P
Sidereal noon is the instant when A is due south, i.e.

at the point Z* where the meridian through Z cuts the

equator.

Sidereal time 6 is the time since then and is measured </‘
by the angle Z*0OA at 15° per hour. :

The hour angle n of X is the angle XPZ measured westwards. v

If the meridian through X cuts the equator in X*, pn = X*0Z*.
Because o is the angle X*OA and is measured eastwards,
4 =n+ a.
n and § are a pair of equatorial coordinates. We can transform between them
and the horizontal system by using the triangle PZX.
Angle PBZX =:7. PZ = 90° - ¢, PX = 90° - §, ZX = 90° - 1, ZPX =-n if X has not
passed the meridian through Z; if it has, PZX = 360° - ¥ and ZPX = n.
In either case, by (1), (TD and (V),

sin 1= sin¢.sind + cos¢. cos§.cosn -90° s t s 90° ()
sin 8= sin¢.sint + cos¢.cost.cos{ -90° < § £ 90°
-cost.sin {= cosd.sinn

sint - sing.siné

c =
osn cos¢,coss
cos = sind - sin¢.sint

’ COS¢.COST
a = sing
tan{ = {—

{ cos§. tand - sing.cosn
-ginf

tanv = 310

cosf.tanr - sinf.coé}i

Choose the values of _{ and 7 that give sing and sim] opposite signs.




Time and the ecliptic

To find the degree of the ecliptic on the horizon at time 8, use
the triangle ABC formed by the horizon, the equator and the ecliptic.
B is either the east point E or the west point W of the horizon. Z*A is g,

Z*W = 90°, Z*E = 270°. Four conflguratlons are possible. In each,:AB i3 the

"equator, BC the horlzon, and CA the ecliptic.

A
A=¢g,B=90°+¢, b=- c

270° - 8.

€, B=90° + ¢, b=A, c=86 - 270°

A::ij/////\\\\\& A=¢, B=90° - ¢, b=, ¢
A

=€, B=90° - ¢, b=-A, c =90° - g,

8 - 90°

]

~-cosf8
tang.sine + sin8.cose’

In all four cases (V) gives tani =




A point on the (rotating) celestial sphere culminates when it is on the
'meridian through Z. It is then due south unless it is within 90° -~ ¢ of the
" north pole. “

. B
The degree of the ecliptic that culminates at time 8
is found from the triangle ABC formed by the equator AB,
the ecliptic AC and the meridian BC through Z. , pS
A=¢g, c =0,B=90° and b is the degree ) sought. ' o
. _ tan®
From (V) tani ey

The degree of the‘ecliptic that culminates when a star culminates is sometimes
called its polar longitude.

 If C is the point on the ecliptic, then its declination; for which there

is no technical term, is useful in following Ptolemy's treatment bf
precession. In the triangle ABC above, the declination of C is.a and

(V) yields
' tana = sina.tane.

To find the hour éngle of a star X with declination § when it is on the
horizon, set t = 0 in (IX):
' ~ cosn = -tan§.tand
One solution for n gives the-value at rising, the other at setting.
We can also find the azimuth of the star
from the triangle ZPX. x = 90° - ¢, z = 90° - §, = 2%
p = 90°., If the star is rising it is on the

aastern horizon, Z = {.,:

If it is setting in the west, Z = - {,.. - _
In either case; the formula cosz = cbsp.cosx + sinp.sinx.cosZ
yields ' ' '

sind = cosd.cosi.
One solution for { gives the azimuth at rising, the
other at satting.




The angle between the horizon and the ecliptic.

- At sunrise or sunset at the equinox the sun is at the east or west point of

- . the horizon. The angle is as shown in the diagrams, in which the dashed

line represents the equator.

L 1 \
- tl'
* £ : . - . lc .
"*‘;:;7///, _ ';;t:>\ /;:i:: V////

NeE NeE W=t N . W—N
sunrise, spring  sunrise, autumn sunset, spring sunset, autumn
90° + ¢ + ¢ 90° + ¢ - ¢ 9° + ¢ - ¢ "90° + ¢ + ¢

At other times the equator, the ecliptic

and the horizon form a sbherical

triangle. If Z* is the point where the

meridian thrdugh Z'cuts the equator,

AZ* =@, EZ* = 270°. Then AE = 270° - 6

or 8 - 270°. " ‘ |

Let { be the angle reduired. Then by (III)
. cosC = cose.sing - sine.cos¢.sind A

Other posﬁible configurations yield the same result.




To find the altitude t of the sun at a given date and time.
Let S be the position of the sun. Let

0SS and 0Z cut the plane through P perpendicular to OP in

X and Y. Let OP = 1.

Let § be the declination of the sun Y

at the given date. Let % be the rotation

of the sky since noon.

Angle YPO = 90° and YOP = ZOP = 90° - ¢

Therefore YP = c6t¢ and YO = coseco

XPO = 90° and XOP = 90° - §

Therefore XP = cot§ and XO = cosecs.

Angle XOY = SOZ = 90° -t.

Angle YPX = ¢ (because Y is south of P).

From the triangles XOY and XPY,

XY? = cosec?d + cosec?¢ - 2cosecS.cosecd.sint
= cot?§ + cot?¢ -2cotd.cote.cosy.

Subtract:

0=1+1 - 2cosecd.cosecdp.sint + 2cotd.cotd.cosy.
Multiply by isin¢.sind and rearrange:

sint = sin¢.sind + cos¢.cosS.cosy.

1/




The length of daylight
.First, suppose that the declination & of

the sun is pésitive, Let H be the sun
rising at azimuth { and S the south '
celestial pole. Let SH cut the equator
in G. The meridian through the zenith
cuts the equator in Z* and the horizon in

its south point B. The equatér cuts the

horizon in its east poiit E..

Let the number of degrees traversed by the sun during daylight be x. (This

is 15 times the length of daylight in hours.)

Label the segments as shown. .

. Then p' = g = v =90° p=¢, ut =90° - ¢, v' =&, o' =90° -~ {, p+p' = he.

"Then, by (VI) inverted, ‘ : R
tang = -cosir cots:

 And (re—labelling the ‘segments)

- siné = cosc.cos¢‘

From (VII)
sing = -cotdk.tang

and
cos& = sinC/sinix

We now have four relations between the latitude, the length of daylight,
the declinaticn of the sun, and the azimuth at which it rises.

At the summer sostice § = €, so the relation between the longest day and
the latituda is

tan¢ = -cosik.cote

11




Now supp&se that § is ﬁegative._ B, E,
‘etc. are as before. Label the segments as
shown. |
ptp' mao+a'zm v+ v =90° pu' =g
p=90° -¢. g =g -90° o= 180°: C,
v = ke,
From (VI)

tan¢ = -cotd.cosix
and _ ’

cotldk = -cotl.sin¢
From (VII)

cosp = -sind/(-cosl)
.and

sindc = sinf/coss

- These are the same four relations as before.

At the winter soléticeé’ﬂ -€, so the relation between the lengﬁh of the

shortest day and the latitude is

tan¢ = cosik.cote

7 M



Azimuths at rising and setting

Let X be a star with declination & rising and E the east point of the
horizon. Let the meridian through X cut the equator in Q. Then in the
triangle XEQ, e = 5, E=90° -¢, Q =90°. By the sine formula
sin q = sin$ sec¢ . But I =90° - q, so

cos}.’ = sind sec g .
Let Y be the star setting and W the west point of the horizon. If the
meridian through Y cuts the equator in P, w =&, W = 90° -, P =90°,
Then sin p = sind secp . But Z = 270° + p, so cos § = sin p, and again
'  cosT = sind secd,
Of the two angles whose cosine is sinSsec¢ , one gives the azimuth at

rising, the other at setting.

The effect of precession on declination and right ascension

A dot denotes rate of change,

[ ) [ ]
sin5 = sin/cosé + cosﬁ sinA sing , so é cosg = %cosﬁ cosA sing = >\cos «cos d sin ¢

Then & = Acosasing. . .
cos dcosx = cos Fcos/\, S0 Ssing cose + ;(cosgsino( = Acos/@sin/\.
Then & cos & sinx = 5\(cos,€sinr\ - sind cos’® sing ).
=;\(cos$ sinocose + sind sine - sin dcos’x sin &).
= A(cos$ sin xcose + sin §sin’x sin€), so

X = }(cosg + tangsino(sina).

(4




To find the effect on equatorial coordinates of alter ng the altitude of a body
W1thout alterlng its azimuth. '

This is useful because terrestrlal parallax alters the observed altltude of

a body without alter1ng its azimuth. So does refractlou.' , Z

90’- ¢

Let X have coordinates n,6 and .
‘Let X* have altitude t* and the same azimuth as X.

Denote its equatorial coordinates by n* and §*.

PZ = 90° - ¢, ZX = 90° - t, ZFX = n, PX = 90° - §. P
By (IV) ' '
tanf| = sinZ : ‘
cos¢.tant - sing.cosZ - _ x{
Therefore

sing.cosZ = cos¢.tant - sinZ.cotn.
Similarly : : ‘
sing.cosZ = cos¢.tant* - sinZ.cotn*.

Therefore o »
cos¢(taﬁr -~ tant*) = ginZ(cotn - cotn®X).

asinn.cos§ . oo oiuy by (D),

cosT
This gives n*.

By (II) sin§ = sin¢.sint + cos¢.cost,cosZ
siné* = gin¢.sint* + cos¢.cost®.cosZ ,
= ging.sint* + cost*(sind - sin¢.sint)/cost.
This gives §%
The change in o is the negatlve of the change in n-




Location of a point with respect to a circle

If we know the angles subtended by points P, Q, and R on

a circle at the centre and at a point E we can locate E.

Let the radius of the circle be r and its centre 0. Let
the angles subtended at E by PQ, QR, and RP be x, 8 and y, all
measured in the same direction, so thatx + 8 + y = 360°.

Let A = POQ - «, p= QOR - ﬁ, and ¥ = ROP - y. These angles
are known. Let angles OEQ = 8 and EQO = ¢. Let OE cut the circle
in A and B. Drop a perpendicular OX from O to EQ.

QOA = OEQ + EQO = O+ ¢

POA = QOA - POQ = (§ + &) - (* +A)

PEA = QEA - QEP = ©-x

EPO = POA - PEA = ¢ A,

From the triangle OPE.

OEsin(€ - o) = OPsin(¢ - \)

OE(sin® cosy - cos & siny) = r(sin%cosh - cos¢ sin)\)

OXcosd - XEsinx = OXcos ) - QXsin\

]

]

O0X(cos= - cosA) *= IEsina - QXsin A\ (1)
A
P
Q
‘ )
E
R
_ B
ROA = QOA + ROQ = G+ ¢ + p+ st
REA = REQ + QEO = &+ 6,
ERO = ROA - REA = ¢ + p.

From the triangle REO,

OEsin(€ +f) = rsin(¢-+/@

OE(sin@tosp + cos@éinﬁ) = r(sin¢co%}k+ cos%éigﬁo
OXcosﬁ + XEsinﬁ /
OX(cosFS- cosfo

OXCOS/A+ QXsinm
-XEsing + QXsinA. (2)




Multiply (1) by sing and (2) by sin)\ and add. Then
a0X = bXE
where . a = cosasinpu + costinA + siny
(because -siq»cos% - sin%co%u,= -sin(M + 1) = siny.)
b = sindsiﬁ» - sinfsinA.
Multiply (1) by sinf and (2) by sinx and add. Then
cOX = bQX
where ¢ = -siny - singcosu - sinfcosA
(because sinfcosx + sin&cosﬁ = sin@*-kﬁ) = -siny,)
Set p = a’® + b? = cos’x sin}& + cos’ﬁsinﬂ\ + sin’y
+ 2cos&cosﬁsin%siny + 2cosdsigysin7+ 2costinysinA
o sinlaC sin’ + sinzﬁsini\ -2 sinmsinﬁsinﬁaiqpu
= gin’A + sinju + sin’y + 2cosxsinmusiny + 2cospfsinysin\+ 2cosysinAsinu
(because cosoLosf - sindSin§ = cos(x +8) = cogy)
Set ¢ = b? + ¢’ =sin’Xsin}L+ sin’Bsid’A - ZSinQSinﬁsinAsiq;g
+ sin’y + sin‘ycos’u + 31i’BEs5"N
+ 2sinysindcosp+ 2sinfsinycosh+ Zsinxsiqﬂcosﬁcos/«
= sin'( + sin33+ sin’y + 266§A§i%ﬁ§i@y+ 2cosmsingsins + 2cosvsim*si%5
(because cos)cogu.- sinAsigu,= cos(A + ) = cos?).
OE* = 0X” + XE® = 0X'(1 + a'/b*) = pOX'/b"

r* = OX' + QX® = OX’(1 + c?/b*) + q0X*/b>.
Therefore OE’/r® = p/q. This determines the distance of E from
O: E lies on a circle of this radius with centre O.
tanQEO = OX/OE = b/a. This fixes the direction of the line AB.
E must be on of the two points where this line cuts the circle just
mentioned. .
In any particular case we can calculate the angle subtended

by PQ at each of these points to decide which is the one wanted.




Orientation ‘

O is the observer. OMQ is a vertical plane
with azimuthG. P is the north celestial pole
. or any point on the line from O to the pole.
PQ is the perpendicular from P to the
-vertical plane. PQMN is a rectangle.

Then angle MON =7. Let angle PQQ'(the angle
between OP and the vertical plane) be g o
Angle PON = &, | A o

sinJ = MN/ON = PQ/ON = (PQ/PO).(PO/ON) = sin¥ secg. -




The astrolabe

The commonest form of astroiabe projects'the g 8
celestial sphere onto its equatorial plane from
the south pole. Every circle on the sphere
projects into a circle. We show this as follows. c

The lines from a point S to a circle form a
cone. Let AB be the diameter of the circle through ,
the foot of the perpendicular from S to the plane £

of the circle.

Imagine the plane of the circle to rotate about a line through A
perpéndicular‘to the plane SAB; It will cut. the cone in an ellipse whose
eccentricity at first increases as the plane rotates and then decreases,
becoming zero again (by symmetry) when, if it cuts SB in C, the angle ACS =
SAB. Every plane parallel to this will also cut the cone in a circle.

Now let S be the south pole (and N the north
pole) of the celestial sphere.

A
Given any circle on the sphere, let the

o N

K

plane through N, S and the centre of the circle \<iij2§§
S

cut the circle in A and B. Let A* and B* be
the projections of A and B. !
B¥A*S = 90° - ASN = ANS = ABS (angles in the same segment).

Therefere the cone formed by S and the given circle is cut by the plane

through A* and B* perpendicular to the plane SAB in a circle. This is
the projection made by the astrolabe.




