# excerpts from *On the Heavens* (350 BCE) by Aristotle (384-322 BCE)

### Book II

### **4.** The shape of heaven is spherical.

The shape of the heaven is of necessity spherical; for that is the shape most appropriate to its substance and also by nature primary.

First, let us consider generally which shape is primary among planes and solids alike. Every plane figure must be either rectilinear or curvilinear. Now the rectilinear is bounded by more than one line, the curvilinear by one only. But since in any kind the one is naturally prior to the many and the simple to the complex, the circle will be the first of plane figures.

Again, if by complete ... we mean a thing outside which no part of itself can be found, and if addition is always possible to the straight line but never to the circular, clearly the line which embraces the circle is complete. If then the complete is prior to the incomplete, it follows on this ground also that the circle is primary among figures.

And the sphere holds the same position among solids. For it alone is embraced by a single surface, while rectilinear solids have several. The sphere is among solids what the circle is among plane figures....

If, again, one orders figures according to their numbers, it is most natural to arrange them in this way. The circle corresponds to the number one, the triangle, being the sum of two right angles, to the number two....

Now the first figure belongs to the first body, and the first body is that at the farthest circumference. It follows that the body which revolves with a circular movement must be spherical. The same then will be true of the body continuous with it: for that which is continuous with the spherical is spherical. The same again holds of the bodies between these and the center. Bodies which are bounded by the spherical and in contact with it must be ... spherical; and the bodies below the sphere of the planets are contiguous with the sphere above them. The sphere then will be spherical throughout; for every body within it is contiguous and continuous with spheres.

Again, since the whole revolves, palpably and by assumption, in a circle, and since it has been shown that outside the farthest circumference there is neither void nor place, from these grounds also it will follow necessarily that the heaven is spherical. For if it is to be rectilinear in shape, it will follow that there is place and body and void without it. For a rectilinear figure as it revolves never continues in the same room, but where formerly was body, is now none, and where now is none, body will be in a moment because of the projection at the corners. Similarly, if the world had some other figure with unequal radii, if, for instance, it were lentiform, or oviform, in every case we should have to admit space and void outside the moving body, because the whole body would not always occupy the same room.

Again, if the motion of the heaven is the measure of all movements whatever in virtue of being alone continuous and regular and eternal, and if, in each kind, the measure is the minimum, and the minimum movement is the swiftest, then, clearly, the movement of the heaven must be the swiftest of all movements. Now of lines which return upon themselves, the line which bounds the circle is the shortest; and that movement is the swiftest which follows the shortest line. Therefore, if the heaven moves in a circle and moves more swiftly than anything else, it must necessarily be spherical....

It is plain from the foregoing that the universe is spherical. It is plain, further, that it is turned (so to speak) with a finish which no manufactured thing nor anything else within the range of our observation can even approach. For the matter of which these are composed does not admit of anything like the same regularity and finish as the substance of the enveloping body; since with each step away from earth the matter manifestly becomes finer in the same proportion as water is finer than earth.

6. The movement of heaven is regular.

We have next to show that the movement of the heaven is regular and not irregular. This applies only to the first heaven and the first movement; for the lower spheres exhibit a composition of several movements into one.

If the movement is uneven, clearly there will be acceleration, maximum speed, and retardation, since these appear in all irregular motions. The maximum may occur either at the starting-point or at the goal or between the two; and we expect natural motion to reach its maximum at the goal, unnatural motion at the starting-point, and missiles midway between the two.

But circular movement, having no beginning or limit or middle in the direct sense of the words, has neither whence nor whither nor middle: for in time it is eternal, and in length it returns upon itself without a break.

If then its movement has no maximum, it can have no irregularity, since irregularity is produced by retardation and acceleration....

For if irregularity occurs, there must be change either in the movement as a whole, from fast to slow and slow to fast, or in its parts. That there is no irregularity in the parts is obvious, since, if there were, some divergence of the stars would have taken place before now in the infinity of time, as one moved slower and another faster: but no alteration of their intervals is ever observed.

Nor again is a change in the movement as a whole admissible. Retardation is always due to incapacity, and incapacity is unnatural. The incapacities of animals, age, decay, and the like, are all unnatural, due, it seems, to the fact that the whole animal complex is made up of materials which differ in respect of their proper places, and no single part occupies its own place. If therefore that which is primary contains nothing unnatural, being simple and unmixed and in its proper place and having no contrary, then it has no place for incapacity, nor, consequently, for retardation or (since acceleration involves retardation) for acceleration...

### 7. Stars.

We have next to speak of the stars, as they are called, of their composition, shape, and movements. It would be most natural and consequent upon what has been said that each of the stars should be composed of that substance in which their path lies, since, as we said, there is an element whose natural movement is circular. In so saying we are only following the same line of thought as those who say that the stars are fiery because they believe the upper body to be fire, the presumption being that a thing is composed of the same stuff as that in which it is situated.

The warmth and light which proceed from them are caused by the friction set up in the air by their motion. Movement tends to create fire in wood, stone, and iron; and with even more reason should it have that effect on air, a substance which is closer to fire than these. An example is that of missiles, which as they move are themselves fired so strongly that leaden balls are melted; and if they are fired the surrounding air must be similarly affected. Now while the missiles are heated by reason of their motion in air, which is turned into fire by the agitation produced by their movement, the upper bodies are carried on a moving sphere, so that, though they are not themselves fired, yet the air underneath the sphere of the revolving body is necessarily heated by its motion, and particularly in that part where the sun is attached to it. Hence warmth increases as the sun gets nearer or higher or overhead. Of the fact, then, that the stars are neither fiery nor move in fire, enough has been said.

### 8. The motion of stars.

Since changes evidently occur not only in the position of the stars but also in that of the whole heaven, there are three possibilities. Either (1) both are at rest, or (2) both are in motion, or (3) the one is at rest and the other in motion.

(1) That both should be at rest is impossible; for, if the earth is at rest, the hypothesis does not account for the observations; and we take it as granted that the earth is at rest. It remains either that both are moved, or that the one is moved and the other at rest.

(2) On the view, first, that both are in motion, we have the absurdity that the stars and the circles move with the same speed, *i.e.*, that the pace of every star is that of the circle in which it moves. For star and circle are seen to come back to the same place at the same moment; from which it follows that the star has traversed the circle and the circle has

completed its own movement, *i.e.*, traversed its own circumference, at one and the same moment. But it is difficult to conceive that the pace of each star should be exactly proportioned to the size of its circle. That the pace of each circle should be proportionate to its size is not absurd but inevitable: but that the same should be true of the movement of the stars contained in the circles is quite incredible. For if, on the one hand, we suppose that the star which moves on the greater circle is necessarily swifter, clearly we also admit that if stars shifted their position so as to exchange circles, the slower would become swifter and the swifter slower. But this would show that their movement was not their own, but due to the circles. If, on the other hand, the arrangement was a chance combination, the coincidence in every case of a greater circle with a swifter movement of the star contained in it is too much to believe. In one or two cases it might not inconceivably fall out so, but to imagine it in every case alike is a mere fiction. Besides, chance has no place in that which is natural, and what happens everywhere and in every case is no matter of chance.

(3) The same absurdity is equally plain if it is supposed that the circles stand still and that it is the stars themselves which move. For it will follow that the outer stars are the swifter, and that the pace of the stars corresponds to the size of their circles.

Since, then, we cannot reasonably suppose either that both are in motion or that the star alone moves, the remaining alternative is that the circles should move, while the stars are at rest and move with the circles to which they are attached. Only on this supposition are we involved in no absurd consequence. For, in the first place, the quicker movement of the larger circle is natural when all the circles are attached to the same center. Whenever bodies are moving with their proper motion, the larger moves quicker. It is the same here with the revolving bodies: for the arc intercepted by two radii will be larger in the larger circle, and hence it is not surprising that the revolution of the larger circle should take the same time as that of the smaller. And secondly, the fact that the heavens do not break in pieces follows not only from this but also from the proof already given of the continuity of the whole.

Again, since the stars are spherical, as our opponents assert and we may consistently admit, inasmuch as we construct them out of the spherical body, and since the spherical body has two movements proper to itself, namely rolling and spinning, it follows that if the stars have a movement of their own, it will be one of these. But neither is observed.

(1) Suppose them to spin. They would then stay where they were, and not change their place, as, by observation and general consent, they do. Further, one would expect them all to exhibit the same movement: but the only star which appears to possess this movement is the sun, at sunrise or sunset, and this appearance is due not to the sun itself but to the distance from which we observe it. The visual ray being excessively prolonged becomes weak and wavering.

The same reason probably accounts for the apparent twinkling of the fixed stars and the absence of twinkling in the planets. The planets are near, so that the visual ray reaches them in its full vigor, but when it comes to the fixed stars it is quivering because of the

distance and its excessive extension; and its tremor produces an appearance of movement in the star: for it makes no difference whether movement is set up in the ray or in the object of vision.

(2) On the other hand, it is also clear that the stars do not roll. For rolling involves rotation: but the 'face', as it is called, of the moon is always seen. Therefore, since any movement of their own which the stars possessed would presumably be one proper to themselves, and no such movement is observed in them, clearly they have no movement of their own.

There is, further, the absurdity that nature has bestowed upon them no organ appropriate to such movement. For nature leaves nothing to chance, and would not, while caring for animals, overlook things so precious. Indeed, nature seems deliberately to have stripped them of everything which makes self-originated progression possible, and to have removed them as far as possible from things which have organs of movement. This is just why it seems proper that the whole heaven and every star should be spherical. For while of all shapes the sphere is the most convenient for movement in one place, making possible, as it does, the swiftest and most self-contained motion, for forward movement it is the most unsuitable, least of all resembling shapes which are self-moved, in that it has no dependent or projecting part, as a rectilinear figure has, and is in fact as far as possible removed in shape from ambulatory bodies. Since, therefore, the heavens have to move in one place, and the stars are not required to move themselves forward, it is natural that both should be spherical—a shape which best suits the movement of the one and the immobility of the other.

# **9.** The harmony of the spheres.

From all this it is clear that the theory that the movement of the stars produces a harmony, *i.e.*, that the sounds they make are concordant, in spite of the grace and originality with which it has been stated, is nevertheless untrue. Some thinkers suppose that the motion of bodies of that size must produce a noise, since on our earth the motion of bodies far inferior in size and in speed of movement has that effect. Also, when the sun and the moon, they say, and all the stars, so great in number and in size, are moving with so rapid a motion, how should they not produce a sound immensely great?

Starting from this argument and from the observation that their speeds, as measured by their distances, are in the same ratios as musical concordances, they assert that the sound given forth by the circular movement of the stars is a harmony. Since, however, it appears unaccountable that we should not hear this music, they explain this by saying that the sound is in our ears from the very moment of birth and is thus indistinguishable from its contrary silence, since sound and silence are discriminated by mutual contrast. What happens to men, then, is just what happens to coppersmiths, who are so accustomed to the noise of the smithy that it makes no difference to them.

But, as we said before, melodious and poetical as the theory is, it cannot be a true account of the facts. There is not only the absurdity of our hearing nothing, the ground of which

they try to remove, but also the fact that no effect other than sensitive is produced upon us. Excessive noises, we know, shatter the solid bodies even of inanimate things: the noise of thunder, for instance, splits rocks and the strongest of bodies. But if the moving bodies are so great, and the sound which penetrates to us is proportionate to their size, that sound must needs reach us in an intensity many times that of thunder, and the force of its action must be immense. Indeed the reason why we do not hear, and show in our bodies none of the effects of violent force, is easily given: it is that there is no noise. But not only is the explanation evident; it is also a corroboration of the truth of the views we have advanced. For the very difficulty which made the Pythagoreans say that the motion of the stars produces a concord corroborates our view.

Bodies which are themselves in motion, produce noise and friction: but those which are attached or fixed to a moving body, as the parts to a ship, can no more create noise, than a ship on a river moving with the stream. Yet by the same argument one might say it was absurd that on a large vessel the motion of mast and poop should not make a great noise, and the like might be said of the movement of the vessel itself. But sound is caused when a moving body is enclosed in an unmoved body, and cannot be caused by one enclosed in, and continuous with, a moving body which creates no friction. We may say, then, in this matter that if the heavenly bodies moved in a generally diffused mass of air or fire, as every one supposes, their motion would necessarily cause a noise of tremendous strength and such a noise would necessarily reach and shatter us. Since, therefore, this effect is evidently not produced, it follows that none of them can move with the motion either of animate nature or of constraint. It is as though nature had foreseen the result, that if their movement were other than it is, nothing on this earth could maintain its character.

That the stars are spherical and are not self-moved, has now been explained.

#### **10.** *The order of the stars.*

With their order—I mean the position of each, as involving the priority of some and the posteriority of others, and their respective distances from the extremity—with this astronomy may be left to deal, since the astronomical discussion is adequate. This discussion shows that the movements of the several stars depend, as regards the varieties of speed which they exhibit, on the distance of each from the extremity. It is established that the outermost revolution of the heavens is a simple movement and the swiftest of all, and that the movement of all other bodies is composite and relatively slow, for the reason that each is moving on its own circle with the reverse motion to that of the heavens. This at once leads us to expect that the body which is nearest to that first simple revolution should take the longest time to complete its circle, and that which is farthest from it the shortest, the others taking a longer time the nearer they are and a shorter time the farther away they are. For it is the nearest body which is most strongly influenced, and the most remote, by reason of its distance, which is least affected, the influence on the intermediate bodies varying, as the mathematicians show, with their distance.

**11.** *The shape of the stars is spherical.* 

With regard to the shape of each star, the most reasonable view is that they are spherical. It has been shown that it is not in their nature to move themselves, and, since nature is no wanton or random creator, clearly she will have given things which possess no movement a shape particularly unadapted to movement. Such a shape is the sphere, since it possesses no instrument of movement. Clearly then their mass will have the form of a sphere. Again, what holds of one holds of all, and the evidence of our eyes shows us that the moon is spherical. For how else should the moon as it waxes and wanes show for the most part a crescent-shaped or gibbous figure, and only at one moment a half-moon? And astronomical arguments give further confirmation; for no other hypothesis accounts for the crescent shape of the sun's eclipses. One, then, of the heavenly bodies being spherical, clearly the rest will be spherical also.

### **12.** Celestial motion.

There are two difficulties, which may very reasonably here be raised, of which we must now attempt to state the probable solution: for we regard the zeal of one whose thirst after philosophy leads him to accept even slight indications where it is very difficult to see one's way, as a proof rather of modesty than of overconfidence.

Of many such problems one of the strangest is the problem why we find the greatest number of movements in the intermediate bodies, and not, rather, in each successive body a variety of movement proportionate to its distance from the primary motion. For we should expect, since the primary body shows one motion only, that the body which is nearest to it should move with the fewest movements, say two, and the one next after that with three, or some similar arrangement. But the opposite is the case.

The movements of the sun and moon are fewer than those of some of the planets. Yet these planets are farther from the center and thus nearer to the primary body than they, as observation has itself revealed. For we have seen the moon, half-full, pass beneath the planet Mars, which vanished on its shadow side and came forth by the bright and shining part. Similar accounts of other stars are given by the Egyptians and Babylonians, whose observations have been kept for very many years past, and from whom much of our evidence about particular stars is derived.

A second difficulty which may with equal justice be raised is this. Why is it that the primary motion includes such a multitude of stars that their whole array seems to defy counting, while of the other stars each one is separated off, and in no case do we find two or more attached to the same motion?

On these questions, I say, it is well that we should seek to increase our understanding, though we have but little to go upon, and are placed at so great a distance from the facts in question. Nevertheless there are certain principles on which if we base our consideration we shall not find this difficulty by any means insoluble.

We may object that we have been thinking of the stars as mere bodies, and as units with a serial order indeed but entirely inanimate; but should rather conceive them as enjoying

life and action. On this view the facts cease to appear surprising. For it is natural that the best-conditioned of all things should have its good without action, that which is nearest to it should achieve it by little and simple action, and that which is farther removed by a complexity of actions, just as with men's bodies one is in good condition without exercise at all, another after a short walk, while another requires running and wrestling and hard training, and there are yet others who however hard they worked themselves could never secure this good, but only some substitute for it.

To succeed often or in many things is difficult. For instance, to throw ten thousand Coan throws with the dice would be impossible, but to throw one or two is comparatively easy. In action, again, when A has to be done to get B, B to get C, and C to get D, one step or two present little difficulty, but as the series extends the difficulty grows.

We must, then, think of the action of the lower stars as similar to that of animals and plants. For on our earth it is man that has the greatest variety of actions—for there are many goods that man can secure; hence his actions are various and directed to ends beyond them—while the perfectly conditioned has no need of action, since it is itself the end, and action always requires two terms, end and means. The lower animals have less variety of action than man; and plants perhaps have little action and of one kind only. For either they have but one attainable good (as indeed man has), or, if several, each contributes directly to their ultimate good. One thing then has and enjoys the ultimate good, other things attain to it, one immediately by few steps, another by many, while yet another does not even attempt to secure it but is satisfied to reach a point not far removed from that consummation. Thus, taking health as the end, there will be one thing that always possesses health, others that attain it, one by reducing flesh, another by running and thus reducing flesh, another by taking steps to enable himself to run, thus further increasing the number of movements, while another cannot attain health itself, but only running or reduction of flesh, so that one or other of these is for such a being the end.

For while it is clearly best for any being to attain the real end, yet, if that cannot be, the nearer it is to the best the better will be its state. It is for this reason that the earth moves not at all and the bodies near to it with few movements. For they do not attain the final end, but only come as near to it as their share in the divine principle permits. But the first heaven finds it immediately with a single movement, and the bodies intermediate between the first and last heavens attain it indeed, but at the cost of a multiplicity of movement.

As to the difficulty that into the one primary motion is crowded a vast multitude of stars, while of the other stars each has been separately given special movements of its own, there is in the first place this reason for regarding the arrangement as a natural one.

In thinking of the life and moving principle of the several heavens one must regard the first as far superior to the others. Such a superiority would be reasonable. For this single first motion has to move many of the divine bodies, while the numerous other motions move only one each, since each single planet moves with a variety of motions. Thus,

then, nature makes matters equal and establishes a certain order, giving to the single motion many bodies and to the single body many motions.

And there is a second reason why the other motions have each only one body, in that each of them except the last, *i.e.*, that which contains the one star, is really moving many bodies. For this last sphere moves with many others, to which it is fixed, each sphere being actually a body; so that its movement will be a joint product.

Each sphere, in fact, has its particular natural motion, to which the general movement is, as it were, added. But the force of any limited body is only adequate to moving a limited body.

The characteristics of the stars which move with a circular motion, in respect of substance and shape, movement and order, have now been sufficiently explained.

# **13.** The earth.

It remains to speak of the earth, of its position, of the question whether it is at rest or in motion, and of its shape.

I. As to its position there is some difference of opinion. Most people—all, in fact, who regard the whole heaven as finite—say it lies at the center. But the Italian philosophers known as Pythagoreans take the contrary view. At the center, they say, is fire, and the earth is one of the stars, creating night and day by its circular motion about the center. They further construct another earth in opposition to ours to which they give the name counterearth. In all this they are not seeking for theories and causes to account for observed facts, but rather forcing their observations and trying to accommodate them to certain theories and opinions of their own.

But there are many others who would agree that it is wrong to give the earth the central position, looking for confirmation rather to theory than to the facts of observation. Their view is that the most precious place befits the most precious thing: but fire, they say, is more precious than earth, and the limit than the intermediate, and the circumference and the center are limits. Reasoning on this basis they take the view that it is not earth that lies at the center of the sphere, but rather fire.

The Pythagoreans have a further reason. They hold that the most important part of the world, which is the center, should be most strictly guarded, and name it, or rather the fire which occupies that place, the 'Guardhouse of Zeus,' as if the word 'center' were quite unequivocal, and the center of the mathematical figure were always the same with that of the thing or the natural center.

But it is better to conceive of the case of the whole heaven as analogous to that of animals, in which the center of the animal and that of the body are different. For this reason they have no need to be so disturbed about the world, or to call in a guard for its center: rather let them look for the center in the other sense and tell us what it is like and

where nature has set it. That center will be something primary and precious; but to the mere position we should give the last place rather than the first. For the middle is what is defined, and what defines it is the limit, and that which contains or limits is more precious than that which is limited, seeing that the latter is the matter and the former the essence of the system.

II. As to the position of the earth, then, this is the view which some advance, and the views advanced concerning its rest or motion are similar. For here too there is no general agreement. All who deny that the earth lies at the center think that it revolves about the center, and not the earth only but, as we said before, the counter-earth as well.

Some of them even consider it possible that there are several bodies so moving, which are invisible to us owing to the interposition of the earth. This, they say, accounts for the fact that eclipses of the moon are more frequent than eclipses of the sun: for in addition to the earth each of these moving bodies can obstruct it. Indeed, as in any case the surface of the earth is not actually a center but distant from it a full hemisphere, there is no more difficulty, they think, in accounting for the observed facts on their view that we do not dwell at the center, than on the common view that the earth is in the middle.

Even as it is, there is nothing in the observations to suggest that we are removed from the center by half the diameter of the earth.

Others, again, say that the earth, which lies at the center, is 'rolled', and thus in motion, about the axis of the whole heaven, So it stands written in the *Timaeus*.

III. There are similar disputes about the shape of the earth. Some think it is spherical, others that it is flat and drum-shaped. For evidence they bring the fact that, as the sun rises and sets, the part concealed by the earth shows a straight and not a curved edge, whereas if the earth were spherical the line of section would have to be circular. In this they leave out of account the great distance of the sun from the earth and the great size of the circumference, which, seen from a distance on these apparently small circles appears straight.

Such an appearance ought not to make them doubt the circular shape of the earth. But they have another argument. They say that because it is at rest, the earth must necessarily have this shape. For there are many different ways in which the movement or rest of the earth has been conceived.

The difficulty must have occurred to every one. It would indeed be a complacent mind that felt no surprise that, while a little bit of earth, let loose in mid-air moves and will not stay still, and more there is of it the faster it moves, the whole earth, free in mid-air, should show no movement at all. Yet here is this great weight of earth, and it is at rest. And again, from beneath one of these moving fragments of earth, before it falls, take away the earth, and it will continue its downward movement with nothing to stop it. The difficulty then, has naturally passed into a common place of philosophy; and one may

well wonder that the solutions offered are not seen to involve greater absurdities than the problem itself.

By these considerations some have been led to assert that the earth below us is infinite, saying, with Xenophanes of Colophon, that it has 'pushed its roots to infinity,' in order to save the trouble of seeking for the cause. Hence the sharp rebuke of Empedocles, in the words 'if the deeps of the earth are endless and endless the ample ether—such is the vain tale told by many a tongue, poured from the mouths of those who have seen but little of the whole.

Others say the earth rests upon water. This, indeed, is the oldest theory that has been preserved, and is attributed to Thales of Miletus. It was supposed to stay still because it floated like wood and other similar substances, which are so constituted as to rest upon but not upon air. As if the same account had not to be given of the water which carries the earth as of the earth itself! It is not the nature of water, any more than of earth, to stay in mid-air: it must have something to rest upon. Again, as air is lighter than water, so is water than earth: how then can they think that the naturally lighter substance lies below the heavier?

Again, if the earth as a whole is capable of floating upon water, that must obviously be the case with any part of it. But observation shows that this is not the case. Any piece of earth goes to the bottom, the quicker the larger it is. These thinkers seem to push their inquiries some way into the problem, but not so far as they might. It is what we are all inclined to do, to direct our inquiry not by the matter itself, but by the views of our opponents: and even when interrogating oneself one pushes the inquiry only to the point at which one can no longer offer any opposition. Hence a good inquirer will be one who is ready in bringing forward the objections proper to the genus, and that he will be when he has gained an understanding of all the differences.

Anaximenes and Anaxagoras and Democritus give the flatness of the earth as the cause of its staying still. Thus, they say, it does not cut, but covers like a lid, the air beneath it. This seems to be the way of flat-shaped bodies: for even the wind can scarcely move them because of their power of resistance. The same immobility, they say, is produced by the flatness of the surface which the earth presents to the air which underlies it; while the air, not having room enough to change its place because it is underneath the earth, stays there in a mass, like the water in the case of the water-clock. And they adduce an amount of evidence to prove that air, when cut off and at rest, can bear a considerable weight.

Now, first, if the shape of the earth is not flat, its flatness cannot be the cause of its immobility. But in their own account it is rather the size of the earth than its flatness that causes it to remain at rest. For the reason why the air is so closely confined that it cannot find a passage, and therefore stays where it is, is its great amount: and this amount great because the body which isolates it, the earth, is very large. This result, then, will follow, even if the earth is spherical, so long as it retains its size. So far as their arguments go, the earth will still be at rest.

In general, our quarrel with those who speak of movement in this way cannot be confined to the parts; it concerns the whole universe. One must decide at the outset whether bodies have a natural movement or not, whether there is no natural but only constrained movement. Seeing, however, that we have already decided this matter to the best of our ability, we are entitled to treat our results as representing fact. Bodies, we say, which have no natural movement, have no constrained movement; and where there is no natural and no constrained movement there will be no movement at all. This is a conclusion, the necessity of which we have already decided, and we have seen further that rest also will be inconceivable, since rest, like movement, is either natural or constrained.

But if there is any natural movement, constraint will not be the sole principle of motion or of rest. If, then, it is by constraint that the earth now keeps its place, the so-called 'whirling' movement by which its parts came together at the center was also constrained. (The form of causation supposed they all borrow from observations of liquids and of air, in which the larger and heavier bodies always move to the center of the whirl. This is thought by all those who try to generate the heavens to explain why the earth came together at the center. They then seek a reason for its staying there; and some say, in the manner explained, that the reason is its size and flatness, others, with Empedocles, that the motion of the heavens, moving about it at a higher speed, prevents movement of the earth, as the water in a cup, when the cup is given a circular motion, though it is often underneath the bronze, is for this same reason prevented from moving with the downward movement which is natural to it.)

But suppose both the 'whirl' and its flatness (the air beneath being withdrawn) cease to prevent the earth's motion, where will the earth move to then? Its movement to the center was constrained, and its rest at the center is due to constraint; but there must be some motion which is natural to it. Will this be upward motion or downward or what? It must have some motion; and if upward and downward motion are alike to it, and the air above the earth does not prevent upward movement, then no more could air below it prevent downward movement. For the same cause must necessarily have the same effect on the same thing.

Further, against Empedocles there is another point which might be made. When the elements were separated off by Hate, what caused the earth to keep its place? Surely the 'whirl' cannot have been then also the cause. It is absurd too not to perceive that, while the whirling movement may have been responsible for the original coming together of the art of earth at the center, the question remains, why now do all heavy bodies move to the earth. For the whirl surely does not come near us. Why, again, does fire move upward? Not, surely, because of the whirl. But if fire is naturally such as to move in a certain direction, clearly the same may be supposed to hold of earth. Again, it cannot be the whirl which determines the heavy and the light. Rather that movement caused the pre-existent heavy and light things to go to the middle and stay on the surface respectively. Thus, before ever the whirl began, heavy and light existed; and what can have been the ground of their distinction, or the manner and direction of their natural movements? In the infinite chaos there can have been neither above nor below, and it is by these that heavy and light are determined.

It is to these causes that most writers pay attention: but there are some, Anaximander, for instance, among the ancients, who say that the earth keeps its place because of its indifference. Motion upward and downward and sideways were all, they thought, equally inappropriate to that which is set at the center and indifferently related to every extreme point; and to move in contrary directions at the same time was impossible: so it must needs remain still. This view is ingenious but not true. The argument would prove that everything, whatever it be, which is put at the center, must stay there. Fire, then, will rest at the center: for the proof turns on no peculiar property of earth. But this does not follow. The observed facts about earth are not only that it remains at the center, but also that it moves to the center. The place to which any fragment of earth moves must necessarily be the place to which the whole moves; and in the place to which a thing naturally moves, it will naturally rest. The reason then is not in the fact that the earth is indifferently related to every extreme point: for this would apply to any body, whereas movement to the center is peculiar to earth. Again it is absurd to look for a reason why the earth remains at the center and not for a reason why fire remains at the extremity. If the extremity is the natural place of fire, clearly earth must also have a natural place. But suppose that the center is not its place, and that the reason of its remaining there is this necessity of indifference—on the analogy of the hair which, it is said, however great the tension, will not break under it, if it be evenly distributed, or of the men who, though exceedingly hungry and thirsty, and both equally, yet being equidistant from food and drink, is therefore bound to stay where he is-even so, it still remains to explain why fire stays at the extremities. It is strange, too, to ask about things staying still but not about their motion,-why, I mean, one thing, if nothing stops it, moves up, and another thing to the center. Again, their statements are not true. It happens, indeed, to be the case that a thing to which movement this way and that is equally inappropriate is obliged to remain at the center. But so far as their argument goes, instead of remaining there, it will move, only not as a mass but in fragments. For the argument applies equally to fire. Fire, if set at the center, should stay there, like earth, since it will be indifferently related to every point on the extremity. Nevertheless it will move, as in fact it always does move when nothing stops it, away from the center to the extremity. It will not, however, move in a mass to a single point on the circumference-the only possible result on the lines of the indifference theory—but rather each corresponding portion of fire to the corresponding part of the extremity, each fourth part, for instance, to a fourth part of the circumference. For since no body is a point, it will have parts. The expansion, when the body increased the place occupied, would be on the same principle as the contraction, in which the place was diminished. Thus, for all the indifference theory shows to the contrary, earth also would have moved in this manner away from the center, unless the center had been its natural place.

We have now outlined the views held as to the shape, position, and rest or movement of the earth.

#### **14.** *The earth is at rest.*

Let us first decide the question whether the earth moves or is at rest. For, as we said, there are some who make it one of the stars, and others who, setting it at the center,

suppose it to be 'rolled' and in motion about the pole as axis. That both views are untenable will be clear if we take as our starting-point the fact that the earth's motion, whether the earth be at the center or away from it, must needs be a constrained motion. It cannot be the movement of the earth itself. If it were, any portion of it would have this movement; but in fact every part moves in a straight line to the center. Being, then, constrained and unnatural, the movement could not be eternal. But the order of the universe is eternal. Again, everything that moves with the circular movement, except the first sphere, is observed to be passed, and to move with more than one motion. The earth, then, also, whether it move about the center or as stationary at it, must necessarily move with two motions. But if this were so, there would have to be passings and turnings of the fixed stars. Yet no such thing is observed. The same stars always rise and set in the same parts of the earth.

Further, the natural movement of the earth, part and whole alike, is the center of the whole—whence the fact that it is now actually situated at the center—but it might be questioned since both centers are the same, which center it is that portions of earth and other heavy things move to. Is this their goal because it is the center of the earth or because it is the center of the whole? The goal, surely, must be the center of the whole. For fire and other light things move to the extremity of the area which contains the center. It happens, however, that the center of the earth and of the whole is the same. Thus they do move to the center of the earth, but accidentally, in virtue of the fact that the earth's center lies at the center of the whole. That the center of the earth is the goal of their movement is indicated by the fact that heavy bodies moving towards the earth do not parallel but so as to make equal angles, and thus to a single center, that of the earth. It is clear, then, that the earth must be at the center and immovable, not only for the reasons already given, but also because heavy bodies forcibly thrown quite straight upward return to the point from which they started, even if they are thrown to an infinite distance. From these considerations then it is clear that the earth does not move and does not lie elsewhere than at the center.

From what we have said the explanation of the earth's immobility is also apparent. If it is the nature of earth, as observation shows, to move from any point to the center, as of fire contrariwise to move from the center to the extremity, it is impossible that any portion of earth should move away from the center except by constraint. For a single thing has a single movement, and a simple thing a simple: contrary movements cannot belong to the same thing, and movement away from the center is the contrary of movement to it. If then no portion of earth can move away from the center, obviously still less can the earth as a whole so move. For it is the nature of the whole to move to the point to which the part naturally moves. Since, then, it would require a force greater than itself to move it, it must needs stay at the center. This view is further supported by the contributions of mathematicians to astronomy, since the observations made as the shapes change by which the order of the stars is determined, are fully accounted for on the hypothesis that the earth lies at the center. Of the position of the earth and of the manner of its rest or movement, our discussion may here end.

Its shape must necessarily be spherical. For every portion of earth has weight until it reaches the center, and the jostling of parts greater and smaller would bring about not a waved surface, but rather compression and convergence of part and part until the center is reached. The process should be conceived by supposing the earth to come into being in the way that some of the natural philosophers describe. Only they attribute the downward movement to constraint, and it is better to keep to the truth and say that the reason of this motion is that a thing which possesses weight is naturally endowed with a centripetal movement. When the mixture, then, was merely potential, the things that were separated off moved similarly from every side towards the center. Whether the parts which came together at the center were distributed at the extremities evenly, or in some other way, makes no difference. If, on the one hand, there were a similar movement from each quarter of the extremity to the single center, it is obvious that the resulting mass would be similar on every side. For if an equal amount is added on every side the extremity of the mass will be everywhere equidistant from its center, *i.e.*, the figure will be spherical. But neither will it in any way affect the argument if there is not a similar accession of concurrent fragments from every side. For the greater quantity, finding a lesser in front of it, must necessarily drive it on, both having an impulse whose goal is the center, and the greater weight driving the lesser forward till this goal is reached. In this we have also the solution of a possible difficulty. The earth, it might be argued, is at the center and spherical in shape: if, then, a weight many times that of the earth were added to one hemisphere, the center of the earth and of the whole will no longer be coincident. So that either the earth will not stay still at the center, or if it does, it will be at rest without having its center at the place to which it is still its nature to move. Such is the difficulty. A short consideration will give us an easy answer, if we first give precision to our postulate that any body endowed with weight, of whatever size, moves towards the center. Clearly it will not stop when its edge touches the center. The greater quantity must prevail until the body's center occupies the center. For that is the goal of its impulse. Now it makes no difference whether we apply this to a clod or common fragment of earth or to the earth as a whole. The fact indicated does not depend upon degrees of size but applies universally to everything that has the centripetal impulse. Therefore earth in motion, whether in a mass or in fragments, necessarily continues to move until it occupies the center equally every way, the less being forced to equalize itself by the greater owing to the forward drive of the impulse.

If the earth was generated, then, it must have been formed in this way, and so clearly its generation was spherical; and if it is ungenerated and has remained so always, its character must be that which the initial generation, if it had occurred, would have given it. But the spherical shape, necessitated by this argument, follows also from the fact that the motions of heavy bodies always make equal angles, and are not parallel. This would be the natural form of movement towards what is naturally spherical. Either then the earth is spherical or it is at least naturally spherical. And it is right to call anything that which nature intends it to be, and which belongs to it, rather than that which it is by constraint and contrary to nature. The evidence of the senses further corroborates this. How else would eclipses of the moon show segments shaped as we see them? As it is, the shapes which the moon itself each month shows are of every kind straight, gibbous, and concave—but in eclipses the outline is always curved: and, since it is the

interposition of the earth that makes the eclipse, the form of this line will be caused by the form of the earth's surface, which is therefore spherical. Again, our observations of the stars make it evident, not only that the earth is circular, but also that it is a circle of no great size. For quite a small change of position to south or north causes a manifest alteration of the horizon. There is much change, I mean, in the stars which are overhead, and the stars seen are different, as one moves northward or southward. Indeed there are some stars seen in Egypt and in the neighborhood of Cyprus which are not seen in the northerly regions; and stars, which in the north are never beyond the range of observation, in those regions rise and set. All of which goes to show not only that the earth is circular in shape, but also that it is a sphere of no great size: for otherwise the effect of so slight a change of place would not be quickly apparent. Hence one should not be too sure of the incredibility of the view of those who conceive that there is continuity between the parts about the pillars of Hercules and the parts about India, and that in this way the ocean is one. As further evidence in favor of this they quote the case of elephants, a species occurring in each of these extreme regions, suggesting that the common characteristic of these extremes is explained by their continuity. Also, those mathematicians who try to calculate the size of the earth's circumference arrive at the figure 400,000 stades. This indicates not only that the earth's mass is spherical in shape, but also that as compared with the stars it is not of great size.