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Université catholique de Louvain

May 2008 / SIOPT

,
C. G. Baker et al. An Implicit Riemannian Trust-Region Method 1



Motivation Riemannian Trust-Region Method Implicit Riemannian Trust-Region Method Application to Eigenvalue Problems Conclusion

Acknowledgments

Funding

I NSF Grants OCI0324944 and CCR9912415

I School of Computational Science, FSU

I Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy; contract/grant number: DE-AC04-94AL85000.

,
C. G. Baker et al. An Implicit Riemannian Trust-Region Method 2



Motivation Riemannian Trust-Region Method Implicit Riemannian Trust-Region Method Application to Eigenvalue Problems Conclusion

What is Riemannian optimization?

Definition
Riemannian Optimization refers to the optimization of an objective
function over a Riemannian manifold.

Objective
Given a Riemannian manifold M and a smooth function

f :M→ R ,

the goal is to find an extreme point:

min
x∈M

f(x) or max
x∈M

f(x)

,
C. G. Baker et al. An Implicit Riemannian Trust-Region Method 3



Motivation Riemannian Trust-Region Method Implicit Riemannian Trust-Region Method Application to Eigenvalue Problems Conclusion

Methods for Riemannian Optimization

I Riemannian Steepest Descent Method [HM94][Udr94]

I Riemannian Newton Method [Lue72, Gab82, Udr94, EAS98, MM02, ADM+02,

DPM03, HT04]

Riemannian Steepest Descent Method

I Search along manifold in direction of steepest descent: −grad f(x)
I Robust global convergence

I Slow local convergence: linear

Riemannian Newton Method

I Search along manifold in Newton direction:
−[Hess f(x)]−1grad f(x)

I Fast local convergence: quadratic or even cubic

I Requires additional work for global convergence

,
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Trust-region methods

Trust-region methods combine the benefits of Newton and steepest
descent:

I the robust global convergence of steepest descent

I the fast local convergence of Newton’s method

I no exact linear solves

Riemannian Trust-Region Method

I Riemannian trust-region (RTR) method [ABG07]

I Retains convergence properties of Euclidean trust-region methods

I Promising application to generalized eigenvalue problems [ABG06]

Drawbacks

I Trust-region radius is a heuristic

I Radius slow to adjust, rejections hurt efficiency

,
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Trust-region methods

Operation of trust-region methods
Work on a model inside a region of tentative trust

1. At iterate x, construct (quadratic) model mx of f around x

2. Find (approximate) solution to

s∗ = argmin
‖s‖≤∆

mx(s)

3. Compute ρx(s):

ρx(s) =
f(x)− f(x+ s)
mx(0)−mx(s)

4. Use ρx(s) to adjust ∆ and accept/reject proposed iterate:

x+ = x+ s

,
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Needs for Riemannian trust-region method

Trust-region requirements

I theoretical setting for constructing model

I tractable setting for model minimization

I preservation of convergence theory

Definition
A retraction is a mapping R from TM to M satisfying the following:

I R is continuously differentiable

I Rx(0) = x

I DRx(0)[η] = η “First-order rigidity”

What is it good for?

I lift the objective function f from M to TxM, via the pullback
f̂x = f ◦Rx

I map tangent vectors back to the manifold

,
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A novel optimization paradigm
Question: How do we conduct optimization on a manifold?
Answer: We do it in the tangent spaces.

Generic Riemannian Optimization Algorithm

1. At iterate x ∈M, define f̂x = f ◦Rx
2. Find minimizer η of f̂x

3. Choose new iterate x+ = Rx(η)
4. Go to step 1

Exponential vs. Retraction

I Previously: exponential map conducts movement on the manifold

I Retraction-based Riemannian optimization uses a general retraction
to lift the objective function to the tangent space

I Can employ classical optimization techniques
I Retraction is less expensive than the exponential map
I The increased generality does not compromise the important theory

,
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Optimality conditions

Equivalence of the pullback f̂x = f ◦Rx

Expx Rx
grad f(x) = grad f̂x(0) yes yes

Hess f(x) = Hess f̂x(0) yes no

Hess f(x) = Hess f̂x(0) at critical points yes yes

Riemannian Sufficient Optimality Conditions

If grad f̂x(0) = 0 and Hess f̂x(0) > 0,
then grad f(x) = 0 and Hess f(x) > 0,

so that x is a local minimizer of f .

A suitable setting
This paradigm is sufficient for implementing trust-region methods.

,
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Riemannian trust-region method

Operation of RTR
RTR operates in an analogous manner to ETR methods, replacing
Euclidean concepts with Riemannian analogues.

1a. At iterate x, define pullback f̂x = f ◦Rx
1. Construct quadratic model mx of f around x

2. Find (approximate) solution to

η = argmin
‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f(x)− f(x+ η)
mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = x+ η

,
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How to solve the model minimization?

min
η∈TxM, ‖η‖≤∆

mx(η)

Possible choices
Abstract Euclidean space supports many different algorithms:

I exact solution [Moré and Sorensen, 1983]

I truncated conjugate gradient [Steihaug83][Toint81]

I truncated Lanczos [Gould et al, 1999]

I ...

Truncated Conjugate Gradient
Simple modifications to the classical CG:

I trust-region membership is actively monitored

I directions of negative curvature are followed to the edge

I convergence tailored to the needs of the outer iteration

,
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Classical TR mechanism

Drawbacks of classical trust-region mechanism

I Trust-region radius is heuristic
I Radius is based on performance of previous iterations
I Can take some time to adjust

I Rejections are expensive

Solutions
The solutions involve modifying the trust-region mechanism while
preserving good convergence properties:

I more complicated radius updates [Conn, Gould, Toint, 2000]

I filter trust-region method of [Gould, Sainvitu, Toint, 2005]

I Implicit Trust-Region [Baker, Absil, Gallivan, 2008]

,
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Implicit Riemannian Trust-Region Method

A new optimization algorithm
The implicit Riemannian trust-region (IRTR) method uses a different
trust-region definition:

TR at x = {η ∈ TxM : ρx(η) ≥ ρ′}

where

ρx(s) =
f̂x(0)− f̂x(s)
mx(0)−mx(s)

Effect

I Classical TR mechanism replaced by a meaningful measure of model
performance

I Accept/reject mechanism is discarded

I Modification to trust-region requires revisiting model minimization
and convergence theory

,
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IRTR Model Minimization

Interplay between trust-region and truncated CG
Trust-region definition comes into play when:

I checking that an iterate is in the trust-region

ρx(η) ≥ ρ′

I following a search direction to the edge

find τ > 0 s.t. ρx(η + τδ) = ρ′

Significance
Requires an efficient relationship with ρx(η):

I an analytical formula for ρx(η), or

I an efficient evaluation of ρx(η) combined with direct search

The latter assumes that evaluating f is not expensive.

,
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Convergence properties of IRTR

Convergence equivalent to RTR and Euclidean trust-region methods

Global convergence
Under very mild smoothness assumptions:

I Global convergence to stationary points

I Stable convergence only to local minimizers

Local convergence
For IRTR/tCG:

I Every non-degenerate local minimizer v ∈M has a neighborhood of
attraction

I If mx ≈ f̂x, asymptotic convergence is superlinear

Efficiency
Improved efficiency on problems where ρ is inexpensive

,
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Ingredients for RTR/IRTR

What did we need to apply RTR?

I Riemannian manifold (M, g), smooth function f :M→ R
I efficient representation for points x ∈M
I efficient representation for points η ∈ TxM
I tractable retraction R from TxM to M
I formula for grad f(x)
I formula for Hess f̂x(0)

Additional requirements for IRTR

I efficient formula for evaluating ρx(η)

,
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Application: Computing Extreme Eigenspaces

Symmetric Generalized Eigenvalue Problem
Symmetric A, s.p.d. B, give rise to n eigenpairs:

Avi = Bviλi, λ1 ≤ . . . ≤ λn

Many application require only p extreme eigenpairs:

(v1, λ1), . . . , (vp, λp)

Generalized Eigenvalue Optimization Problem
V =

[
v1 . . . vp

]
minimizes generalized Rayleigh quotient:

GRQ(X) = trace
((
XTBX

)−1
XTAX

)

,
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Riemannian Optimization Eigenvalue Problem

Basis invariance
Given X ∈ Rn×p∗ and M ∈ Rp×p non-singular,

GRQ(X) = trace
((
XTBX

)−1
XTAX

)
= GRQ(XM)

This can cause problems with Euclidean approaches (e.g., P-A’s talk)

Natural Riemannian setting

I GRQ is invariant to choice of basis, varies only with subspace

I Manifold is the set of p-dimensional subspaces of Rn
I This is the Grassmann manifold Grass(p, n)

I span(X) represented by any basis X

I Tspan(X) Grass(p, n) =
{
S ∈ Rn×p : STBX = 0

}

,
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A Tale of Two Models

TRACEMIN Model

mX(S) = trace
(
XTAX

)
+ 2 trace

(
STAX

)
+ trace

(
STAS

)
ρX(S) ≥ 1, ∀S ∈ TX Grass(p, n)

Trace Minimization method [SW82][ST00] implements IRTR.

I Asymptotic convergence is linear

Newton Model

mX(S) = trace
(
XTAX

)
+ 2 trace

(
STAX

)
+ trace

(
STAS − STBSXTAX

)
ρX(S) =

trace
((
I + STBS

)−1
(
M̂
))

trace
(
M̂
)

M̂ = STBSXTAX − 2STAX − STAS

,
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Newton model easy case: p = 1

ρx(s) =
1

1 + sTBs
so that ρx(s) ≥ ρ′ ⇔ ‖s‖2B ≤

1
ρ′
− 1

Hard case: p > 1

I No tractable formula (yet). Instead, decouple model:

mX(S) =
∑
j

mxj (sj)

I Use p = 1 formula and approximate ρX(S) via

ρ′ =
ρ′
∑
j

(
mxj

(0)−mxj
(sj)

)∑
j

(
mxj (0)−mxj (sj)

) ≤ ∑
j

(
f̂xj

(0)− f̂xj
(sj)

)
∑
j

(
mxj (0)−mxj (sj)

)
=
f̂X(0)−

∑
j f̂xj

(sj)
mX(0)−mX(S)

≈ f̂X(0)− f̂X(S)
mX(0)−mX(S)

= ρX(S)

,
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BCSST24 (Calgary Olympic Saddledome) with Cholesky preconditioner
ρ′
rtr = 0.1, ρ′

irtr = 0.5



The trust-region radius can limit effectiveness of a good preconditioner, and
rejections can stall progress.



Problem Size p Prec RTR IRTR

BCSST22 138 5 none 2.64 1.90
BCSST22 138 5 IC 1.11 1.03
BCSST22 138 5 LU 0.29 0.24
BCSST20 485 5 IC 49.04 34.40
BCSST20 485 5 LU 0.11 0.08
BCSST13 2003 25 LU 12.86 7.81
BCSST13 2003 100 LU 79.41 56.95
BCSST23 3134 25 LU 28.25 22.10
BCSST23 3134 100 LU 168.76 129.06
BCSST24 3562 25 LU 9.34 8.17
BCSST24 3562 100 LU 98.23 69.83
BCSST25 15439 25 LU 361.40 85.25

Timings (in seconds) in Trilinos/Anasazi (C++). Average speedup is 1.33.
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Conclusions and Future work

Conclusion

I Necessary conditions for surrogate minimization

I Modification to the trust-region mechanism

I Resulting algorithm addresses efficiency, preserves convergence
theory

I General description in the context of Riemannian optimization

I Novel algorithm for computing extreme eigenspaces

Future work

I Need more applications where IRTR can be put to efficient use

I Further analysis of ρX(S) for eigenvalue problem
I may yield workable formula
I should show current approximation is sufficient for convergence

,
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Software Efforts

I Generic RTR (GenRTR) package (MATLAB)
http://www.scs.fsu.edu/∼cbaker/GenRTR

I RTR/ESGEV solvers (MATLAB and Anasazi)
http://www.scs.fsu.edu/∼cbaker/RTRESGEV

Papers

I Absil, Baker, Gallivan: “A truncated-CG style method for symmetric
generalized eigenvalue problems” (JCAM,2006)

I Absil, Baker, Gallivan: “Trust-region methods on Riemannian
manifolds” (FoCM,2007)

I Baker, Absil, Gallivan: “An implicit trust-region method on
Riemannian manifolds” (IMAJNA,2008)
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