
1: Parallel Programming Concepts

John Burkardt
Information Technology Department

Virginia Tech
..........

HPPC-2008
High Performance Parallel Computing Bootcamp

http://people.sc.fsu.edu/∼jburkardt/presentations/
hppc 2008 lecture1.pdf

28 July - 02 August
2008

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

The difference between 1,000 workers working on 1,000 projects,
and 1,000 workers working on 1 project is organization and
communication.

The key idea of parallel programming:

Independent agents, properly organized and able to
communicate, can cooperate on one task.

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

Your next computer won’t run any faster that the one you have.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

ENIAC Weighed 30 Tons
Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

John von Neumann’s name appears on the cover of the user
manual for the ENIAC computer, the first working electronic
reprogrammable general purpose calculating device.

ENIAC was huge, heavy, and slow. Data was stored as voltage
levels. To add two numbers required turning dials and plugging a
connecting wire between the devices that stored the numbers.

Nonetheless, von Neumann’s mental image of the logical structure
of ENIAC guided computer designers for 50 years.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

The von Neumann Architecture

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

The interesting part of the von Neumann architecture is, of course,
the central processing unit or CPU:

The control unit is in charge. It fetches a portion of the
program from memory, it gets data from memory to “feed”
the arithmetic unit, and it sends results back to memory.

The arithmetic-logic unit is the raw computational device
that carries out additions and multiplications and logical
operations.

The registers are a small working area of temporary data
used during computations.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Over time, faster electronics were put in the CPU but often the
computations did not speed up as expected. It turned out that the
CPU was “starving”, that is, it could compute results so fast that
it was almost always idle, waiting for more data from memory.

For this reason, more connections to memory were added, but most
importantly, a small fast cache unit was added to the CPU. The
cache kept a local copy of certain data that was frequently used.

The cache was so useful that there are now elaborate multi-level
caches, and sophisticated algorithms for guessing what data should
be kept in the cache.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

A sequential program carried out a computation

solve this system of linear equations

by breaking it down into a series of simple steps:

For column K = 1 to N-1

Find the maximum element in column K

from row K through row N.

Interchange row K and row P.

Zero the entry in column K from row K+1 to row N.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

A sequential program computes a sequence of simple tasks in a
fixed order, one at a time.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Improvements in electronics brought faster execution.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Clock speeds hit a ceiling at 4 GigaHertz because of physical laws
(size of atoms, the speed of light, excessive heat.)

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Future processors will have the same clock speed as today...

What do we do for improved performance?

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Hardware possibilities include:

several, or many, cores on a processor;

several, or many, processors in one machine;

tens of machines with very fast communication;

hundreds or thousands of machines with moderately fast
communication.

Burkardt Parallel Programming Concepts

Sequential Computing and its Limits

Software possibilities include:

System software to control multiple cores or processors

Software to allow separate machines to communicate

Compilers that extend common languages to control multiple
processes

Algorithms chosen to exploit any inherent parallelism in a
problem

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

How many tasks can we do at the same time?

Burkardt Parallel Programming Concepts

Data Dependence

Tasks are ordered sequentially because a sequential computer can
only do one at a time. But is it logically necessary?

Burkardt Parallel Programming Concepts

Data Dependence

Computational biologist Peter Beerli has a program named
MIGRATE which infers population genetic parameters from
genetic data using maximum likelihood by generating and
analyzing random genealogies.

His computation involves:

1 an input task

2 thousands of genealogy generation tasks.

3 an averaging and output task

Burkardt Parallel Programming Concepts

Data Dependence

In an embarrassingly parallel calculation, there’s a tiny amount
of startup and wrapup, and in between, complete independence.

Burkardt Parallel Programming Concepts

Data Dependence

A more typical situation occurs in Gauss elimination of a matrix.
Essentially, the number of tasks we have to carry out is equal to
the number of entries of the matrix on the diagonal and below the
diagonal.

A diagonal task seeks the largest element on or below the diagonal.

A subdiagonal task adds a multiple of the diagonal row that zeroes
out the subdiagonal entry.

Tasks are ordered by column. For a given column, the diagonal
task comes first. Then all the subdiagonal tasks are independent.

Burkardt Parallel Programming Concepts

Data Dependence

In Gauss elimination, the number of independent tasks available
varies from step to step.

Burkardt Parallel Programming Concepts

Data Dependence

An example that is less structured occurs whenever the
computation can be regarded as “exploring” a graph, that is,
starting at one root node and following the edges to visit all the
nodes.

If the tasks depend on each other in the same way that the nodes
are connected back to the root node, then the dependence graph is
the tree that starts at the root node.

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

Burkardt Parallel Programming Concepts

Data Dependence

In our example, we saw the graph, so we know what to expect. In
a real problem, the graph might be much more irregular, and we
would never see it.

If we are working in parallel, and can do P tasks on a step, then at
each step, we are completing anywhere from 1 to P tasks.

And by completing these tasks, we encounter an unknown number
of new tasks that are ready to be worked on.

A sequential program uses a stack to work through such tasks.

Burkardt Parallel Programming Concepts

Data Dependence - Vocabulary

If the tasks we are considering are relatively large computations, we
speak of coarse grained parallelism. Such tasks can often be
distributed across multiple computers, since the amount of
communication (when tasks begin and end) will be relatively small
compared to the amount of computation done.

If these tasks are on the order of a statement or a block of
statements, we speak of fine grained parallelism. Here we
presume the tasks will all be done on one computer, but perhaps
by different co-processors which share the memory.

Burkardt Parallel Programming Concepts

Data Dependence

Data dependence between tasks T1 and T2, involving variable V,
occurs if either:

1 V is an input to one task and an output of the other.

2 V is an output of both tasks

Data dependence means T1 and T2 cannot be performed in
parallel.

Burkardt Parallel Programming Concepts

Data Dependence

If tasks T1 and T2 are sets of computer statements, then
dependence occurs if one task’s “left hand side” variable V occurs
anywhere in the other task (on the left or right hand side).

Arrays, pointers and functions will complicate this test!

Burkardt Parallel Programming Concepts

Data Dependence

What pairs of tasks can be run in parallel?

a = f + 5 Task 1

b = sqrt (w)

e = 2 * e + 1 Task 2

f = b + d * e

c = f * f - d Task 3

d = min (d, c)

a = 1 Task 4

c = 2

Burkardt Parallel Programming Concepts

Data Dependence

For which loops are the iterations data dependent?

for (i = 1; i < n - 1; i++) Loop 1

x[i] = x[i] + x[i-1];

do j = 2, n - 1

y(j) = (y(j) - y(j+1)) / 2 Loop 2

end do

for k = 2 : n - 1 Loop 3

z(k) = z(k) * z(k);

end

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

3 Parallel Algorithms

We try to understand how parallelism could help us.

Burkardt Parallel Programming Concepts

Parallel Algorithms

There is a lot we need to understand, but we have to start
somewhere!

Let’s consider how certain problems could be treated if some kind
of parallel computing facility was available.

We won’t worry about the details, but we will try to pay attention
to some common themes.

Burkardt Parallel Programming Concepts

Parallel Algorithms

At the end of the year, a teacher has 1,000 test scores to add up
and average. Her noisy classroom of 50 kids is distracting her.

She comes up with several ways to use their help.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Method 1

The students could all come up to the front desk and stare at the
gradebook with the 1,000 scores.

Each student could take one row of the table of scores and add it
up.

They only have one sheet of paper to work on, so the teacher
would mark it off into 50 separate boxes for their intermediate
sums.

The teacher would pencil in a 0 for the initial sum. Students take
turns erasing the current sum, adding their result, and writing the
new sum.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Method 2

The teacher could hand each student one set of grades to add.

Each student work at their desk, without worrying about any
interference from others.

As soon as they have computed their sum, they call the teacher
over, who adds the result to the total.

Burkardt Parallel Programming Concepts

Parallel Algorithms

These two simple stories might seem very similar, but they suggest
two different ways to go about a parallel algorithm; we will come
back to these ideas soon.

But let us take from this exercise a simple model for a parallel
computation.

Let’s say there’s a Boss or Master, with N pieces of data,
typically X1, X2, ...XN.

We let p stand for the number of helpers or agents, each of
whom works with n pieces of data, typically x1, x2,... xn.

Burkardt Parallel Programming Concepts

Parallel Algorithms

To sum N numbers, the Master sends n numbers to each agent.

When an agent returns the partial sum, the Master performs the
final reduction of the partial sums to a single total.

The same amount of computation is done, and happens faster
because the big sum has been broken up.

But this computation may take much longer. For every
computation (plus sign) there is also a communication (send the
number). Communication between machines takes much longer
than computation (100 or 1,000 times longer).

We will see other examples of how communication costs are an
important item in judging a parallel algorithm.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Suppose on the other hand that communication costs are
insignificant, and that computing power is so cheap that we have
one agent for every number Xi in our sum.

Suppose that an agent can add two numbers in one time step, and
that a sequential program would take about N steps to compute
the sum.

Then we can add N numbers in log(N) time using our agents.

We start with each agent having one number.

On the first step, each even agent I sends its value to the agent
I/2, who adds it to its number.

The even agents drop out, we renumber the odd agents, and repeat
the process til we end up with the total sum stored by agent 1.

Burkardt Parallel Programming Concepts

Parallel Algorithms

The addition examples may seem unrealistic and impractical.

But the pattern of combination used by these simple tasks often
occurs in more complicated calculations. In those cases, a similar
pattern of data distribution and combination might turn out to be
appropriate and efficient.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Now suppose we have a set of N numbers to sort.

You probably know several algorithms for sorting, but they are all
expressed sequentially.

Suppose we use N/2 agents, giving each two values, y1 and y2.

We number the agents, and imagine them standing in a line, able
to communicate with their left and right neighbors.

The following algorithm sorts the data in N steps. The best
sequential algorithms take about N log(N) steps.

Burkardt Parallel Programming Concepts

Parallel Algorithms

During a step, each agent:

sorts its two values so that y1 < y2,

sends a copy of y1 left;

receives a number x2 from the left.

y1 = max (y1, x2);

sends a copy of x2 right.

receives a number z1 from the right.

y2 = min (y2, z1).

Burkardt Parallel Programming Concepts

Parallel Algorithms

Some features of this algorithm that occur elsewhere:

the agents are arranged in a communication network

the communication is regular (a number is passed left, then a
number is passed right)

the communication is local (left or right)

If the number of agents is limited, it’s not difficult to modify the
algorithm so that each agent handles more than just 2 values.

By the way, what should we do at the first and last agents?

Burkardt Parallel Programming Concepts

Parallel Algorithms

Quadrature involves the estimation of the integral of a function
over a region, usually by averaging a number of sample function
values.

In the simplest case, the region is a line, the function is “well
behaved”, and we know the number of sample values we want.

In that case we can divide the line in segments, and have each
agent sample its segment, sum its values and send them to the
”Boss” for a final total.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Burkardt Parallel Programming Concepts

Parallel Algorithms

When a parallel version of an algorithm is produced by subdividing
the geometric region, this technique is known as domain
decomposition.

In this case, the division was simple. But sometimes, the
subregions will need to communicate with each other.

If the function changes behavior, then it may be necessary to do
more sampling in some regions. Instead of dividing the whole
region into 4 segments, we could have given each agent a part, but
left most of the work unassigned. As an agent finishes a task, it
gets more work. This is known as dynamic scheduling.

Burkardt Parallel Programming Concepts

Parallel Algorithms

The power method seeks the maximum eigenvalue λ of a matrix
A, and its corresponding eigenvector v.

Starting with an initial estimate for v, we essentially do the
following:

v_new = A * v;

lambda = v_new’ * v;

v = v_new / || v_new ||;

Matrix-vector multiplication is easy to do in parallel. We can divide
A into p groups of rows, or columns, or even into submatrices.
Since the matrix doesn’t change, the communication at each step
involves sending pieces of v and v new back and forth.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Burkardt Parallel Programming Concepts

Parallel Algorithms

I mentioned the idea of searching a graph or tree. The solution of
a Sudoku puzzle is an illustration of this concept. As you can see,
the partially-filled in puzzle includes indicators for the digits that
are possible fillers for the empty boxes.

Every digit represents a task, that is, moving to a new node on the
tree and taking yet another (educated) guess.

Clearly, a set of agents could profitably explore different
possibilities.

Note that in this example, two agents could start out in different
directions and end up exploring the same node further down the
tree.

This is a problem whose “geometry” is very hard to diagram in
advance.

Burkardt Parallel Programming Concepts

Parallel Algorithms

The heat equation is a model of the kinds of partial differential
equations that must be solved in scientific computations.

Determine the values of H(x , t) over a range t0 <= t <= t1 and
space x0 <= x <= x1, given an initial value H(x , t0), boundary
conditions, a heat source function f (x , t), and a partial differential
equation

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

Burkardt Parallel Programming Concepts

Parallel Algorithms

An approximate solution to this problem can be computed by using
a grid of points in space and time. The values are known at the
initial time, and at the left and right endpoints. Internally, we can
compute a value at the next time by a kind of average of the
current value with its left and right neighbors.

We can use domain decomposition, as we did for the quadrature
problem. However, we now see that we will need to arrange for
communication between neighboring agents, since in some cases,
the neighbor of a point belongs to a different subregion.

Burkardt Parallel Programming Concepts

Parallel Algorithms

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

3 Parallel Algorithms

4 Shared Memory Parallel Computing

A shared memory program runs on one computer with multiple
cores.

Burkardt Parallel Programming Concepts

Shared Memory - Multiple Processors

The latest CPU’s are called dual core and quad core, with rapid
increases to 8 and 64 cores to be expected.

The cores share the memory on the chip.

A single program can use all the cores for a computation.

It may be confusing, but we’ll refer to a core as a processor.

Burkardt Parallel Programming Concepts

Shared Memory - Multiple Processors

If your laptop has a dual core or quad core processor, then you will
see a speedup on many things, simply because the operating
system can run different tasks on each core.

When you write a program to run on your laptop, though, it
probably will not automatically benefit from multiple cores.

Burkardt Parallel Programming Concepts

Shared Memory - Multiple Processors

Burkardt Parallel Programming Concepts

Shared Memory - Multiple Local Memories

The diagram of the Intel quad core chip includes several layers of
memory associated with each core.

The full memory of the chip is relatively “far away” from the cores.
The cache contains selected copies of memory data that is
expected to be needed by the core.

Anticipating the core’s memory needs is vital for good
performance. (There are some ways in which a programmer can
take advantage of this.)

A headache for the operating system: cache coherence, that is,
making sure the original data is not changed by another processor,
which invalidates the cached copy.

Burkardt Parallel Programming Concepts

Shared Memory - NUMA Model

It’s easy for cores to share memory on a chip. And each core can
reach any memory item in the same time, known as UMA or
“Uniform Access to Memory”.

Until we get 8 or 16 core processors, we can still extend the shared
memory model, if we are willing to live with NUMA or
“Non-Uniform Access to Memory”.

We arrange several multiprocessor chips on a very high speed
connection. It will now take longer for a core on one chip to access
memory on another chip, but not too much longer, and the
operating system makes everything look like one big memory space.

Burkardt Parallel Programming Concepts

Shared Memory - NUMA Model

Chips with four cores share local RAM, and have access to RAM
on other chips.

VT’s SGI ALTIX systems use the NUMA model.

Burkardt Parallel Programming Concepts

Shared Memory - Implications for Programmers

On a shared memory system, the programmer does not have to
worry about distributing the data. It’s all in one place or at least it
looks that way!

A value updated by one core must get back to shared memory
before another core needs it.

Some parallel operations may have parts that only one core at a
time should do (searching for maximum entry in vector).

Parallelism is limited to the number of cores on a chip (2, 4, 8?),
or perhaps the number of cores on a chip multiplied by the number
chips in a very fast local network (4, 8, 16, 64, ...?).

Burkardt Parallel Programming Concepts

Shared Memory - Implications for Programmers

The standard way of using a shared memory system in parallel
involves OpenMP.

OpenMP allows a user to write a program in C/C++ or Fortran,
and then to mark individual loops or special code sections that can
be executed in parallel.

The user can also indicate that certain variables (especially
“temporary” variables) must be treated in a special way to avoid
problems during parallel execution.

The compiler splits the work among the available processors.

This workshop will include an introduction to OpenMP in a
separate talk.

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts

Here is one example of the problems that can occur when working
in shared memory.

Data conflicts occur when data access by one process interferes
with that of another.

Data conflicts are also called data races or memory contention. In
part, these problems occur because there may be several copies of
a single data item.

If we allow the “master” value of this data to change, the old
copies are out of date, or stale data.

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts

A mild problem occurs when many processes want to read the
same item at the same time. This might cause a slight delay.

A bigger problem occurs when many processes want to write or
modify the same item. This can happen when computing the sum
of a vector, for instance. But it’s not hard to tell the processes to
cooperate here.

A serious problem occurs when a process does not realize that a
data value has been changed, and therefore makes an incorrect
computation.

Burkardt Parallel Programming Concepts

Data Conflicts: The VECTOR MAX Code

program main

i n t e g e r i , n
double p r e c i s i o n x (1000) , x max

n = 1000

do i = 1 , n
x (i) = rand ()

end do

x max = −1000.0

do i = 1 , n
i f (x max < x (i)) then

x max = x (i)
end i f

end do

stop
end

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts - VECTOR MAX

program main

i n c l u d e ’ omp l i b . h ’

i n t e g e r i , n
double p r e c i s i o n x (1000) , x max

n = 1000

do i = 1 , n
x (i) = rand ()

end do

x max = −1000.0

! $omp p a r a l l e l do
do i = 1 , n

i f (x max < x (i)) then
x max = x (i)

end i f
end do

! $omp end p a r a l l e l

stop
end

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts - VECTOR MAX

It’s hard to believe, but the parallel version of the code is incorrect.
In this version of an OpenMP program, the variable X MAX is
shared, that is, every process has access to it.

Each process will be checking some entries of X independently.

Suppose process P0 is checking entries 1 to 50, and process P1 is
checking entries 51 to 100.

Suppose X(10) is 2, and X(60) is 10000, and all other entries are 1.

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts - VECTOR MAX

Since the two processes are working simultaneously, the following is
a possible history of the computation:

1 X MAX is currently 1.

2 P1 notes that X MAX (=1) is less than X(60) (=10,000).

3 P0 notes that X MAX (=1) is less than X(10) (=2).

4 P1 updates X MAX (=1) to 10,000.

5 P0 updates X MAX (=10,000) to 2.

and of course, the final result X MAX=2 will be wrong!

Burkardt Parallel Programming Concepts

Shared Memory - Data Conflicts - VECTOR MAX

This simple example has a simple correction, but we’ll wait until
the OpenMP lecture to go into that.

The reason for looking at this problem now is to illustrate the job
of the programmer in a shared memory system.

The programmer must notice points in the program where the
processors could interfere with each other.

The programmer must coordinate calculations to avoid such
interference.

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

3 Parallel Algorithms

4 Shared Memory Parallel Computing

5 Distributed Memory Parallel Computing

Distributed memory programs run on multiple computers;
messages are used to send data and results.

Burkardt Parallel Programming Concepts

Distributed Memory - Multiple Processors

Burkardt Parallel Programming Concepts

Distributed Memory

A distributed memory computation manages the resources of
several independent computers which are joined on a
communication network.

Thus, theoretically, no fancy new hardware is needed: just cables
and a router.

If the communication is fast enough, the result is a powerful
computing device.

Burkardt Parallel Programming Concepts

Distributed Memory

A distributed memory system will need some kind of software
daemon, running on each machine, which will:

copy the program and data files to all machines;

start the program on all the machines;

send and receive messages from programs, holding them til
received;

gather program outputs to a single file

shut down programs at the end and clean up

Burkardt Parallel Programming Concepts

Distributed Memory

A distributed memory system must offer a library that allows a user
program to make function calls:

to “check in”

to find out how many other processes are running

to request an ID

to send a message to another process

to receive messages from other processes

to request that other processes wait

to “check out”

Burkardt Parallel Programming Concepts

Distributed Memory

The programmer writes a single program to run on all machines.

This program

defines and initializes data

determines the portion of work that a process will do

shares data with other processes as needed

collects results in the end.

Burkardt Parallel Programming Concepts

Distributed Memory

How can copies of the same program execute differently on
different machines?

Each process is assigned a unique ID, which it can find out
through a function call.

Each process can also find out P, the total number of processes
participating in the calculation.

ID’s run from 0 to P-1. Simply assigning an ID is enough to guide
the processes to the work they must do.

Burkardt Parallel Programming Concepts

Distributed Memory

A simple design for parallel programs is the master/worker model.

Process 0 is assigned to control the computation: read input,
assign work, gather results, print reports.

Independent tasks are divided up among processes 1 through P-1.

People like this model because it is not so different from sequential
programming - someone is still “in charge”.

IF/ELSE statements separate the master and worker portions of
the program.

Burkardt Parallel Programming Concepts

Distributed Memory

Sketch of a master/worker quadrature program:

if (master)

send N to all workers

for each worker I, send A[I], B[I]

set Q = 0

for each worker I, receive Q_PART[I], add to Q.

print "Integral = " Q

else

receive N from master

receive A, B from master

Q_PART = 0

for N equally spaced X between A and B,

Q_PART = Q_PART + F(X)

send Q_PART to master

Burkardt Parallel Programming Concepts

Distributed Memory

Another design for parallel programs comes from domain
decomposition.

If the problem to be solved is associated with a geometric region,
then process I is assigned to work in subregion I.

Communication between processes corresponds to the geometry of
the subregions. For the 1D heat equation, each process (except the
first and last) has a left and right neighbor.

Typically, a process must inform its neighbors of data it has
updated that lies on their common boundary.

The amount of communication is typically related to the “area” of
the boundary. It’s useful to keep the subregions compact.

Burkardt Parallel Programming Concepts

Distributed Memory

Here is a sketch of the heat equation program:

Process ID is assigned interval [ID/P, (ID+1)/P].

Nodes: X[0], X[1] through X[N], X[N+1].

Initialize: U[0], U[1] through U[N], U[N+1].

Time Loop:

Compute new values of U[1] through U[N].

Send U[1] to left, get U[0] from left.

Send U[N] to right, get U[N+1] from right.

Print solution at end:

U[1] through U[N] from ID 0,

U[1] through U[N] from ID 1, ...

Burkardt Parallel Programming Concepts

Distributed Memory

Using distributed memory brings some new costs and potential
errors.

The costs may include a substantial effort to rethink and rewrite
the program.

There is also a communication cost that offsets the; remember we
suggested that sending a number somewhere else might take 100 or
1000 times as long as performing a computation on that number.

But there are also several new problems that can occur because of
the fact that we are trying to communicate between machines.

Burkardt Parallel Programming Concepts

Distributed Memory

Generally, the processes are free to run independently on the
various machines, as fast as they can.

In most programs there will be certain synchronization points,
that is, lines of code which some or all of the processors must
reach at the same time.

Processors reaching the synchronization point early must wait for
the others.

As an example, if the processors are working together on an
iteration, then generally they all must synchronize at the end of
each step, to share updated information.

Burkardt Parallel Programming Concepts

Distributed Memory

Synchronization can increase the costs and delays associated with
communication.

In particular, if the work is poorly divided, or if communication to a
particular processor is slow, or if that processor is less powerful,
then it is likely that all the other processors will have to wait at
synchronization points.

Problems of this sort are called load balancing problems.

Burkardt Parallel Programming Concepts

Distributed Memory

Another instance that can involve synchronization involves the
sending of messages.

In the typical case, only two processes are involved, a sender and a
receiver.

In the simplest case, the sender pauses at the SEND statement,
the receiver pauses at the RECEIVE statement. When they are
both there, the sender sends the message, the receiver receives it,
and sends back a confirmation.

The idle time that one process spent waiting for the other (a
synchronization point) is wasted.

Burkardt Parallel Programming Concepts

Distributed Memory

There are alternatives when transmitting messages:

1 Synchronous transmission: the message is not transmitted
until both sender and receiver are ready;

2 Buffered transmission: the message is put into a buffer as
soon as the sender is ready. The sender proceeds, and the
receiver picks up the message when it is ready

3 Nonblocking transmission: the receiver indicates that it is
ready to receive the message, but may continue to do other
work while waiting

Burkardt Parallel Programming Concepts

Distributed Memory

Not only can message transmission cause delays - it can also cause
the program to fail entirely.

It is possible to write a program which uses the communication
channels incorrectly, so that messages can’t get through.

Deadlock is a situation in which a process cannot proceed,
because it is waiting for a condition that will never come true.

Recall that in the simplest version of message transmission, a
sender can’t proceed until the message is received; a receiver can’t
proceed until the message is sent.

Burkardt Parallel Programming Concepts

Distributed Memory - Deadlock

Here is a recipe for deadlock, using our heat equation problem.

Suppose we use 2 processes, each responsible for computing 50
values of X. To keep things simple, we will refer to all 100 values
of X as though they were in a single global array.

Process P0 has X(1) through X(50)
process P1 has X(51) through X(100).

P0 needs updated copies of X(51) from P1;
P1 needs updated copies of X(50) from P0.

If they do this in the wrong way, they deadlock.

Burkardt Parallel Programming Concepts

Distributed Memory - Deadlock

===The P0 side==============+====The P1 side============

|

Initialize X(1)...X(50) | Initialize X(51)...X(100).

|

Begin loop | Begin loop

|

Send X(50) to P1 ==>|<== Send X(51) to P0

|

When receipt confirmed,<==|==> When receipt confirmed,

|

Receive X(51) from P1 <==|==> Receive X(50) from P0

|

Update X(1)...X(50). | Update X(51)...X(100).

|

Repeat | Repeat

Burkardt Parallel Programming Concepts

Distributed Memory - Programmer Implications

MPI is a system designed for parallel programming on distributed
memory systems.

MPI allows the user to write a program, in C/C++ or Fortran.

The user program calls various functions from the MPI library in
order to determine the process ID, send messages, and other tasks.

Depending on the installation, the user runs a job interactively,
using a command like mpirun or through a batch system, which
requires a job script.

The next two days of this workshop will concentrate on a detailed
presentation of MPI.

Let’s get a preview of an MPI program.

Burkardt Parallel Programming Concepts

Distributed Memory: The VECTOR MAX Code

program main

i n c l u d e ’ mpi f . h ’

i n t e g e r i d
i n t e g e r i e r r
i n t e g e r p

c a l l MPI I n i t (i e r r)
c a l l MPI Comm rank (MPI COMM WORLD, id , i e r r)
c a l l MPI Comm size (MPI COMM WORLD, p , i e r r)

c a l l d o s t u f f (id , p)

c a l l MPI F i n a l i z e (i e r r)

stop
end

Burkardt Parallel Programming Concepts

Distributed Memory: The VECTOR MAX Code

s u b r o u t i n e d o s t u f f (id , p)

i n c l u d e ’ mpi f . h ’

i n t e g e r i , id , i e r r , j , p , s r c , tag , t a r g e t
double p r e c i s i o n x (1000) , x max , x max l o c a l

i f (i d == 0) then <−−MASTER c r e a t e s data and sends i t

do i = 1 , p − 1

do j = 1 , 1000
x (j) = rand ()

end do

t a r g e t = i
tag = 1
c a l l MPI Send (x , 1000 , MPI DOUBLE PRECISION , t a r g e t , tag ,

& MPI COMM WORLD, i e r r)

end do

e l s e <−− WORKERS r e c e i v e data

s r c = 0
tag = 1
c a l l MPI Recv (x , 1000 , MPI DOUBLE PRECISION , s r c , tag ,

& MPI COMM WORLD, s t a t u s , i e r r)

end i f

Burkardt Parallel Programming Concepts

Distributed Memory: The VECTOR MAX Code

i f (i d == 0) then <−− MASTER r e c e i v e s maximums .

x max = −1000.0
tag = 2

do i = 1 , p − 1

c a l l MPI Recv (x max l o ca l , 1 , MPI DOUBLE PRECISION ,
& MPI ANY SOURCE , tag , MPI COMM WORLD, s t a t u s , i e r r)

x max = max (x max , x max l o c a l)

end do

e l s e <−− WORKERS send maximums .

x max l o c a l = x (1)

do i = 2 , n
i f (x max l o c a l . l t . x (i)) x max l o c a l = x (i)

end do

t a r g e t = 0
tag = 2
c a l l MPI Send (x max l o ca l , 1 , MPI DOUBLE PRECISION , t a r g e t ,

& tag , MPI COMM WORLD, i e r r)

end i f

r e t u r n
end

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

3 Parallel Algorithms

4 Shared Memory Parallel Computing

5 Distributed Memory Parallel Computing

6 Performance Measurements for Parallel Computing

What does faster mean? Can you have too many parallel
processes?

Burkardt Parallel Programming Concepts

Performance Measurement

Performance measurements allow us to estimate whether our
program is running at maximum speed on a given computer.

They can help us to estimate the running time required if we
double the problem size N.

They can help us compare algorithms, compilers, computers.

We can try to understand how the problem size N and the number
of parallel processes P interact, so that we can find the “sweet
spot”, the range of parameters that yield good performance.

Burkardt Parallel Programming Concepts

Performance Measurement

A common performance measurement is the MegaFLOPS rate.

This measurement concentrates entirely on the speed with which a
given set of floating-point arithmetic operations is carried out.

A FLOP is a floating point operation: addition or multiplication.

We can sometimes estimate the FLOPs required for a calcuation.

Matrix multiplication takes 2N2,
typical Gauss elimination requires about 2

3N3.

Burkardt Parallel Programming Concepts

Performance Measurement - Time in Seconds

Most computer languages and API’s can measure and return a
CPU time or wallclock time in seconds:

t1 = cputime ();

x = very_big_calculation (y);

t2 = cputime ();

cpu_elapsed = t2 - t1;

Burkardt Parallel Programming Concepts

Performance Measurement

To keep things from getting too big, we typically scale the FLOPS
by a million.

Now if we divide the work, in MegaFLOPs, by the elapsed CPU
time, in seconds, we get the MegaFLOPS rate:

MFLOPS = (FLOPS / 1,000,000) / seconds

Burkardt Parallel Programming Concepts

Performance Measurement

A MegaFLOPS rate is a reasonable number to use when
comparing programs or computers.

Even on a sequential (non-parallel) computation, there can be
variations in the computed rate. It’s important to run a “big
enough” program for a “long enough” time so that the rate settles
down.

A MegaFLOPS rate is at the heart of the LINPACK benchmark
program, which measures the speed at which a 1000x1000 linear
system is solved.

Burkardt Parallel Programming Concepts

Performance Measurement - The LINPACK Benchmark

Table: Sample LINPACK Ratings

Rating Computer Language Comment

108 Apple G5 C used ”rolled” loops
184 Apple G5 C used ”unrolled” loops
221 Apple G5 F77 gfortran compiler
227 Apple G5 Java

20 Apple G5 MATLAB using ”verbatim” LINPACK
1857 Apple G5 MATLAB using MATLAB “backslash”

Burkardt Parallel Programming Concepts

Performance Measurement - The LINPACK Benchmark

Rating Computer Site Processors

12,250,000 2.3 GHz Apple VT, System X 2,200
13,380,000 Xeon 53xx “Bank in Germany” 2,640
42,390,000 PowerEdge Maui 5,200

102,200,000 Cray XT3 “Red Storm”, Sandia 26,569
126,900,000 SGI Altix New Mexico 14,336
167,300,000 BlueGeneP FZ Juelich 65,536
478,200,000 BlueGeneL DOE/NNSA/LLNL 212,992

1,026,000,000 Cell+Opteron Roadrunner, LANL 12,240+6,562

1000 MegaFLOPS = 1 GigaFLOPS

1000 GigaFLOPS = 1 TeraFLOPS

1000 TeraFLOPS = 1 PetaFLOPS(30 May 2008)

Burkardt Parallel Programming Concepts

Performance Measurement - The LINPACK Benchmark

Even if you only have your own computer to experiment with, the
LINPACK benchmark can sometimes give you some insight into
what goes on inside.

Run the program for a series of values of N. We often see three
phases of behavior:

a rising zone: cache memory and processor are not challenged.

a flat zone, the processor is performing at top efficiency.

a decaying zone, the matrix is so large the cache can’t hold
enough data to keep the processor running at top speed.

Burkardt Parallel Programming Concepts

Performance Measurement - The LINPACK Benchmark

Burkardt Parallel Programming Concepts

Performance Measurement

CPU time is the right thing to measure for sequential computing,

Typical runs occur on a time-shared computer.
Your main cost is the arithmetic calculations.

C/C++:

ctime = (double) clock ()

/ (double) CLOCKS_PER_SEC;

FORTRAN90:

call cpu_time (ctime)

Burkardt Parallel Programming Concepts

Performance Measurement

Wallclock time is what you measure for parallel programming.

A typical run is on a dedicated set of processors.
Cost is number of processors times the elapsed time.

OpenMP (C/C++/FORTRAN):

wtime = omp_get_wtime ();

MPI (C/C++/FORTRAN):

wtime = MPI_Wtime ();

Burkardt Parallel Programming Concepts

Performance Measurement - Wallclock Time

Wallclock time forces us to count communication, memory
access, and other noncomputational costs.

The total CPU time of a parallel computation is usually
significantly higher than for a sequential computation.

We assume (correctly) that individual processors are cheap;
our concern is to cut the real time required for an answer.

We can still compute MegaFLOPS ratings, but our timings will be
in terms of wall clock time!

Burkardt Parallel Programming Concepts

Performance Measurement - Problem Size

Problem size, symbolized by N, affects our performance ratings.
Very small and very large problems will do badly, of course.
What happens for “reasonable” values of N?

Fix the number of processors P, and record the solution time T for
a range of N values.

For the Fast Fourier Transform, we know the algorithm, so we
know the number of FLOPS, and can compute a MegaFLOPS
rate.

If we are using the machine well, it should be able to work at
roughly a constant rate for a wide range of N.

Burkardt Parallel Programming Concepts

MFLOPS Plot for FFT + OpenMP on 2 Processors

Burkardt Parallel Programming Concepts

Performance Measurement - Problem Size

The story is incomplete though! Let’s go back (like I said you
should do!) and gather the same data for 1 processor.

It’s useful to ask ourselves, before we see the plot, what we expect
or hope to see. Certainly, we’d like evidence that the parallel code
was faster.

But what about the range of values of N for which this is true?

Here we will see an example of a “crossover” point. For some
values of N, running on one processor gives us a better
computational rate (and a faster execution time!)

Burkardt Parallel Programming Concepts

MFLOPS Plot for FFT + OpenMP on 1 versus 2
Processors

Burkardt Parallel Programming Concepts

Performance Measurement - Problem Size

Now, roughly speaking, we can describe the behavior of this FFT
algorithm, (at least on 2 processors) as having three ranges, and I
will include another which we do not see yet:

startup phase, of very slow performance;

surge phase, in which performance rate increases linearly;

plateau phase, in which performance levels off;

saturation phase, in which performance deteriorates;

Burkardt Parallel Programming Concepts

Performance Measurement - Problem Size

It should become clear that a parallel program may be better than
a sequential program...eventually or over a range of problem sizes
or when the number of processors is large enough.

Just from this examination of problem size as an influence on
performance, we can see evidence that parallel programming comes
with a startup cost. This cost may be excessive for small problem
size or number of processors.

Burkardt Parallel Programming Concepts

Performance Measurement

While a MegaFLOPS rate can be very illuminating, it’s only
computable if the FLOPs can be determined.

That assumes the entire computation is basically one simple
algorithm (Gauss elimination, FFT, etc).

This is NOT true for most scientific programs of interest.

Program run time is very accessible. We can learn by studying its
dependence on the number of processors, and on the problem size.

Burkardt Parallel Programming Concepts

Performance Measurement - Speedup

Speedup measures the work rate as we add processors.

The work W depends on the problem size N.

For a fixed N, we solve the problem for an increasing series of
processors P, and record the time T.

For a “perfect speedup”, we would hope that

T = W /P

Doubling the processors would halve the time, and we could drive
T to zero if we had enough processors.

Burkardt Parallel Programming Concepts

Performance Measurement - Speedup

To define a formula for speedup S, we time the problem solution
using 1 processor, and set that to be T(1).

Then if we repeat the computation using P processors, the
speedup function is defined as

S(P) = T (1)/T (P)

In a perfect world, S(P) would equal P.
Tracking S(P) indicates how well our program parallelizes.

Burkardt Parallel Programming Concepts

Performance Measurement - Number of Processors

When we plot the speedup function P versus S(P), the first data
point should be (1,1). This simply means that we are normalizing
the data so that the computational rate on one processor is set to
1.

When we run the program on two processors, our time probably
won’t be half of T(1), but maybe it will be 0.55 times it. We plot
the point (2, 1/0.55) = (2, 1.818).

The ideal speedup behavior is a diagonal line, but we will see the
actual behavior is a curve that “strives” for the diagonal line at
first, and then “gets tired” and flattens out (and will actually
decrease if we go out too far!)

Burkardt Parallel Programming Concepts

Performance Data for a version of BLAST

Burkardt Parallel Programming Concepts

Performance Measurement - Number of Processors

When you plot data this way, there is a nice interpretation of the
scale. In particular, note that when we use 6 processors, our
speedup is about 4.5. This means that we when use 6 processors,
the program speeds up as though we had 4.5 processors (assuming
a perfect speedup).

Some people define the parallel effficiency as the ratio of the
effective number of processors divided by the actual number. For
this case, at 6 processors our efficiency would be 0.75. (It’s
actually the slope of the speedup graph).

You can also see the curve flattening out as the number of
processors increases.

Burkardt Parallel Programming Concepts

Performance Measurement - Number of Processors

The speedup function really depends on the problem size as well as
the number of processors, so we could write S(P,N).

If we fix P, and consider a sequence of increasing sizes N, we often
see the familiar rise, plateau and deterioration behavior.

But it is often the case that the plateau, the range of problem sizes
with good performance, moves and widens as we increase P.

For a fixed P, bigger problems run better.
For a fixed N, adding processors reduces time, but also efficiency.

Burkardt Parallel Programming Concepts

Performance Measurement - Number of Processors

We can try to display the relationship between P and N on one
plot.

The problem size for the BLAST program is measured in the
length of the protein sequence being analyzed, so we can’t pick N
arbitrarily.

Let’s go back and do timings for sequences of 5 different sizes, and
display a series of S(P) curves for different N.

Burkardt Parallel Programming Concepts

Performance Data for a version of BLAST

Burkardt Parallel Programming Concepts

Performance Measurement - Applying for Computer Time

To get time on a parallel clusters, you must justify your request
with performance data.

You should prepare speedup plots for a few typical problem sizes N
and processors from 1, 2, 4, 8, ... to P.

If you still get about 30% speedup using P processors, your request
is reasonable.

In other words, if a 100 processor machine would let you run 30
times faster, you’re got a good case.

Burkardt Parallel Programming Concepts

Parallel Programming Concepts

1 Sequential Computing and its Limits

2 Data Dependence

3 Parallel Algorithms

4 Shared Memory Parallel Computing

5 Distributed Memory Parallel Computing

6 Performance Measurements for Parallel Computing

7 Auto-Parallelization

A quick and easy way to try parallel programming on your code.

Burkardt Parallel Programming Concepts

Auto-Parallelization

Auto-parallelization is a feature, available with some compilers,
which attempts to identify portions of the source code which can
be executed in parallel.

This is an easy way to experiment with the potential for parallel
execution.

This feature is generally only available for use on shared memory
machines - which includes laptops with dual cores, the Virginia
Tech SGI systems.

The executable code must be run in the appropriate parallel
environment (that is, you must set the OpenMP environment
variable that specifies the number of threads to use).

Burkardt Parallel Programming Concepts

Auto-Parallelization

Auto-parallelization is cautious: its goal is only to make changes
that it can guarantee will execute the same on multiple processors.

Auto-parallelization is limited: it will miss some chances to
parallelize.

Auto-parallelization is not perfect: it may be fooled into
parallelizing some code when it is not safe to do so.

So code that is auto-parallelized should be checked for accuracy
as well as timed for speedup.

Burkardt Parallel Programming Concepts

Auto-Parallelization - GCC Compiler Flags

GCC/G++/GFORTRAN compilers:

gcc -ftree-vectorize -O2 myprog.c

Add the switch -maltivec on PowerPC hardware.

Note that -ftree-vectorize is one word!

These commands invoke auto-vectorization, which is less
ambitious. GCC is currently developing auto-parallelization
features, but they are not widely used yet.

Burkardt Parallel Programming Concepts

Auto-Parallelization - IBM Compiler Flags

IBM FORTRAN compiler:

xlf_r -O3 -qsmp=auto -qreport=smplist myprog.f

IBM C compiler:

xlc_r -O3 -qsmp=auto -qreport=smplist myprog.c

The optional -qreport=smplist switch reports on why some loops
could not be parallelized.

There is also a -qsource switch which produces a compiler listing.

Burkardt Parallel Programming Concepts

Auto-Parallelization - Intel Compiler Flags

Intel FORTRAN compiler:

ifort -fpp -parallel myprog.f

Intel C compiler (icpc is similar):

icc -parallel myprog.c

The optional -par report3 switch reports on why some loops could
not be parallelized.

Burkardt Parallel Programming Concepts

Auto-Parallelization - SGI Compiler Flags

SGI FORTRAN compilers f77/f90:

f77 -O3 -apo myprog.f

SGI C compilers cc/c++:

cc -O3 -apo myprog.c

Replace the -apo switch by the -apolist switch in order to get a
listing that explains why some loops were not parallelized.

Burkardt Parallel Programming Concepts

Auto-Parallelization - Sun Compiler Flags

Sun FORTRAN compilers f77/f90/f95:

f77 -fast -autopar -parallel -loopinfo myprog.f

Sun C compilers:

cc -xautopar -xparallel -xloopinfo myprog.c

The optional loopinfo switch reports on why some loops could not
be parallelized.

Burkardt Parallel Programming Concepts

Auto-Parallelization - Execution

To run the program, first set the OpenMP environment variable to
indicate how many threads you want (perhaps 2 or 4):

Bourne, Korn and Bash shell users:

export OMP_NUM_THREADS=4

C and T shell users:

setenv OMP_NUM_THREADS 4

Then run your program with the usual ./a.out command.

Burkardt Parallel Programming Concepts

Auto-Parallelization - Obstacles to good results

loops that contain output statements

exiting a loop early

while loops

loops that call functions

loops with very little work

loops with low iteration count - N is small

loops that compute scalar functions of vector data: maximum,
dot product, norm, integral estimates

loops with complicated array indexing - possible data
dependence

loops with actual data dependence

Burkardt Parallel Programming Concepts

Auto-Parallelization

The code produced by the auto-parallelizer may run more slowly, or
even incorrectly.

However, it can be a very useful place from which to begin
parallelization efforts.

Some compilers offer a listing that shows why some loops were not
parallelized. Working from this listing, it may be possible to modify
loops so that the auto-parallelizer can handle them.

Moreover, the auto-parallizer may even produce a revised version
of the source code, including parallelization directives. This code
may be very useful as a starting point for further parallelization “by
hand.”

Burkardt Parallel Programming Concepts

Conclusion - Don’t Panic!

A simple model of the two kinds of parallel programming:

shared memory, more than one processor can see the
problem and help out; sometimes processors can get in the
way of each other

distributed memory, the problem is divided up in some way;
processors work on their part in isolation, and send messages
to communicate

In the next few days, we’ll implement these ideas to make
practical parallel programs.

Burkardt Parallel Programming Concepts

Conclusion - Don’t Panic

Burkardt Parallel Programming Concepts

