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Intro: Comments
Some control problems can be written as the minimization of

some cost functional, which is defined in terms of a state
constrained by governing equations, which is determined by some

controllable parameters.
Discretization is typically applied to the continuous state

problem to define a computable approximate state.
The relationship between the cost and the parameters is

mediated by the state function, and involves partial derivatives
of that state. We might choose to differentiate the state function,

and then discretize it, or differentiate the already discretized
state function.

In some cases, these processes may be interchanged without
affecting the computation of the approximate state derivatives.

In other cases, there is a discrepancy between the two.
I’d like to examine some typical problems, look at the

mathematical details behind the procedure, focus on a problem
where the derivatives can be computed either way for one

parameter, but not for others, and speculate about the causes of
this problem.
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OUTLINE

� 1: TYPICAL PROBLEMS

� 2: SENSITIVITIES AND PDE CONTROL

� 3: THE WIND TUNNEL PROBLEM

� 4: OBSERVATIONS AND CONCLUSIONS
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1.0: TYPICAL PROBLEMS

� 1.1: Creation of Silicon Monocrystals

� 1.2: Wind Tunnel Simulation of Flow Disturbances

� 1.3: A Cylindrical Containment Vessel
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1.1: Creation of Silicon Monocrystals
Goal: Defect-free crystals.

Parameters: Heat, rotation, magnetic field, drawing rate.

Constraints: NUMEROUS.

Cost functionals: Crystal quality or process expense.
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1.1: Comments

Goal: Large, cheap defect-free silicon crystals.

Parameters: applied heat, rotation rates of crucible and seed
crystal, applied magnetic field, drawing rate.

Constraints: Time dependent K-epsilon turbulence Navier
Stokes, moving boundaries, heat conduction, crystal formation,

surface behavior, ...

Cost functionals:

� Quality: melt vorticity, melt velocity near crystal, heat loss,

� Expense: time, energy usage.
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1.2: Wind Tunnel Simulation of Flow Disturbances

Goal: Small obstruction simulator for wind tunnel.

Parameters: obstruction shape, inflow conditions, roughness of
surface.

Constraints: Navier Stokes and continuity.

Cost: match observed data, minimize surface area.
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1.3: A Cylindrical Containment Vessel

Goal: Minimize materials for gas-liquid container.

Parameters: cross-section (may be polygonal); wall thickness;
shape of vertical profile; size of top plate (must be flat); shape of

bottom.

Constraints: Various, plus top must be flat, walls and bottom
must resist deformation.

Cost: materials (top plate is expensive), processing.
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2.0: SENSITIVITIES & PDE CONTROL

� 2.1: The Partial Differential Equation

� 2.2: The State Partial Jacobian

� 2.3: The Cost Functional

� 2.4: An Equation for Discrete Sensitivities

� 2.5: Discretize, then Differentiate

� 2.6: Differentiate, then Discretize

� 2.7: Commutivity?
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2.1: The Partial Differential Equation

We consider a PDE:

F (u, g) = 0 over Ω̄. (1)

where:

� Ω is bounded open domain with boundary ∂Ω;

� u is unknown state functions;

� g is control parameters;

� F is partial differential equations plus conditions.
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2.1: Comments

� F and u depend on space, but this is suppressed;

� dependence on time t could easily be included;

� Ω may depend on the controls g.
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2.2: The State Partial Jacobian

Newton’s method applied to an estimated solution (u0, g0):

Fu(u0, g0) ∆u0 = −F (u0, g0). (2)

Differentiate the state equation with respect to parameter g, we
get a sensitivity equation for ug:

Fu(u0, g0) ug = −Fg(u0, g0). (3)
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2.2: Comments

Repeated differentiation yields similar equations for higher order
sensitivities, always with the same linear operator on the left.

This means that, after a Newton iteration, the sensitivities can
be found very cheaply.
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2.3: The Cost Functional

A cost functional J (u, g) is to be minimized:

Since u is an implicit function of g, we can define:

J(g) ≡ J (u(g), g). (4)

The controlled PDE problem may be reformulated as an
unconstrained minimization:

Find controls g that minimize the cost J(g).

We may need first derivatives of J(g):

∂J

∂g
=
∂J
∂u

∂u

∂g
+
∂J
∂g

(5)
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2.3: Comments

J is usually an integral of some quantity over the domain, or
some portion thereof. For the matching problem, it might have

the form

J (u, λ, α,R) =
∫
x=x∗(u− u∗) ds. (6)

J could measure flow matching along a profile line, or total
vorticity, or the spatial variation from a desired temperature, and

so on.
∂J
∂u

should be easily derivable, and the second factor is just ug,

the state sensitivity.
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2.4: An Equation for Discrete Sensitivities

The continuous Navier Stokes horizontal momentum equation is:

−(
∂2u

∂x2
+
∂2u

∂y2
) + R (u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
) = 0 (7)

We discretize Equation (??) to solve for uh:

∫
Ω

∂uh

∂x

∂ψ

∂x
+
∂uh

∂y

∂ψ

∂y

+R(uh
∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)ψ dΩ = 0 (8)

For computation of derivatives of Jh, we need equations that
determine derivatives of uh.

There are two possible routes to this information.
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2.5: Discretize, then Differentiate

We have already discretized Equation (??), to define uh.
Therefore, simply differentiate Equation (??) (and move into the

integral, if possible) to get:

∫
Ω

∂uhR
∂x

∂ψ

∂x
+
∂uhR
∂y

∂ψ

∂y

+R (uhR
∂uh

∂x
+ uh

∂uhR
∂x

+ vhR
∂uh

∂y
+ vh

∂uhR
∂y

+
∂phR
∂x

)ψ dΩ

= −
∫
Ω(uh

∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)ψ dΩ (9)
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2.6: Differentiate, then Discretize

Differentiate Equation (??) with respect to R:

−(
∂2uR
∂x2

+
∂2uR
∂y2

)

+ R(uR
∂u

∂x
+ u

∂uR
∂x

+ vR
∂u

∂y
+ v

∂uR
∂y

+
∂pR
∂x

)

= −(u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
) (10)

Then discretize Equation (??) to get:

∫
Ω

∂uR
∂x

∂ψ

∂x
+
∂uR
∂y

∂ψ

∂y

+ R(uR
∂u

∂x
+ u

∂uR
∂x

+ vR
∂u

∂y
+ v

∂uR
∂y

+
∂pR
∂x

ψ) dΩ

= −
∫
Ω(u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
ψ) dΩ (11)
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2.7: Commutivity?
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2.7: Comments

� If the equations are the same, the solutions are the same.

� If (ug)
h is equal to, or suitably close to, (uh)g we say it is a

consistent approximation.

� Since (ug)
h is a finite element approximation to ug, it is con-

vergent to it.
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3.0: THE WIND TUNNEL PROBLEM

� 3.1: Problem Parameters

� 3.2: Optimization on R

� 3.3: Numerical Results for R

� 3.4: The Equation for (uh)R

� 3.5: The Equation for (uR)h

� 3.6: Optimization on α

� 3.7: Numerical Results for α

� 3.8: The Equation for (uh)α

� 3.9: The Equation for (uα)h

� 3.10: The Discrepancy Between (uh)α and (uα)h
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3.1: Problem Parameters

� λ determines inflow;

� α sets bump shape;

� R is inverse viscosity, almost the Reynolds number.
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3.2: Optimization on R

Given R, the current estimate of minimizer, compute:

� discretized uh(R);

� solution sensitivity (uR)h or (uh)R;

� cost Jh(R);

� cost sensitivity (JR)h or (Jh)R;

Then call minimization code for next estimate.

Note that:

� (uh)R estimated by finite differences;

� (uR)h computed by discretized sensitivity equation;

� (Jh)R uses (uh)R in chain rule;

� (JR)h uses (uR)h in chain rule.
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3.3: Numerical Results for R

Step R Jh × 10−4

1 1.00000 6.134345
2 1.00018 6.134015
3 1.00091 6.132
4 1.00200 6.130
5 1.00927 6.117
6 1.02 6.097
7 1.09 5.966
8 1.20 5.774
9 1.92 4.581

10 2.95 3.167
11 6.80 0.439
12 8.19 0.124
13 9.39 0.012
14 9.87 0.0004
15 9.99146 0.0000000002
16 9.99988 0.0

24



3.3: Comments

� The optimization proceeds smoothly. The cost sensitivity (JR)h

is estimated using the discretized sensitivities (uR)h.

� We need higher accuracy at beginning and end of iteration,
when stepsize is small. Also need more accurate derivatives
there.

� If finite differences are used to estimate (uh)R, from which we
calculate (Jh)R, essentially the same results are found. This
suggests that, at least for R, the order of differentiation and
discretization doesn’t matter!.
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3.4: The Equation for (uh)R

Pretend there’s just one state equation, with one term in u:

Ru
∂u

∂x
= 0 (12)

The discretized state equation for uh is:

∫
ΩR uh

∂uh

∂x
uh ψ dΩ = 0 (13)

Differentiate Equation (??) and interchange orders:

∫
ΩR(uh)R

∂uh

∂x
+ Ruh

∂(uh)R
∂x

ψ dΩ =
∫
Ω−u

h∂u
h

∂x
ψ dΩ (14)
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3.5: The Equation for (uR)h

The continuous sensitivity equation for uR:

RuR
∂u

∂x
+ Ru

∂uR
∂x

= −u∂u
∂x

(15)

Now discretize Equation (??) to get the equation for (uR)h, the
“discretized sensitivity”:

∫
ΩR(uR)h

∂uh

∂x
+ Ruh

∂(uR)h

∂x
ψ dΩ =

∫
Ω−u

h∂u
h

∂x
ψ dΩ (16)

This equation has the same form as that for (uh)R, therefore:

(uR)h = (uh)R. (17)
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3.6: Optimization on α

Given R and α, the current estimates of minimizing parameters,

� compute discretized uh(R,α);

� compute cost Jh(R,α);

� compute solution sensitivity (uα)h or (uh)α;;

� compute cost sensitivity (Jα)h or (Jh)α;

� call minimization code for new estimate.

Note that:

� α is a vector of 3 shape parameters;
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3.7: Numerical Results For α

Step (Jh)α (Jα)
h

1 0.429 6.134345
2 0.389 6.134015
3 0.00922 6.132
4 0.00901 6.130
5 0.00813 6.117
6 0.00658 6.097
7 0.00067 5.966
8 0.00056 5.774
9 0.00001 4.581
10 0.000009 3.167
11 0.000009 0.439
12 0.000008 0.124
13 0.000008 0.012
14 0.000007 0.0004
15 0.000006 0.0000000002
20 0.000002 0.012
– ——– —–
30 0.000001
39 2.5× 10−13
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3.7: Comments:

On the third step, we got the inflow about right. After step 10,
iterates enter a long thin valley.
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3.8: The Equation for (uh)α

Differentiate Equation (??) and interchange orders:

∫
ΩR(uh)α

∂uh

∂x
+ Ruh

∂(uh)α
∂x

ψ dΩ (18)

∫
ΓRu

h∂u
h

∂x
ψ
dn

ds
ds = 0 (19)
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3.8: Comments:

� Situation much messier when replace integral by finite sum.

� Consider a single element on the boundary.
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3.9: The Equation for (uα)h

If we simply differentiate the continuous equation:

R(uα
∂u

∂x
+ u

∂uα
∂x

) = 0 (20)

uα = −uyyα (21)

...and then discretize, we get:

∫
ΩR(uh)α

∂uh

∂x
+ Ruh

∂(uh)α
∂x

ψ dΩ = 0 (22)
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3.10: The Discrepancy Between (uh)α and (uα)h
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3.10: Comments

� Discrepancy dropping like O(h).

� Suggests that discrepancy problems can be reduced by reducing
h.

� Approximation error of BC slows down convergence of (uα)h to
uα.
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4.0: OBSERVATIONS AND CONCLUSIONS

Discretized Sensitivities (uR)h:

� Easy to derive sensitivity equation;

� Easy to discretize the sensitivity equation (avoids differentia-
tion of the discretization method);

� Cheap to solve for;

� (uR)h converges to continuous uR at a known rate, because it
is a finite element approximation.

Discretized Sensitivities in Numerical Optimization:

� (uR)h is not necessarily a derivative of anything.

� Differentation and discretization need not commute.

� Sensitivity-approximated cost gradients can be unreliable.

� Errors in cost gradients hurt most at the beginning and end.

Differentiation of Discrete Solution, (uh)R:

� May be difficult to calculate explicitly; finite differences or AD-
IFOR may be necessary
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� Guaranteed to be correct derivative of uh, and to produce cor-
rect derivatives JR.

� The convergence properties of (uh)R are not understood. They
are not even guaranteed!

� Differentiation of the discretization method may introduce ex-
tra complexitities, nonphysical local minima, and poor conver-
gence to uR.
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4.0 Comments:

Discretized Sensitivities:

� Note that the boundary conditions may be hard to properly
evaluate. In my case, I needed the value of , which was known
to an order of O(h) rather than O(h2), degrading my approxi-
mation.

Discretized Sensitivities in Numerical Optimization:

� Specificially, differentiation with respect to a geometric param-
eter, and discretization using finite elements.
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