2: Computer Performance

John Burkardt
Information Technology Department
Virginia Tech
FDI Summer Track V:
Parallel Programming
https://people.sc.fsu.edu/~jburkardt/presentations/
performance_2008_vt.pdf

10-12 June 2008

1/1

Computer Performance - Measurements

Computer Performance

W

[0)

need “yardsticks” to say
this problem is harder;

this computer is faster;
this algorithm is better;

this compiler produces more efficient programs;

the change | made was helpful

3/1

Computer Performance - Work in FLOP's

88 b1 L b d Fl i pandudaPreasnannxssn AnR

Our first yardstick will measure a computation as a sequence of floating
point operations or FLOPs.

Our basic unit of work looks like this:

X=X+Y *x Z

For technical reasons, a multiply and an addition counts as 1 FLOP.

All numerical computations will be reduced to this scale.

4/1

Computer Performance - Work in FLOP's

Cramer's rule to solve a 2x2 linear system

a*xx+bxy=c
d*xx+e*xy=fFf
yields:
x=(c*xe-bxf)/ (axe-bxd)
y=(axf-c*xd)/ (a*xe-bx*xd)

How many FLOPs will this cost?

5/1

Computer Performance - Work in FLOP's

Evaluate polynomial at 500 equally spaced points.
p(x) = x* + 10 % x> — 7 % x* + 55 x x — 109
How many FLOPs?

Rewrite as:
p(x) = (((x + 10) * x — 7) * x + 550) * x — 109
Now how many FLOPs?

6/1

Computer Performance - Work in FLOP's

Matrix-vector Multiplication:
y=Axx

A is MxN matrix, x is an N vector, y is an M vector.

How many FLOPs to compute all of y?

7/1

Computer Performance - Work in FLOP's

Solving an NxN linear system for x, given A and b:

Axx=b

@ roughly %N?’ FLOPs for Gauss elimination;

e roughly 22 FLOPs for back substitution;

8/1

Computer Performance - Time in Seconds

Our second measurement attempts to account for the time it takes to do
the work.

There are two common measures:
@ Waliclock or Real time, the time you waited

e CPU time, the time the CPU was working on your job.

If you are the only user, these two measures might be close.

9/1

Computer Performance - Time in Seconds

On UNIX systems, you can get the time of a command:
time command

This command may return the elapsed time broken down into
@ real time, the time that passed.
@ user time, time spent directly on your command.
@ system time, overhead associated with your command.

It is usually the case that system time << user time
and
system time + user time <= real time

10/1

Computer Performance - Time in Seconds

If you are analyzing a program, it's usually not good enough to time the
entire run. You probably need to know information at a finer level.
Most computer languages can access wallclock and CPU time:

tl = cputime ();

x = very_big_calculation (y);
t2 = cputime ();

cpu_elapsed = t2 - ti1;

11/1

Computer Performance - Rate in MegaFLOPS

Our third measurement considers the rate at which our work is done. For
some time, this rate was measured in MegaFLOPS, that is, " millions of
FLOPs per Second”.

As you will see, this particular rate is becoming obsolete.

12/1

Computer Performance - Rate in MegaFLOPS

If we can estimate the work in FLOPs, we can get the time, and
compute the MegaFLOPS rate for a calculation. Here, we multiply two
NxN matrices:

flop = n * n * n;

tl = cputime ();

a=>bx c;

t2 = cputime ();

cpu_elapsed = t2 - ti1;

megaflops = flop / (1000000 * cpu_elapsed);

13/1

Computer Performance - The LINPACK Benchmark

For a system of N=1,000 equations, we need almost one billion
operations. This is a respectable amount of work. Any computer (with
enough memory) can solve this system.

But now we can ask an interesting question:
How fast can a given computer solve a system of 1,000 equations?

The answer is known as the LINPACK Benchmark.

14/1

Computer Performance - The LINPACK Benchmark

The LINPACK benchmark program

@ sets up a system of 1,000 equations with random coefficients,

@ factors and solves the system using the LINPACK routines
SGEFA/SGESL or DGEFA/DGESL (double precision),

@ computes FLOPs, the amount of work,

@ measures S, the elapsed CPU time,

The LINPACK BENCHMARK rating R, in MegaFLOPS is

R = FLOP
~ 1000000%S

15/1

Computer Performance - The LINPACK Benchmark

The LINPACK benchmark is available in various languages.

The benchmark gives one way of comparing many things:
@ computers
@ languages
@ compilers
@ variations on linear algebra algorithms

We will also use it to measure the power of parallelism.

16/1

Computer Performance - The LINPACK Benchmark

Table: Sample LINPACK Ratings

Rating Computer Language Comment

108 Apple G5 C used "rolled” loops
184 Apple G5 C used "unrolled” loops
221 Apple G5 F77 gfortran compiler

227 Apple G5 Java
20 Apple G5 MATLAB using "verbatim” LINPACK
1857 Apple G5 MATLAB using MATLAB “backslash”

17/1

Computer Performance - The LINPACK Benchmark

Table: Sample LINPACK Ratings

Rating Computer Site Processors
12,250,000 2.3 GHz Apple Virginia Tech, System X 2,200
13,380,000 Xeon 53xx “A bank in Germany” 2,640
42,390,000 PowerEdge Maui 5,200
102,200,000 Cray XT3 "Red Storm”, Sandia 26,569
126,900,000 SGI Altix New Mexico 14336
167,300,000 BlueGeneP FZ Juelich 65,536
478,200,000 BlueGenelL DOE/NNSA/LLNL 212,992

1000 MegaFLOPS 1 GigaFLOPS

1000 GigaFLOPS = 1 TeraFLOPS

1000 TeraFLOPS

1 PetaFLOPS(not quite there yet!)

18/1

Computer Performance - The LINPACK Benchmark

Even if you only have your own computer to experiment with, the
LINPACK benchmark can sometimes give you some insight into what
goes on inside.

Run the program for a series of values of N. We often see three phases of
behavior:

@ a rising zone: cache memory and processor are not challenged.
@ a flat zone, the processor is performing at top efficiency.

@ a decaying zone, the matrix is so large the cache can't hold enough
data to keep the processor running at top speed.

19/1

Computer Performance - The LINPACK Benchmark

LINPACK Benchmark
14 T T T T T

20/1

Computer Performance - Measurements

Ruler FLOP + Clock S = Speedometer MFLOPS.

A ABA NN ERBD ADD

48l b a2 L Ed P A b mun bR

Computer Performance - Measurements

In practice, we don't count FLOPs, just CPU time.
This tells us whether one algorithm is faster than another.

It does not tell us whether we are fully exploiting the computer’s
potential.

2/1

Computer Performance - Measurements

tl = cputime ();
C = A x B;
t2 = cputime ();

MATLAB executes this in 0.79 CPU seconds on an Apple G5. (Matrices
are 1000x1000).

23/1

Computer Performance - Measurements

t3 = cputime ();
fori=1:n
for k=1 :n
C(i,k) = 0;
for j=1:n
C(i,k) = C(i,k) + A(i,j) * B(j,k);
end
end
end
t4 = cputime ();

MATLAB executes this in 242.65 CPU seconds on an Apple G5.

24/1

Computer Performance - PROFILE

PROFILE is a MATLAB program profiler.

profile on
linpack_bench_d
profile viewer

25/1

Computer Performance - PROFILE

Profile Summary
Generated 14-Mar-2008 11:32:05 using cpu time.
Function Name Calls Total Time Self Time* Total Time Plot
(dark band = self time)

linpack_bench_d 1 51.583 s 0.159 s

dgefa 1 33.696 s 17.472s WA
r8_matgen 2 17.288 s 12280 s N
daxpy 501493 16.292 s 16.292s mEE
r8_random 2000000 5.007 s 5.007 s o
dges| 1 0.292 s 0.156 s
timestamp 2 0.148 s 0.005 s

datestr 2 0.121s 0.025 s
timefun/private/formatdate 2 0.090 s 0.090 s

idamax 999 0.065 5 0.065 5

now 2 0.014s 0.001s
datenum 4 0.013s 0.013 s

datevec 2 0.008 5 0.008 5
datestr>getdateform 2 0.005 s 0.005 s

r8_swap 993 0.003 s 0.003 s
r8_epsilon 1 0.001 s 0.001 s

Self time is the time spent in a function excluding the time spent in its child Functions. Self
time also includes overhead resulting From the process of profiling.

GPROF

GPROF is a program profiler available for Unix systems.

First compile your program with the appropriate option, GPROF inserts
checks into each routine in your program.

gcc —pg myprog.c
g++ -pg myprog.C
gfortran -pg myprog.f
gfortran -pg myprog.f90

27/1

GPROF - Run Your Program

Then run your program.

myprog

As the program runs, GPROF regularly checks what it is doing, (what
function it is executing), and stores this information in a file.

28/1

GPROF - Create the Report

Then create the report:

Once your program myprog has executed, the GPROF raw data file must
be processed to make a report. You do this by running the GPLOT
command and giving it the name of the program you were monitoring:

gprof myprog

GPROF can report:

How many times a routine is called.

Which routines called routine A, and how often.
Which routines were called by A, and how often.

Total and average time spent in each routine or function;

Whether some routine is never called.

29/1

GPROF - one part of the report

Each sample counts as 0.000976562 seconds.

% cumulative self self total
time secs secs calls s/call s/call name
92.07 6.24 6.24 501499 0.00 0.00 daxpy_
4.48 6.54 0.30 1 0.30 6.77 main_
1.85 6.67 0.12 2000000 0.00 0.00 d_random__
1.15 6.74 0.08 1 0.08 6.29 dgefa_
0.39 6.77 0.03 2 0.01 0.08 d_matgen__
0.06 6.77 0.00 999 0.00 0.00 idamax_
0.00 6.77 0.00 993 0.00 0.00 d_swap__
0.00 6.77 0.00 2 0.00 0.00 timestamp_
0.00 6.77 0.00 1 0.00 0.02 dgesl_

30/1

Measuring Parallel Performance

What we have said so far should help you gather performance data for a
sequential version of your program.

Sequential performance data is a vital tool for judging parallel execution
data.

Many (good) parallel programs will run slower than the sequential
version for small problems or a small number of processors! So you want
to know when it makes sense to go parallel.

With a sequential code for comparison, you can also detect certain cases
when a bad job of parallelizing the code has been done. (Some programs
can run slower as more processors are added!)

31/1

Measuring Parallel Performance - Wallclock Time

The most important measure of improvement for parallel programs is an
estimate of the speedup.

Sequential programs are usually rated based on CPU time; we are used to
the idea that we are trying to run fast, but that the computer is
multitasking and doing other things as well.

But parallel programs are rated based on wallclock time. This means that
we expect the computer to be more or less dedicated to our job for its
duration!

32/1

Measuring Parallel Performance - Wallclock Time

The reasons for this change in measurement include the fact that parallel
programs include delays caused by communication between processors
and interference between “cooperating” processes. A good parallel
program must control these non-computational costs.

Another reason is that parallel programming aims to reduce the real time
of computing. If | run my program using 8 computers, | don't want to
use 1/8 the CPU time on each...| want to get my results 8 times faster.
A parallel program will, in fact, use more resources than a sequential
program. Thus, it is less efficient in terms of resources. But our resources
(processors) have become cheap, and now time is the main issue!

33/1

Measuring Parallel Performance - Wallclock Time

If we focus on the idea of speedup, then there is a natural way to rate
the performance of a parallel program.

We choose a “natural” problem size N, and for a range of the number of
processors P, we measure the wallclock time T it takes the program to
solve the same problem.

For a "perfect speedup”, we would hope that
T=f(N)/P

That is, for a fixed N, doubling the processors halves the time.

34/1

Measuring Parallel Performance - Problem Size

While communication and synchronization issues have been added to our
concerns, it's still important to see know what effect of the problem size
N has on our program’s performance.

We choose a “natural” number of processors P, and for a range of
problem sizes N, we measure the wallclock time T it takes the program
to solve the same problem. If we know our problem well, we can also
determine the MegaFLOPS rate. Since we are allowing P processors to
cooperate, the MegaFLOPS rate might be as high as P times the single
processor rate.

If we examine a wide range of problem sizes, we often see that the
MFLOPS rate reaches a plateau, and then begins to fall.

35/1

MFLOPS Plot for FFT 4+ OpenMP on 2 Processors

Log[2] of Problem Size versus MFLOPS rate
300

"mflops_data.txt” ——

250 A A
N

100 /
50 /}

36/1

Measuring Parallel Performance - Problem Size

The story is incomplete though! Let's go back (like | said you should do!)
and gather the same data for 1 processor.

It's useful to ask ourselves, before we see the plot, what we expect or
hope to see. Certainly, we'd like evidence that the parallel code was
faster.

But what about the range of values of N for which this is true?

Here we will see an example of a “crossover” point. For some values of
N, running on one processor gives us a better computational rate (and a
faster execution time!)

37/1

MFLOPS Plot for FFT + OpenMP on 1 versus 2

Processors

Log[2] of N versus MFLOPS for 1 and 2 processors

300
‘mflops2_data.txt’ using 1:3 —+—
" using 1:2
Pt
250 a
‘\\\(/’ N

200
150 /

fﬁ /

38/1

Measuring Parallel Performance - Problem Size

Now, roughly speaking, we can describe the behavior of this FFT
algorithm, (at least on 2 processors) as having three ranges, and | will
include another which we do not see yet:

o startup phase, of very slow performance;

@ surge phase, in which performance rate increases linearly;
o plateau phase, in which performance levels off;

@ saturation phase, in which performance deteriorates;

39/1

Measuring Parallel Performance - Problem Size

It should become clear that a parallel program may be better than a
sequential program...eventually or over a range of problem sizes or when
the number of processors is large enough.

Just from this examination of problem size as an influence on
performance, we can see evidence that parallel programming comes with
a startup cost. This cost may be excessive for small problem size or
number of processors.

40/1

Measuring Parallel Performance - Number of Processors

For a given problem size N, we may have a choice of how many
processors P we use to solve the problem.

Our measurement of performance is T, elapsed wallclock time.
If we increase P, we certainly expect T to drop.
It is natural to hope that doubling P causes T to halve.

At some point, increasing P can't help as much, and eventually it won't
help at all. (Too many helpers with too little to do, too much
communication)

41/1

Measuring Parallel Performance - Number of Processors

For graphical display, it's better to plot the “speed” or computational
rate, that is, 1/T rather than T.

In this way, the ideal behavior is plotted as a diagonal line, and the actual
behavior is likely to be a curve that strives for the diagonal line at first,
and then “gets tired” and flattens out.

42/1

Performance Data for a version of BLAST

BLAST Speedup for 2, 4, 6, 8 processors

ideal
150

43/1

Measuring Parallel Performance - Number of Processors

When you plot data this way, there is a nice interpretation of the scale.
In particular, note that when we use 6 processors, our speedup is about
4.5. This means that we when use 6 processors, the program speeds up
as though we had 4.5 processors (assuming a perfect speedup).

You can also see the curve flattening out as the number of processors
increases.

44/1

Measuring Parallel Performance - Number of Processors

We know that performance can depend on the problem size as well as the
number of processors. To get a feeling for the interplay of both
parameters, it is useful to plot timings in which you solve problems of
increasing size over a range of processors.

For a "healthy” parallel program on a “decent” size problem, you may
expect that the runs of bigger problems stay closer to the ideal speedup
curve.

The problem size for the BLAST program is measured in the length of
the protein sequence being analyzed. Let's go back and do timings for
sequences of 5 different sizes.

45/1

Performance Data for a version of BLAST

BLAST Speedup for 2, 4, 6, 8 processors

8

ideal
150
300 e
i

7 7200 1
2358

6

5

4

3

n‘“‘. o
o g
P
5 s
e
A
&
1
1 2 3 4 5 5 7 8

Practical Implications - Applying for Computer Time

To get time on a parallel clusters, you must justify your request with
performance data.

You should prepare a speedup plot for typical problem size N and
processors from 1, 2, 4, 8, ... to P.

If you still get about 30% speedup using P processors, your request is
reasonable.

In other words, if a 100 processor machine would let you run 30 times
faster, you're got a good case.

47/1

Practical Implications - Applying for Computer Time

The user will be requesting access for a given number of units, which are
probably measured in processor hours.

Suppose you know you could do these computations sequentially in
roughly T hours.

From your speedup plot, you may be able to estimate the number of
processors P* after which more processors don't help much. (That's
when the speedup plot gets pretty flat.)

Call S* the speedup that you get using P* processors.
Take sequential time T and divide by S* to get parallel time T¥*.

You want to request P* processors for T* hours or a total of (P*)x(T¥)
processor hours.

48/1

Practical Implications - Applying for Computer Time

A sequential run of my corn genome code takes 50 hours.
| need to do 300 runs, for a total of 15,000 processor hours of work.

My speedup plot for my parallel code flattens out at about P* = 20
processors, at which point I'm getting a speedup of about S* = 10.

So | ask for P* = 20 processors, running S* = 10 times faster.

| wait less time (1,500 hours), but | use more computer time (30,000
processor hours).

49/1

System X Allocation Request

Please describe the research that will be carried out with the proposed
allocation. Large allocations (greater than 100,000 cpu-hours) are
expected to submit descriptions of at least two pages. Medium requests
(up to 100,000 cpu-hours) require at least one page. Small requests
(less than 10,000 cpu-hours) require no more than a page.

@ Describe the scientific merit and impact of your research.
Summarize the research questions of interest.

Indicate recent publications and funded research.
Indicate the codes that will be used.

Mention any previous experience with these codes on
distributed-memory parallel systems.

Describe how you estimated the total cpu-hours you are
requesting.

50/1

Conclusion

The most powerful and flexible method of measuring computer
performance really boils down to simple comparisons.

If you learn how to make and display such comparisons, you can make
intelligent judgments about your algorithm, your program, your
computer, and your parallel system.

And you may be able to talk your way into some free computer time on
our big systems.

Now, as you can see, our time is up!

51/1

