
5: Introductory OpenMP

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Parallel Programming

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

openmp1 2008 vt.pdf

10-12 June 2008

1 / 1

Introduction

OpenMP is a bridge between yesterday’s programming languages and
tomorrow’s multicore chips.

2 / 1

Introduction: Where OpenMP is Used

OpenMP runs a user program on any shared memory system.

A shared memory system might be:

a single core chip (older PC’s, sequential execution)

a multicore chip (such as your laptop?)

multiple single core chips in a NUMA system

multiple multicore chips in a NUMA system (VT SGI system)

OpenMP can also be combined with MPI, but that’s an advanced topic!

3 / 1

Introduction: How OpenMP is Used

The user inserts OpenMP “directives” in a program.

The user compiles the program with OpenMP directives enabled.

The number of “threads” is chosen by an environment variable or a
function call.

(Usually set the number of threads to the number of processors)

The user runs the program.

4 / 1

Introduction: Compiler Support

Compiler writers do support OpenMP:

Gnu gcc/g++ 4.2, gfortran 2.0;

IBM xlc, xlf

Intel icc, ifort

Microsoft Visual C++ (2005 Professional edition)

Portland C/C++/Fortran, pgcc, pgf95

Sun Studio C/C++/Fortran

5 / 1

Introduction: Compilation with Gnu Compilers

You build a parallel version of your program by telling the compiler to
activate the OpenMP directives.

For the GNU compilers, include the fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.C

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

6 / 1

Introduction: Compilation with Intel Compilers

For the Intel compilers, include the openmp switch:

icc -openmp -parallel myprog.c

icpc -openmp -parallel myprog.C

Fortran programs also require the fpp switch:

ifort -fpp -openmp -parallel myprog.f

ifort -fpp -openmp -parallel myprog.f90

7 / 1

Introduction: What Do Directives Look Like?

In C or C++, directives begin with the # preprocessor comment
character and the string pragma omp.

#pragma omp parallel for private (i, j)

In Fortran, directives begin with the c or ! comment character and the
string $omp.

!$omp parallel do private (i, j)

8 / 1

Introduction: Long Directive Lines

By the way, you may find it necessary to write a directive that doesn’t fit
comfortably on one line.

In C and C++, you can end the first line with a final double backslash,
which “escapes” the new line, or you can simply start another #pragma
omp line.

In FORTRAN77, your directives can’t be longer than 72 characters, and
the next line must also be “commented out” with the c$omp marker and
column 6 of the continuation line must have a continuation character in
it such as &.

In FORTRAN90, you need to use the continuation character & to
continue to the next line, and the next line must also be “commented
out” with the !$omp marker.

9 / 1

Introduction: What Do Directives Do?

indicate parallel sections of the code

indicate code that only one thread can do at a time

suggest how the work is to be divided

mark variables that must be shared ”carefully”

suggest how some results are to be combined into one

force threads to wait til all are done

10 / 1

Introduction: Threads

OpenMP assigns pieces of a computation to threads.

Each thread is an independent but “obedient” entity. It has access to the
shared memory. It has “private” space for record keeping.

We usually assume that each core corresponds to one thread;

An OpenMP program begins with one master thread executing.

The other threads begin in idle mode, waiting for work.

11 / 1

Introduction: Fork and Join

The program proceeds in sequential execution until it encounters a region
that the user has marked as a parallel section

The master thread activates the idle threads. (Technically, the master
thread forks into multiple threads.)

The work is divided up, and carried out.

The master thread waits as each helper thread completes its work and is
able to join the master thread.

The helper threads go back on unemployment until the next parallel
section.

12 / 1

Loops

OpenMP is ideal for parallel execution of for or do loops.

In the simplest cases, all the user has to do is mark the loop with a
parallel directive.

We’ll look at a simple example of such a loop to get a feeling for how
OpenMP works.

13 / 1

Loops: Default Behavior

OpenMP assigns “chunks” of the index range to each thread.

It’s as though 20 programs (threads) are running at the same time.

In fact, that’s exactly what is happening!

Each thread has its own private copy of the loop index.

All the other variables are shared, and open for “contention”.

A simple test: if your loop executes correctly even if the iterations are
done in reverse order, things are probably going to be OK!

14 / 1

Loops: Shared and Private Data

In the ideal case, each iteration of the loop uses data in a way that
doesn’t depend on other iterations. Loosely, this is the meaning of the
term shared data.

For instance, in the SAXPY task, each iteration is

y(i) = s * x(i) + y(i)

You can imagine that any number of processors could cooperate in a
calculation like this, with no interference.

We will start by assuming that all data can be shared, and wait for reality
to correct us!

This is OpenMP’s default assumption, as well.

15 / 1

Loops: Sequential Version

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , s ;

s = 123 . 456 ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

f o r (i = 0 ; i < n ; i++)
{

y [i] = y [i] + s * x [i] ;
}
r e t u r n 0 ;

}

16 / 1

Loops: The SAXPY task

The SAXPY task adds a multiple of vector X to vector Y.

The arrays X and Y can be shared, because only the thread associated
with loop index I needs to look at the I-th entries.

Each thread will need to know the value of S but they can all agree on
what that value is. (They “share” the same value).

This is a “perfect” parallel application: no private data, no memory
contention.

SAXPY is a common low level task, as in Gauss elimination.

17 / 1

Loops: SAXPY with OpenMP Directives

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>
inc l u d e <omp . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , s ;

s = 123 . 456 ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

#pragma omp p a r a l l e l f o r
f o r (i = 0 ; i < n ; i++)
{

y [i] = y [i] + s * x [i] ;
}
r e t u r n 0 ;

}

18 / 1

Loops: C Syntax

We’ve included the <omp.h> file, but this is only needed to refer to
predefined constants, or call OpenMP functions.

The #pragma omp string is a marker that indicates to the compiler
that this is an OpenMP directive.

The parallel for clause requests parallel execution of a for loop.

The parallel section terminates at the closing of the for loop block.

19 / 1

Loops: Fortran Syntax

The include ’omp lib.h’ command is only needed to refer to predefined
constants, or call OpenMP functions.

In FORTRAN90, try use omp lib instead.

The marker string is c$omp or !$omp.

The parallel do clause requests parallel execution of a do loop.

In Fortran, but not C, the end of the parallel loop must also be marked.
A c$omp end parallel directive is used for this.

20 / 1

Loops: SAXPY with OpenMP Directives

program main

i n c l u d e ’ omp l i b . h ’

i n t e g e r i , n
double p r e c i s i o n x (1000) , y (1000) , s

n = 1000
s = 123.456

do i = 1 , n
x (i) = rand ()
y (i) = rand ()

end do

c$omp p a r a l l e l do
do i = 1 , n

y (i) = y (i) + s * x (i)
end do

c$omp end p a r a l l e l do

stop
end

21 / 1

Loops: Which of these loops are “safe”?

do i = 2, n - 1

y(i) = (x(i) + x(i-1)) / 2 Loop #1

end do

do i = 2, n - 1

y(i) = (x(i) + x(i+1)) / 2 Loop #2

end do

do i = 2, n - 1

x(i) = (x(i) + x(i-1)) / 2 Loop #3

end do

do i = 2, n - 1

x(i) = (x(i) + x(i+1)) / 2 Loop #4

end do

22 / 1

Loops: How To Think About Threads

To visualize parallel execution, suppose 4 threads will execute the 1,000
iterations of the SAXPY loop.

OpenMP might assign the iterations in chunks of 50, so thread 1 will go
from 1 to 50, then 201 to 251, then 401 to 450, and so on.

Then you also have to imagine that the four threads each execute their
loops more or less simultaneously.

Even this simple model of what’s going on will suggest some of the
things that can go wrong in a parallel program!

23 / 1

Loops: The SAXPY loop, as OpenMP might think of it

i f (t h r e a d i d == 0) then
do i l o = 1 , 801 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 1) then
do i l o = 51 , 851 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 2) then
do i l o = 101 , 901 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 3) then
do i l o = 151 , 951 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

end i f

24 / 1

Loops: Comments

What about the loop that initializes X and Y?

The problem here is that we’re calling the rand function.

Normally, inside a parallel loop, you can call a function and it will also
run in parallel. However, the function cannot have side effects.

The rand function is a special case; it has an internal “static” or “saved”
variable whose value is changed and remembered internally.

Getting random numbers in a parallel loop requires care. We will leave
this topic for later discussion.

25 / 1

REDUCTION

OpenMP’s default behavior for parallelizing loops only works for simple
cases.

The user can help OpenMP to handle more complicated cases by using
the appropriate directives.

Computing a dot product is an example where help is needed.

The variable summing the individual products is going to cause conflicts.

Inefficiencies (delays) occur as several processors want to read the same
value.

Errors occur if several processors try to write their updated versions back
to the single data location.

26 / 1

REDUCTION: Sequential Version

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , xdoty ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

xdoty = 0 . 0 ;
f o r (i = 0 ; i < n ; i++)
{

xdoty = xdoty + x [i] * y [i] ;
}
p r i n t f (”XDOTY = %e\n” , xdoty) ;
r e t u r n 0 ;

}

27 / 1

REDUCTION: Examples of reduction operations

The dot product is one example of a reduction operation.

Other examples;

the sum of the entries of a vector,

the product of the entries of a vector,

the maximum or minimum of a vector,

the Euclidean norm of a vector,

Reduction operations, if recognized, can be carried out in parallel.

In OpenMP, a reduction declaration allows the compiler to set up the
reduction correctly and efficiently.

28 / 1

REDUCTION: with OpenMP directives

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>
inc l u d e <omp . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , xdoty ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

xdoty = 0 . 0 ;
#pragma omp p a r a l l e l f o r r e d u c t i o n (+ : xdoty)

f o r (i = 0 ; i < n ; i++)
{

xdoty = xdoty + x [i] * y [i] ;
}
p r i n t f (”XDOTY = %e\n” , xdoty) ;
r e t u r n 0 ;

}

29 / 1

REDUCTION: The reduction clause

Any variable which contains the result of a reduction operator must be
identified in a reduction clause of the OpenMP directive.

Reduction clause examples include:

reduction (+ : xdoty) (we just saw this)

reduction (+ : sum1, sum2, sum3) , (several sums)

reduction (* : factorial), a product

reduction (max : pivot) , maximum value (Fortran only))

30 / 1

Private Data

OpenMP assumes that most of the problem data is shared, that is,
there is a single copy, to which all threads have access.

If data is only “read”, a single copy can obviously be shared, although
delays might occur if several threads want to read at the same time.

Some data may be shared even though it is written. An example is an
array A. If entry A[I] is only written during loop iteration I, then the
array A can probably remain shared.

31 / 1

Private Data

A common example of private data, which cannot be shared, would be
the temporary variables often used for convenience during a loop
iteration.

For instance, it’s common to create variables called im1 and ip1 equal to
the loop index decremented and incremented by 1.

If many threads run the loop at the same time, they’re all going to have
different ideas of what im1 and ip1 should be, but only one place to put
these values!

32 / 1

Private Data: The PRIME SUM task

The PRIME SUM task will illustrate the concept of private and shared
variables.

Our task is to compute the sum of the prime numbers from 1 to N.

A natural formulation stores the result in TOTAL, then checks each
number I from 2 to N.

To check if the number I is prime, we ask whether it can be evenly
divided by any of the numbers J from 2 to I − 1.

We can use a temporary variable PRIME to help us.

33 / 1

Private Data: Sequential Version

inc l u d e <c s t d l i b>
inc l u d e <i o s t r eam>
us ing namespace s t d ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , j , t o t a l ;
i n t n = 1000 ;
boo l pr ime ;

t o t a l = 0 ;
f o r (i = 2 ; i <= n ; i++)
{

pr ime = t rue ;

f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime)
{

t o t a l = t o t a l + i ;
}

}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

34 / 1

Private Data: Eliminating Data Conflicts!

Let’s imagine we parallelize the I loop.

So each thread:

works on an integer I

initializes PRIME to be TRUE

checks whether any J can divide I and resets PRIME if necessary;

If PRIME ends up TRUE, add I to TOTAL.

The variables J, PRIME and TOTAL represent possible data conflicts
that we must resolve.

35 / 1

Private Data: With OpenMP Directives

inc l u d e <c s t d l i b>
inc l u d e <i o s t r eam>
inc l u d e <omp . h>
us ing namespace s t d ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , j , t o t a l , n = 1000 , t o t a l = 0 ;
boo l pr ime ;

pragma omp p a r a l l e l f o r p r i v a t e (i , pr ime , j) sha r ed (n)
pragma omp r e d u c t i o n (+ : t o t a l)

f o r (i = 2 ; i <= n ; i++)
{

pr ime = t rue ;

f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime)
{

t o t a l = t o t a l + i ;
}

}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

36 / 1

Private Data

By default, all variables in a loop are shared except for the main loop
index.

We can override the defaults for one or all the variables.

Every variable in a loop is either private, or shared or reduction.

We didn’t have to declare that i was private...but we did have to declare
that j was private!

37 / 1

Data Dependence

When we discussed the example of a differential equation, we pointed out
that the usual approach requires you to compute the approximate
solution one step at a time.

Even though you can write the procedure as a loop, the problem is that
each iteration of the loop depends on a result that is not available until
the previous iteration is complete.

This is an example of data dependence. A data dependent calculation
cannot be done in parallel.

In the STEPS program, we will look at a simpler case of data
dependence, one which can be “cured”.

38 / 1

Data Dependence

For the STEPS task, we evaluate a function at equally spaced points in
the unit square.

Start (X,Y) at (0,0), increment X by DX. If X exceeds 1, reset to zero,
and increment Y by DY.

This is a natural way to “visit” every point.

This simple idea won’t work in parallel without some changes.

Each thread will need a private copy of (X,Y).

...but, much worse, the value (X,Y) is data dependent.

39 / 1

Data Dependence: Sequential Version

program main

i n t e g e r i , j , m, n
r e a l dx , dy , f , t o t a l , x , y

t o t a l = 0 .0
y = 0 .0
do j = 1 , n

x = 0 .0
do i = 1 , m

t o t a l = t o t a l + f (x , y)
x = x + dx

end do
y = y + dy

end do

stop
end

40 / 1

Data Dependence

To make the loop iterations independent,

precompute X(1:M) and Y(1:N) in arrays.

or notice X = I/M and Y = J/N

The first solution, converting some temporary scalar variables to vectors
and precomputing them, may be able to help you parallelize a stubborn
loop. The second solution is simple and saves us a separate preparation
loop and extra storage.

41 / 1

Data Dependence: With OpenMP directives

program main

use omp l i b

i n t e g e r i , j , m, n
r e a l f , t o t a l , x , y

t o t a l = 0 .0
!$omp p a r a l l e l do p r i v a t e (i , j , x , y) sha r ed (m, n) r e d u c t i o n (+ : t o t a l)

do j = 1 , n
y = j / r e a l (n)
do i = 1 , m

x = i / r e a l (m)
t o t a l = t o t a l + f (x , y)

end do
end do

!$omp end p a r a l l e l do

stop
end

42 / 1

Data Dependence

Another issue pops up in the STEPS program. What happens when you
call the function f(x,y) inside the loop?

Notice that f is not a variable, it’s a function, so it is not declared private
or shared.

The function might have internal variables, loops, might call other
functions, and so on.

OpenMP works in such a way that a function called within a parallel
loop will also participate in the parallel execution. We don’t have to
make any declarations about the function or its internal variables at all.

Each thread runs a separate copy of f.

(But if f includes static or saved variables, trouble!)

43 / 1

SUMMARY

I hope you have started to become familiar with some of the basic
concepts of OpenMP.

We will come back to OpenMP in more detail for:

a few more useful features of the language;

some obstacles to parallelization;

how to get or set the number of threads

parallel sections that are not loops

how to measure the improvement in performance.

44 / 1

