
OpenMP Shared Memory Programming

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Using Virginia Tech High Performance Computing

https://people.sc.fsu.edu/∼jburkardt/presentations/...
openmp 2009 vt.pdf

26-28 May 2009

1 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

2 / 1

Introduction: OpenMP

OpenMP runs a user program in parallel.

Parallelism comes from multiple cooperating threads of execution.

These threads cooperate on parallel sections of a user program.

This happens on a shared memory system, where every thread
can see and change any data item.

3 / 1

Introduction: A Shared Memory System

A shared memory system might be:

a single core chip (older PC’s, sequential execution)

a multicore chip (such as your laptop?)

multiple single core chips in a NUMA system

multiple multicore chips in a NUMA system (VT SGI system)

4 / 1

Introduction:

OpenMP can run on a single multicore processor:

5 / 1

Introduction: NUMA Shared Memory

VT’s SGI ALTIX systems use the NUMA model.

On a NUMA system, a very fast communication network and
special memory addressing allows all memory to be shared
(although ”far” memory can be slower to access.)

6 / 1

Introduction: Steps in Using OpenMP

An OpenMP user must edit, compile and run:

insert “directives” in a C or FORTRAN program;

compile the program with OpenMP switches;

set an environment variable for number of threads;

run the program.

7 / 1

Introduction: Compiler Support

OpenMP compilers:

Gnu gcc/g++ 4.2, gfortran 2.0;

IBM xlc, xlf

Intel icc, ifort

Microsoft Visual C++ (2005 Professional edition)

Portland C/C++/Fortran, pgcc, pgf95

Sun Studio C/C++/Fortran

8 / 1

Introduction: Compilation with Gnu Compilers

For the GNU compilers, include the fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.cpp

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

9 / 1

Introduction: Compilation with Intel Compilers

Intel compilers require the openmp and parallel switches.
Fortran programs also need the fpp switch:

icc -openmp -parallel myprog.c

icpc -openmp -parallel myprog.cpp

ifort -openmp -parallel -fpp myprog.f

ifort -openmp -parallel -fpp myprog.f90

10 / 1

Introduction: Compilation with IBM Compilers

For the IBM compilers, include the omp switch:

xlc r -qsmp=omp myprog.c

xlC r -qsmp=omp myprog.cpp

xlf r -qsmp=omp myprog.f

xlf r -qsmp=omp myprog.f90

11 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

12 / 1

Threads

OpenMP runs a program in parallel by dividing one task into
several subtasks, each of which is assigned to a separate threads.

Each thread is an independent but “obedient” entity. It has access
to the shared memory. It has “private” space for a small amount of
working data.

We usually ask for one thread per available core:
ask for fewer, some cores are idle;
ask for more, some cores will run several threads, (probably slower).

An OpenMP program begins with just one thread running, the
master thread.

The other threads begin in idle mode, waiting for work.

13 / 1

Threads: Fork and Join

The program encounters a parallel directive inserted by the user,
which indicates the beginning of a parallel region.

The master thread activates the idle threads. (Technically, the
master thread forks into multiple threads.)

Chunks of work are assigned to each thread, until it is complete.

The end of the parallel region is an implicit barrier. Program
execution will not proceed until all threads have exited the parallel
region and joined the master thread. (This is called
“synchronization”.)

The helper threads go idle until the next parallel section.

14 / 1

Threads: Sections

Inside a parallel region, the user has to help OpenMP by
indicating what kind of work is to be parallelized.

The easiest situation occurs if there are actually several
independent tasks to be done. OpenMP’s term for this is sections.

For instance, the following three calculations could be treated as
sections and done in parallel:

a = matrix_multiply (b, c);

e = inverse (b);

f = eigenvalues (b);

However, these sorts of parallel sections are not the most common
application for OpenMP.

15 / 1

Threads: Loops

OpenMP is ideal for parallel execution of for or do loops.

It’s really as though we had a huge number of parallel sections,
which are all the same except for the iteration counter I.

To execute a loop in parallel requires a parallel directive, followed
by a for or do directive.

We’ll look at a simple example of such a loop to get a feeling for
how OpenMP works.

16 / 1

Threads: How Loops Are Handled

OpenMP assigns “chunks” of the index range to each thread.

It’s as though 20 programs (threads) are running at the same time.

In fact, that’s exactly what is happening!

If you apply OpenMP to a nested loop, only the outer loop is
parallelized. If the outer loop index is very small, you may want to
try to invert the loops, or apply the OpenMP directive to the inner
loop.

for (i = 0; i < 3; i++)

for (j = 0; j < 100000; j++)

17 / 1

Loops: Default Behavior

When OpenMP splits up the loop iterations, it has to decide what
data is shared (in common), and what is private (each thread
gets a separate variable of the same name).

Each thread automatically gets a private copy of the loop index.

In FORTRAN only, each thread automatically gets a private copy
of the loop index for any loops nested inside the main loop. In
C/C++, nested loop indices are not automatically “privatized”.

By default, all other variables are shared.

A simple test: if your loop executes correctly even if the
iterations are done in reverse order, things are probably
going to be OK!

18 / 1

Threads: Shared and Private Data

In the ideal case, each iteration of the loop uses data in a way that
doesn’t depend on other iterations and doesn’t interfere with them.
Loosely, this is the meaning of the term shared data.

A nice example is the SAXPY computation, which adds a multiple
of one vector to another:

y(i) = s * x(i) + y(i)

19 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

20 / 1

Introduction: What Do Directives Look Like?

In C or C++, directives begin with the # comment character and
the string pragma omp followed by the name of the directive.

pragma omp parallel

pragma omp sections

pragma omp for

pragma omp critical

Directives appear just before a block of code, which is delimited by
{ curly brackets } or the body of a for statement.

21 / 1

Introduction: What Do Directives Look Like?

The parallel directive begins a parallel region.

pragma omp parallel

{

do things in parallel here

}

Inside the parallel region, you can have any number of sections and
loops.
You don’t make the whole program one big parallel region because
some things must only happen once (such as I/O), and in each
parallel region, you must manage and declare private variables.

22 / 1

Introduction: What Do Directives Look Like?

Inside the parallel region, you might have sections:

pragma omp parallel

{

pragma omp sections

{

pragma omp section

{ a = matrix multiply (b, c); }

pragma omp section

{ e = inverse (b); }

pragma omp section

{ f = eigenvalues (b); }

}

}

23 / 1

Introduction: What Do Directives Look Like?

If you have several loops in a row, try to include them all in one
parallel region:

!$omp parallel

!$omp do

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel

24 / 1

Introduction: What Do Directives Look Like?

The end of each loop normally forces all threads to wait. If there
are several loops in one parallel region, you can use a nowait
command to let a fast thread move on to the next one.

!$omp parallel

!$omp do nowait

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel

25 / 1

Introduction: What Do Directives Look Like?

CLAUSES are additional information included on a directive.

There are clauses to define lists of private or shared variables.

(When multiple threads are running a loop, each thead gets its
own copy of the private variables.)

pragma omp parallel shared (n,s,x,y) private (i,t)

pragma omp for

for (i = 0; i < n; i++)

{

t = tan (y[i] / x[i]);

x[i] = s * x[i] + t * y[i];

}

26 / 1

Introduction: Long Directive Lines

You may often find that the text of a directive becomes rather long.

In C and C++, you can break the directive at a convenient point,
interrupting the text with a backslash character, \, and then
continuing the text on a new line.

pragma omp parallel \

shared (n, s, x, y) \

private (i, t)

pragma omp for

for (i = 0; i < n; i++)

{

t = tan (y[i] / x[i]);

x[i] = s * x[i] + t * y[i];

}

27 / 1

Introduction: What Do Directives Look Like?

FORTRAN77 directives begin with the string c$omp.

Directives longer than 72 characters must continue on a new line.
with another c$omp marker AND a continuation character in
column 6, such as &.

c$omp parallel

c$omp& shared (n, s, x, y)

c$omp& private (i, t)

c$omp do

do i = 1, n

t = tan (y(i) / x(i))

x(i) = s * x(i) + t * y(i)

end do

c$omp end do

c$omp end parallel

28 / 1

Introduction: What Do Directives Look Like?

FORTRAN90 directives begin with the string !$omp.

Long lines may be continued using a terminal &.

The continued line also begins with the !$omp marker.

!$omp parallel &

!$omp shared (n, s, x, y) &

!$omp private (i, t)

!$omp do

do i = 1, n

t = tan (y(i) / x(i))

x(i) = s * x(i) + t * y(i)

end do

!$omp end do

!$omp end parallel

29 / 1

Introduction: What Do Directives Do?

begin a parallel section of the code:
pragma omp parallel

mark variables that must be kept private:
pragma omp parallel private (x, y, z)

suggest how some results are to be combined into one:
pragma omp parallel reduction (+ : sum)

indicate code that only one thread can do at a time:
pragma omp critical
pragma omp end critical

force threads to wait til all are done:
pragma omp barrier

30 / 1

Introduction: What Do Directives Do?

Work to be done in a loop:
pragma omp for

Work to be done in a loop; when done, don’t wait!:
pragma omp for nowait

suggest how loop work is to be divided:
pragma omp for schedule (dynamic)

Work has been divided into user-defined “sections”:
pragma omp sections

Work to be done using FORTRAN90 implicit loops:
!$omp workshare

31 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

32 / 1

The SAXPY Example

OpenMP is most often used to parallelize loops.

A loop is probably OK for parallel execution if, even in sequential
mode, the iterations could be performed in any order.

An example is the saxpy loop, adding a multiple of one vector to
another.

for { i = 0; i < n; i++ }

{

y[i] = a * x[i] + y[i];

}

33 / 1

Loops: SAXPY with OpenMP Directives

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <omp . h>

double * r andom vecto r (i n t n) ;

i n t main (i n t argc , char * a rgv [])
{

i n t i , n = 1000 ;
double *x , *y , s ;

s = 123 . 456 ;
x = random vecto r (n) ;
y = random vecto r (n) ;

pragma omp p a r a l l e l \
sha r ed (n , s , x , y) \
p r i v a t e (i)

pragma omp f o r
f o r (i = 0 ; i < n ; i++)
{

y [i] = y [i] + s * x [i] ;
}
r e t u r n 0 ;

}

34 / 1

The SAXPY Example

We have just seen our first examples of directives.

An OpenMP directive has the form of a comment. So unless the
compiler is told to pay attention to them, the compiled code runs
sequentially.

The parallel directive indicates the beginning of a section of code
to be executed in parallel. It applies to the next statement, or
loop, or group of statements that have been surrounded by curly
brackets.

35 / 1

The SAXPY Example

pragma omp parallel

{

pragma omp for

for (i = 0; i < n; i++)

{

loop #1 is inside the parallel section

}

pragma omp for

for (j = 0; j < m; j++)

{

loop #2 is inside the parallel section

}

} <-- parallel section ends

36 / 1

The SAXPY Example

The for directive indicates that the following statement begins a
loop, and that this loop should be done in parallel.

The iterations of a parallel loop are split up among the threads.

Loops are often nested;
Normally, a programmer only parallelizes one loop in a nest.

37 / 1

The SAXPY Example

pragma omp parallel

{

pragma omp for

for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {

Parallelization is on outer index I.

}

}

for (i = 0; i < m; i++) {

pragma omp for

for (j = 0; j < n; j++) {

Parallelization is on inner index J.

}

}

}

38 / 1

The SAXPY Example

The private directive indicates that the following variables are not
to be shared.

In a loop, the loop index variable must be made private.

This gives each thread its own variable called I, which it can use to
keep track of the iterations it is performing.

39 / 1

The SAXPY Example: Compile and Load

The compilation step might be:

gcc -c -fopenmp saxpy.c

gcc saxpy.o random_vector.o

mv a.out saxpy

We assume ”random vector” was precompiled.
(It does NOT have to be compiled with the OpenMP switch.)

40 / 1

The SAXPY Example: Run

Set the number of threads in Bourne/Korne/Bourne-Again shells:

export OMP_NUM_THREADS=4

or, in the C or T shells:

setenv OMP_NUM_THREADS 4

and now run the program:

./saxpy

41 / 1

The SAXPY Example: Timing

Check total wall clock execution time versus thread numbers:

export OMP_NUM_THREADS=1

time ./saxpy

export OMP_NUM_THREADS=2

time ./saxpy

export OMP_NUM_THREADS=4

time ./saxpy

export OMP_NUM_THREADS=8

time ./saxpy

You control the number of threads externally to the program.
The best number is usually equal to the number of cores or
coprocessors available.

42 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

43 / 1

DOT PRODUCT

Most programs don’t run in parallel so easily as SAXPY did.

Sometimes the threads must cooperate in computing a single value.

Reduction operations are simple calculations which can be
carried out in parallel if you warn OpenMP in advance.

Reduction operations include:

maximum or minimum

norm

sum

product

and some other less frequent ones.

A reduction directive warns OpenMP that a particular variable is
the result of a reduction operation.

44 / 1

DOT PRODUCT: With OpenMP Directives

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <omp . h>

i n t main (i n t argc , char * a rgv [])
{

i n t i , n = 1000 ;
double *x , *y , xdoty ;

x = random vecto r (n) ;
y = random vecto r (n) ;

xdoty = 0 . 0 ;

pragma omp p a r a l l e l \
sha r ed (n , x , y) \
p r i v a t e (i) \
r e d u c t i o n (+ : xdoty)

pragma omp f o r
f o r (i = 0 ; i < n ; i++)
{

xdoty = xdoty + x [i] * y [i] ;
}
p r i n t f (”XDOTY = %e\n” , xdoty) ;
r e t u r n 0 ;

}

45 / 1

DOT PRODUCT: The reduction clause

Any variable which contains the result of a reduction operator
must be identified in a reduction clause of the OpenMP directive.

Reduction clause examples include:

reduction (+ : xdoty) (we just saw this)

reduction (+ : sum1, sum2, sum3) , (several sums)

reduction (* : factorial), a product

reduction (max : pivot) , maximum value (Fortran only))

46 / 1

DOT PRODUCT: The shared clause

Another OpenMP directive allows you to declare the variables
which are to be shared.

Every variable in a loop should be exactly one of shared, private
or reduction.

You don’t have to explicitly declared shared variables; that is the
default status for variables in a loop.

(However, in FORTRAN codes, the loop index will have private
status by default)

It can be helpful to declare all your variables.

47 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

48 / 1

PRIME SUM

Most programs don’t run in parallel so easily as SAXPY did.

The PRIME SUM program illustrates the biggest concern for
OpenMP programs:

How can we eliminate data conflicts between threads?

Conflicts can occur because the loop

uses a temporary variable whose value changes;

computes a sum, product, or maximum during the loop;

needs to read and write values in the same data item

49 / 1

PRIME SUM: A Sequential Version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
u s i n g namespace s td ;

i n t main (i n t argc , char * a rgv [])
{

i n t i , j , t o t a l ;
i n t n = 1000 ;
boo l pr ime ;

t o t a l = 0 ;
f o r (i = 2 ; i <= n ; i++)
{

pr ime = t r u e ;

f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime)
{

t o t a l = t o t a l + i ;
}

}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

50 / 1

PRIME SUM: What Data Cannot be Shared?

In PRIME SUM, a given thread, carrying out iteration I:

works on an integer I

initializes PRIME to be TRUE

checks if any J divides I and resets PRIME if necessary;

adds I to TOTAL if PRIME is TRUE.

If multiple threads are running with different values of I at the
same time, then the variables I, J, PRIME and TOTAL represent
possible data conflicts.

51 / 1

PRIME SUM: With OpenMP Directives

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
i n c l u d e <omp . h>
u s i n g namespace s t d ;
i n t main (i n t argc , char * a rgv [])
{

i n t i , j , t o t a l , n = 1000 , t o t a l = 0 ;
boo l pr ime ;

pragma omp p a r a l l e l \
sha r ed (n) \
p r i v a t e (i , pr ime , j) \
r e d u c t i o n (+ : t o t a l)

pragma omp f o r
f o r (i = 2 ; i <= n ; i++)
{

pr ime = t r u e ;
f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime) { t o t a l = t o t a l + i ; }

}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

52 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

53 / 1

The MD Example

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

54 / 1

The MD Example: Private/Shared/Reduction?

This example comes from a molecular dynamics (MD) program.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The array coord contains spatial coordinates; the force array f has
been initialized to 0.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

Which variables in this computation should be declared shared or
private or reduction?

Which variables are shared or private by default?

55 / 1

The MD Example: QUIZ

do i = 1, n <-- I? N?

do j = 1, n <-- J?

d = 0.0 <-- D?

do k = 1, 3 <-- K

dif(k) = coord(k,i) - coord(k,j) <-- DIF?

d = d + dif(k) * dif(k) -- COORD?

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do <-- F?, PFUN?

end do

end do

56 / 1

MD: With OpenMP Directives

!$omp p a r a l l e l &
!$omp sha r ed (n , coord , f) &
!$omp p r i v a t e (i , j , k , d , d i f)

!$omp do
do i = 1 , n

do j = 1 , n
d = 0 .0
do k = 1 , 3

d i f (k) = coord (k , i) − coord (k , j)
d = d + d i f (k) * d i f (k)

end do
do k = 1 , 3

f (k , i) = f (k , i) − d i f (k) * pfun (d) / d
end do

end do
end do

!$omp end do
!$omp end p a r a l l e l

57 / 1

Data Classification (Private/Shared/Reduction)

In the previous example, the variable D looked like a reduction
variable.

But that would only be the case if the loop index K was executed
as a parallel do.

We could work very hard to interchange the order of the I, J and K
loops, or even try to use nested parallelism on the K loop.

But these efforts would be pointless, since the loop runs from 1 to
3, a range too small to get a parallel benefit.

58 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP on VT’s SGI Cluster

OpenMP Utility Functions

Conclusion

59 / 1

OpenMP at VT: File Transfer/Compilation

Virginia Tech has 3 clusters of SGI ALTIX 3700 machines using
Intel processors.

For this class, we will have access to the cluster known as inferno2.

inferno2 has a total of 128 CPU’s; however, an individual job is
only allowed access to at most 12 CPU’s.

Users transfer files, compile programs, and submit jobs from one of
the two head nodes, known as charon1 and charon2.

Files are transferred with the sftp program:

sftp my_name@charon1.arc.vt.edu

put hello.c

get hello_output.txt

quit

60 / 1

OpenMP at VT: Creating an Executable Program

Assuming your files are available on charon, you need to login
using the ssh program so that you can compile the files and submit
your jobs.

ssh my_name@charon1.arc.vt.edu

We need to use the Intel compilers. To access OpenMP, the C
compilers need two extra switches, and the Fortran compilers need
three!

icc -openmp -parallel hello.c

icpc -openmp -parallel hello.cpp

ifort -openmp -parallel -fpp hello.f

ifort -openmp -parallel -fpp hello.f90

61 / 1

Batch jobs: Ready to Run

The compile command creates an executable program called
a.out. It’s probably best to rename it using the mv command:

mv a.out hello

Once you have created the executable, you are almost ready to go!

However, on the SGI system, interactive jobs are not allowed.

Instead, you put your job into a queue with the jobs requested by
other users, so they can be run in an orderly fashion.

This is called the batch or queueing system.

62 / 1

Batch jobs: The Job Script File

To run the executable program hello on the cluster, you write a
job script, which might be called hello.sh,

The job script file describes the account information, time limits,
the number of processors you want, input files, and the program to
be run.

The job script file can look pretty confusing, but the good news is
that there are only a few important lines!

63 / 1

Batch jobs: Example Job Script File

#!/bin/bash

#PBS -lwalltime=00:00:30

#PBS -lncpus=4

#PBS -W group_list=sgiusers

#PBS -q inferno2_q

#PBS -A hpcb0001

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=4

./hello

64 / 1

Batch jobs: Important items in job script file

In this job script, the important items are:

walltime lists your job time limit in seconds

ncpus=4 asks for 4 processors. 12 is the maximum.

hpcb0001 is the account under which you are running.

export OMP NUM THREADS=4 sets the number of
threads. This should match the value of ncpus!

./hello &> hello output.txt runs your program and saves
the output to a particular file.

./hello would also work; in this case, the queueing system will
save the output for you.

65 / 1

Batch jobs: Submit the job script

To run your job, you use the qsub command to send your job
script file:

You submit the job, perhaps like this:

qsub hello.sh

The queueing system responds with a short message:

111484.queue.tcf-int.vt.edu

The important information is your job’s ID 111484.

66 / 1

Batch jobs: Wait for the script to run

Your job probably won’t execute immediately. To check on the
status of ALL the jobs for everyone, type

showq

Since the showq command lists each job by number and
username, you can check for just your job number:

showq | grep 111484

If for some reason you want to kill your job, you can type

qdel 111484

67 / 1

Batch jobs: Output files

When your job is done, the queueing system gives you two files:

an output file, such as hello.o111484

an error file, such as hello.e111484

If your program failed unexpectedly, the error file contains
messages explaining the sudden death of your program.

Otherwise, the interesting information is in the output file, which
contains all the data which would have appeared on the screen if
you’d run the program interactively.

Of course, if your program also writes data files, these simply
appear in your home directory when the program is completed.

68 / 1

Batch jobs: Examining the output

To see our output file, we type:

more hello_output.txt

OpenMP output from different processes may be “shuffled”:

HELLO

FORTRAN90/OpenMP version

The number of processors available:

OMP_GET_NUM_PROCS () = 118

The number of threads is 4

This is process 1

This is process 2

This is process 0

This is process 3

HELLO

Normal end of execution.

69 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP Utility Functions

Conclusion

70 / 1

OpenMP Utility Functions

OpenMP functions include:

omp set num threads (t num)

t num = omp get num threads ()

p num = omp get num procs ()

t id = omp get thread num ()

wtime = omp get wtime()

71 / 1

OpenMP Utility Functions: Number of Processors

The function omp get num procs () returns the number of
processors (or coprocessors or cores) that are available to the
program.

This is telling you something about the hardware.

It is also suggesting the maximum parallel speedup you can expect.

On inferno2 there may be as many as 128 processors “available”;
however, most jobs are only actually allowed a maximum of 12!

72 / 1

OpenMP Utility Functions: Number of Threads Available

By default, the number of threads of execution is 1 (no
parallelism!).

By setting the environment variable OMP NUM THREADS, the
user can set the maximum level of parallelism.

To find out the number of threads inside the program, call
omp get num threads ().

You must call this function inside a parallel section; otherwise the
answer will be 1!

73 / 1

OpenMP Utility Functions: Maximum Number of Threads

If you just want to know the maximum number of threads
available, the simplest way is to call omp get max threads ().

This gives you the value of OMP NUM THREADS, whether you
are in a parallel or non-parallel region.

74 / 1

OpenMP Utility Functions: Which Thread am I?

Inside a parallel region, you can call omp get thread num () to
tell you which thread is executing this iteration of the loop.

You probably want to store the result in a private variable!

t_id = omp_get_thread_num ()

write (*, *) ’Thread ’, t_id, ’ is running.’

75 / 1

OpenMP Utility Functions: How Much Time Has Elapsed

If you want to time a piece of parallel code, you do this outside of
the parallel section. You call omp get wtime which returns a
double precision real number representing a reading of the elapsed
wall clock time.

wtime = omp_get_wtime ()

!$ omp parallel

STUFF TO TIME

!$ omp end parallel

wtime = omp_get_wtime ()

write (*, *) ’ Section took ’, wtime, ’ seconds.’

76 / 1

OpenMP Shared Memory Programming

Introduction

Threads

Directives

The SAXPY Example

The DOT PRODUCT Example

The PRIME SUM Example

The MD Example

OpenMP Utility Functions

Conclusion

77 / 1

CONCLUSION: OpenMP Has a Future

This has been a very brief introduction to the power of OpenMP.

OpenMP is a simple method for adding parallelism.

OpenMP is limited by the number of cores available on a particular
shared memory system.

But systems with 10 or 100 cores are already scheduled to appear
soon.

78 / 1

CONCLUSION: OpenMP is Flexible

OpenMP can be used on a desktop;

It can be used on any cluster that behaves like a shared memory
machine.

It can be used in combination with MPI; MPI copies a program to
each node of a cluster. On each node, OpenMP is able to exploit
the multiple cores available.

79 / 1

CONCLUSION: OpenMP is Flexible

If you already have a program written, it is easy to add OpenMP
directives to one part of the program at a time, and gradually
create a parallel version.

At the same time, the original sequential program can be run
simply by a compiler switch.

OpenMP offers an easy, portable and reversible path to
parallel programming.

80 / 1

