
Back and Forth with Midpoint

A Midpoint Stress Test:
Catalin Trenchea, Wenlong Pei, John Burkardt

Secret Planning Conference
28 October 2023
Denver, Colorado

https://people.sc.fsu.edu/∼jburkardt/presentations/midpoint 2023 denver.pdf
1 / 19



References

Catalin Trenchea, John Burkardt,
Refactorization of the midpoint rule,
Applied Mathematics Letters,Volume 107, September 2020,

John Burkardt, Wenlong Pei, Catalin Trenchea,
A stress test for the midpoint time-stepping method,
International Journal of Numerical Analysis and Modeling,
Volume 19, Number 2-3, pages 299-314, 2022.

William Layton, Wenlong Pei, Catalin Trenchea,
Time step adaptivity in the method of Dahlquist, Liniger, and Nevanlinna,
Advances in Computational Science and Engineering,

Volume 1, Number 3, pages 320-350, September 2023. 2 / 19



Which midpoint method are we talking about?

f(mid) 1
2 (f(left)+f(right))

explicit: explicit midpoint method Heun’s method or
Improved Euler method

implicit: implicit Runge-Kutta 2 or trapezoidal method
implicit midpoint method

For linear problems, explicit and implicit are the same.

The original Crank-Nicolson uses implicit midpoint time stepping.

Here we consider only the implicit midpoint method. 3 / 19



Two Ways to Look at It

The implicit midpoint method can be seen as a single step:

yn+1 = yn + τnf (tn+1/2, yn+1/2)

or as Backward Euler and Forward Euler (BEFE) steps of size τn
2 :

yn+1/2 = yn +
τn
2
f (tn+1/2, yn+1/2) (Backward)

yn+1 = yn+1/2 +
τn
2
f (tn+1/2, yn+1/2) (Forward)

The second step can be rewritten simply as:

yn+1 = 2 yn+1/2 − yn (Forward)

so the implicit problem only needs to be solved once, in BE. 4 / 19



Sketch of an implementation

Using n steps of size dt starting at t0, we invoke a “magic” function
SOLVER(variable,equation), which determines a value for yh:

f o r i from 1 to n
{

to = t ( i )
yo = y ( i , : )

th = to + dt / 2
yh = SOLVER ( yh ,

( yh − yo ) / ( th − to ) − f ( th , yh ) == 0 )

t ( i +1) = to + dt
y ( i +1 , : ) = 2 * yh − yo

}

In MATLAB, Octave, Python and R, the magic function is fsolve().

5 / 19



Stress Tests

Exp: u′ = λu
Stiff: u′ = λ(cos(t)− u)
Lotka: u′ = 2u − 0.001uv , v ′ = −10v + 0.002uv
Rigid: u′ = (1/c − 1/b)vw

v ′ = (1/a− 1/c)uw
w ′ = (1/b − 1/a)uv

VDP: u′ = v , v ′ = µ(1− u2)v − u
Pend: u′ = v , v ′ = − g

l sin(u)
Double u′1 = v1

pend: v ′1 =
g(2m1+m2) sin(u1)+m2(g sin(u1−2u2)+2(l2+v2

2+l1v
2
1 cos(u1−u2) sin(u1−u2)

2l1(m1+m2−m2 cos(u1−u2)2

u′2 = v2

v ′2 =
((m1+m2)(l1v

2
1+g cos(u1))+l2m2v

2
2 cos(u1−u2)) sin(u1−u2)

l2(m1+m2−m2 cos(u1−u2)2)
Lindberg y ′1 = 104(y1y3 + y2y4)

y ′2 = −104(y1y4 + y2y3)
y ′3 = 1− y3
y ′4 = −0.5y3 − y4 + 0.5

6 / 19



Very stiff Van der Pol ODE

Compare ode45(), ode23s(), fixed step midpoint, adaptive step midpoint,
on Van der Pol ODE with µ = 1000.

7 / 19



Conservation

In practical problems, exact solutions are not known, but physical
constraints may require conservation of certain quantities. An ODE
solver’s results can then be judged by how well conservation is modeled.

8 / 19



Energy conservation for four test cases

rigid body nonlinear pendulum
lotka-volterra double pendulum

9 / 19



Review energy conservation for double pendulum

Energy conservation(?) for midpoint, ode23s(), ode45(), rk4(), on double
pendulum, using increasing energy levels.

ode45() explodes, ode23s() and rk4() lose energy, midpoint() conserves.

10 / 19



Adaptive Stepsize for Midpoint

For a smooth solution y(x), the local truncation error for the midpoint
method is

Tn+1 ≡ y(tn+1)− yn+1 =
1

24
τ 3n y

′′′(tn + 1/2) +O(τ 5n )

For a given local error tolerance tol, propose the next time step as

τn+1 = κ τn(
tol

||Tn+1||
)

1
3

with the safety factor κ ≤ 1.
11 / 19



The Lindberg ODE: a Deadly Trap

Lindberg proposed a system of 4 ODE’s as a severe test for stiff
ODE solvers.

The system has been criticized as atypical, and “unfair”(!)

Standard methods fail catastrophically with underflow or overflow.

The eigenvalues of the Jacobian are large, and evolve over time from
negative to positive values.

This ODE was used to evaluate the DIFSUB and DIFSOL solvers.

An exact solution is known.

12 / 19



The Lindberg ODE: log10(y1(t), y2(t))

The norm of the exact solution, although nonzero, becomes too small to
represent in 64 bit floating point.

We see an initial plunge in the solution, a gap in the range 0.1 ≤ t ≤ 1.5,
and a final unstable explosion.

An ODE solver will miss this final growth phase near t = 1.5 if it has set
(y1, y2) = (0, 0) by then.

13 / 19



The Lindberg ODE: MATLAB solvers fail

Left: The ode23s() solver drops too quickly, and “dies” at t = 1.1.

Right: The ode15s() and ode45() solvers drop only slightly, then
proceed to about t = 0.8 and and explode.

Tolerances used were abstol = 1.0E-15, reltol = 1.0E-11.

14 / 19



The Lindberg ODE: Midpoint adaptivity crucial

Focus on light blue lines with δ = 1:

Left: Stepsize drastically reduced at blowup time.

Right: Adaptive code follows blowup.

Note that a nonadaptive midpoint method, using a constant stepsize,
doesn’t break down early as the MATLAB solvers do, but marches past
the blowup point without detecting it.

15 / 19



A Menu of Implementations

Language fsolve adaptive
C midpoint.c
C++ midpoint.cpp
Fortran77 midpoint.f
Fortran90 midpoint.f90
FreeFem++ midpoint.edp
MATLAB midpoint.m midpoint adaptive.m
Octave midpoint.m midpoint adaptive.m
Python midpoint.py midpoint adaptive.py
R midpoint.R

16 / 19



Professional Codes available

Or you may prefer your ODE to be handled by a professional!

Language library code
C Gnu Scientific Library gsl odeiv2 step rk2imp()
C++ Gnu Scientific Library gsl odeiv2 step rk2imp()
Julia ODE Midpoint

You might also find an implementation of the midpoint method “hiding”
in a standard library as an order 2 implicit Runge Kutta ODE solvers.

17 / 19



A Menu of Implementations

Language fixed point fsolve adaptive
C midpoint fixed.c midpoint.c gsl odeiv2 step rk2imp()
C++ midpoint fixed.cpp midpoint.cpp gsl odeiv2 step rk2imp()
Fortran77 midpoint fixed.f midpoint.f
Fortran90 midpoint fixed.f90 midpoint.f90
FreeFem midpoint.edp
Julia ODE:Midpoint()
MATLAB midpoint fixed.m midpoint.m midpoint adaptive.m
Octave midpoint fixed.m midpoint.m midpoint adaptive.m
Python midpoint fixed.py midpoint.py midpoint adaptive.py
R midpoint fixed.R midpoint.R

18 / 19



The Story in a Nutshell

Implicit backward step/2 + explicit forward step/2;

It is second order accurate;

It is absolutely stable and B-stable;

It preserves linear and quadratic conservation quantities;

It produces reliable error estimates;

It predicts safe time-steps for adaptive solution;

It upgrades Backward Euler codes with one new line;

C, C++, Fortran, FreeFem++, Julia, MATLAB, Octave, Python, R.
19 / 19


