The Halfway Way

The Halfway Way:
A fresh look at the midpoint method

Catalin Trenchea, Wenlong Pei, John Burkardt
ICAM Conference on Applied and Computational Mathematics
Honoring Terry Herdman on his retirement
01-03 June 2022
Virginia Tech

1/19

The Executive Summary

The midpoint method is second order and absolutely stable;

It is B-stable;

It preserves linear and quadratic conservation quantities;

It produces reliable error estimates;

Safe time-steps are calculated accurately, efficiently, and adaptively;
Existing backward Euler codes upgrade with one line of new code;
C, C++, Fortran, FreeFem, MATLAB, Octave, Python, R versions.

2/19

Multiple ldentities

Methods are for ODE'’s, rules for numerical quadrature.

f(mid)

3 (f(left)+f(right))

explicit:

explicit midpoint method

Heun's method or
Improved Euler method

implicit:

implicit Runge-Kutta 2 or
implicit midpoint method

trapezoidal method

From now on, “midpoint method” refers to implicit midpoint method.

3/19

Two Ways to Look at It

The implicit midpoint method can be seen as:

Yn+1 = Yn + 7_nf-(tn—i—l/2>yn-4—1/2)

or as Backward and Forward Euler steps of size 73

-
Ynt1/2 = Yo + Enf(tn+1/27yn+1/2) (BE: Backward Euler)

-
Ynt1 = Yap1/2 + Enf(tn+1/27}/n+1/2) (FE: Forward Euler)
The second step can be rewritten simply as:

Ynt1 = 2¥nt1/2 — ¥n (FE: Forward Euler)

so the implicit problem only needs to be solved once, in BE. 4/10

Cauchy’s One Leg 6 method

@
4

5

&

2

[~

=
-3
=]
B4
5

=]
£

The resulting method can be designated as (BEFE):
T,
Ynt1/2 = Yn + En f(tn+1/2,Yn+1/2) (BE: Backward Euler)
Ynt1 = 2¥nt1/2 — ¥a (FE: Forward Euler)
and admits a generalization to Cauchy’s one-leg 8 method:
Ynt0, = Yn + OnTn f(tn+9nayn+9n)

1 1
n = 5 Vn —(—-1 n
Ynt1 9,,y +6n (9n)%

5/19

The 6-method for % < 60, <1, and the BEFE special case are
unconditionally stable, A-stable, and B-stable.

We say a method is B-stable if, for all u, v elements of a Banach or
Hilbert space, and V7 () for which (f(u) — f(v),u— v) <0, we have
[|Yn+1 — Znt1l] < ||yn — 2zn||, for any two sequences y and z of
approximations computed with the method, and any index n.

B-stability implies A-stability.

6/19

Error Estimates for Adaptive Stepsize

For a smooth exact solution y(x), the local truncation error for BEFE is

1
Toi1 = y(tog1) — Vo1 = 22 T2y (tn +1/2) 4+ O(77)

For a given local error tolerance tol, propose the next time step as

tol
| Tosal|

Tnt1 = K Tn(

where the safety factor k < 1.

7/19

How to go MAD: Midpoint Adaptive method:

to, Yo, tol, T, k given.

t1, y1, To from one step second-order method in convergence range
tnew — t]_ TIIEW — 7_0 n—= 1

while t, < T do

Ty < T

evaluate y,+1 with the midpoint rule;
evaluate 7',,+1;
7 oty 601/ Tasa |
if || Tpisl < tol then
try1 < by + 77,

n+<n+1
end

end

8/19

Test: Rigid Body Rotation

Conservation: H(t) = u? + v + w?

14 12
12
1
1
08
A A
! os !
E Eos
I I
i :
v v
04
04
% 25 % 3% w0 %0 0 1000 2000 3000 4300 5000 6000 7000 8000 9060 10000
<-T-> < T-->

9/19

Test: Nonlinear Pendulum

INCENTFRIE- N NER RN STEL

Conservation: H(t) = T&(1 — cos(u)) + 3mv?

<o H(T) >
<-- H(T) >

10/19

Test: Predator Prey

Conservation: H(t) = du — vlog(u) + Bv — alog(v)
(not quadratic!)

20 -84
» A
L0 -
= E s
T T
v v
60 &5
0
855
20
00 . F— " 56 , . .
o 1 2 3 4 5 & 1 8 9 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000
< T-> T >

11/19

Implicit Solvers Must Handle Nonlinear Equations

Any implicit ODE method must reliably solve a sequence of systems of
nonlinear equations. Given the small stepsizes of a typical ODE method,
the previous ODE solution is often a good first approximation to the
solution at a new (but very close) time.

A simple method that usually works is to apply a fixed point iteration.

The developers of MINPACK provided the function hybrd () for solving
general systems of nonlinear equations, and versions of this code are
available in MATLAB, Python, and R under the name fsolve().

12/19

Fixed Point Iteration

Ada Lovelace: “The calculation will eat its own tail.”

tm = t0 + 0.5 x dt

ym = y0 + 0.5 % dt x f(t0,y0)
for j =1 : it_max

ym = y0 + 0.5 % dt x f(tm,ym)
end

tl = t0 + dt
yl =2 %x ym — y0

13/19

Using fsolve()

If you're close enough, you can't miss!

th = to + 0.5 % dt;
yh = yo + 0.5 % dt x (f (to, yo))';
yh = fsolve (@(yh)residual(f,to,yo,th,yh), yh);

function value = residual (f, to, yo, th, yh)
value = yh —yo — (th —to) = (f (th, yh))';
return

end

14/19

Codes available

Enter your ODE, and crank out the result!

Language fixed point fsolve adaptive
C midpoint_fixed.c midpoint.c
C++ midpoint_fixed.cpp midpoint.cpp

Fortran77 midpoint_fixed.f midpoint.f
Fortran90 midpoint_fixed.f90 midpoint.f90

FreeFem midpoint.edp
MATLAB midpoint_fixed.m midpoint.m midpoint_adaptive.m
Octave midpoint_fixed.m midpoint.m midpoint_adaptive.m

Python midpoint_fixed.py midpoint.py midpoint_adaptive.py
R midpoint_fixed.R midpoint.R

15/19

Professional Codes available

Or you may prefer your ODE to be handled by a professional!

Language library code
C Gnu Scientific Library gsl_odeiv2_step_rk2imp()
C++ Gnu Scientific Library gsl_odeiv2_step_rk2imp()

Julia ODE Midpoint

16/19

References

Catalin Trenchea, John Burkardt,
Refactorization of the midpoint rule,
Applied Mathematics Letters,Volume 107, September 2020,

Catalin Trenchea, John Burkardt,

Refactorization of the midpoint rule,

Technical Report TR-MATH 20-02,
https://www.mathematics.pitt.edu/sites/default/files/midpoint3_technicalreport.pdf,

John Burkardt, Wenlong Pei, Catalin Trenchea,

A stress test for the midpoint time-stepping method,
International Journal of Numerical Analysis and Modeling, Volume 19, Number {§
2-3, pages 299-314, 2022. '

17/19

Links to source code in any language:

https://people.sc.fsu.edu/~jburkardt/...

Language subdirectory Sample directory
C c_src/ midpoint.html
C++ cpp_src/ midpoint.html
Fortran77 f77_src/ midpoint.html
Fortran90 f_src/ midpoint.htm|
FreeFem++ freefem_src/ midpoint.html
MATLAB m_src/ midpoint.html
Octave octavesrc/ midpoint.html
Python py_src/ midpoint.htm|
R r_src/ midpoint.html

For most languages, there are actually several implementations: fixed
point/fsolve/adaptive.

18/19

The End

The midpoint method is powerful, accurate, and stable.

The method is A-stable, B-stable, linearly and nonlinearly stable.
It is a symplectic method for general Hamiltonian systems.

The correct estimator for local truncation error only involves the
differentiation defect, but not the interpolation defect.

Implementations are provided in a variety of computing languages.

19/19

