
K-Means Clustering

John Burkardt (ARC/ICAM)
Virginia Tech

..........
Math/CS 4414:

”K-Means Clustering”
https://people.sc.fsu.edu/∼jburkardt/presentations/

clustering kmeans.pdf
..........

ARC: Advanced Research Computing
ICAM: Interdisciplinary Center for Applied Mathematics

21 September 2009
1 / 1

K-Means Clustering

Overview

Clustering

The K-Means Algorithm

Running the Program

2 / 1

Overview: K-Means Clustering

In the previous lecture, we considered a kind of hierarchical
clustering called single linkage clustering. This was useful because
we thought our data had a kind of family tree relationship, and
single linkage clustering is one way to discover and display that
relationship if it is there.

Today we will look at a different clustering tool called K-Means.
The fundamental idea is that we are going to look for K average or
mean values, about which the data can be clustered. Our goal now
is perhaps no so much to find a family history as to simply break
the data up into K groups.

We might be doing this in the hope that each group can be
“explained” by some common parameter value.

Or we might not be looking for understanding - instead we might
simply want to compress the data.

3 / 1

Overview: An Example of K-Means Clustering

4 / 1

Overview: Examples of Data for Clustering

The data that K-Means works with must be numerical. Each data
object must be describable in terms of numerical coordinates.

We can imagine that these coordinates represent a spatial position.
A surprising number of things can be described this way, including

the weekly position of one song in the Top 40 ratings;

the election results, by party, in one particular town;

the medical test results for one patient in a study;

the RGB coordinates of one color used in an image

5 / 1

Overview: Examples of Data for Clustering

We aren’t looking for a theory about how these objects are created
or why they are different. We are instead trying to get a
representative sample of the data, so that we can see the most
typical behaviors and then try to explain patterns that we see:

do most hit songs vanish after 10 weeks? do songs by new
artists tend to be short-lived?

how do towns differ, based on differences in the election
results?

if some patients in the study got very sick afterwards, are
there some test results that would have predicted this?

if we can only use 8 colors in an image, what is a choice that
would be representative?

6 / 1

Overview: Clustering Geometric Data

7 / 1

Overview: Clustering Geometric Data

Sometimes the data for K-Means really is spatial, and in that case,
we can understand a little better what it is trying to do.

We can use K-means clustering to decide where to locate the K
“hubs” of an airline so that they are well spaced around the
country, and minimize the total distance to all the local airports.

A better approach to this problem, of course, would take into
account the fact that some airports are much busier than others.
To do that requires a weighted K-means clustering, which we
may talk about later.

8 / 1

Overview: Variance

There is a statistical concept called variance that we will find
useful for our clustering work. The classical definition of variance
measures the squared difference between each data item and the
mean value, and takes the average.

ave(x) =
1

n

n∑
1

xi

var(x) =
1

n

n∑
1

(xi − ave(x))2

If a set of data has a small variance, most of the data is close to
the average.

9 / 1

Overview: Variance

For clustering, we will also want to measure the closeness of data
to an average. However, instead of a single average, we will divide
our data into clusters, each of which will have its own average. We
won’t bother normalizing by the number of data items, and we will
have to adjust for the fact that our data is D-dimensional.

This gives us something we can call cluster variance:

var(x) =
n∑
1

‖xi − ave(xi)‖2

Here ave(xi) represents the cluster average (although when we get
around to explaining this, we will actually call it the cluster center).

10 / 1

K-Means Clustering

Overview

Clustering

The K-Means Algorithm

Running the Program

11 / 1

Clustering: Problem Statement

We suppose that we are given a set of N items P, with a typical
entry being pi, and that each pi is a vector of D numbers.

We can think of each pi as being a point in a D-dimensional space.

12 / 1

Clustering: P = 100 Points in 2D

13 / 1

Clustering: Problem Statement

Our desire is to break the data up into K clusters. We can do this
in any way we like. We imagine we have a function or rule, which
we symbolize by PtoC() so that if j = PtoC(pi), the point pi

belongs to cluster j.

We can certainly break the points up into K clusters. That’s easy!

14 / 1

Clustering: P = 100 Points in 2D, K = 5 Random Clusters

15 / 1

Clustering: Using Random Centers is Not Great

A random clustering doesn’t use any of the geometric information
to try to group our data. A better method chooses a set C of K
“cluster centers”, one for each cluster, and then associates a point
pi with the cluster whose center cj is nearest.

Unfortunately, this doesn’t tell us how to pick the values C, and in
fact, often we’re doing clustering precisely because we are seeking
a good set of C values!

16 / 1

Clustering: P = 100 Points in 2D, K = 5 Random Centers

17 / 1

Clustering: Use the Data to Move the Centers!

Even though the clustering induced by our random centers wasn’t
great, it did divide the data. In fact, the oddest thing about the
clusters now is that the centers aren’t actually in the center.

So we got our grouping (good) but the cluster centers aren’t
actually good representatives of the clusters (bad).

Suppose we move our center points to the actual centers of the
clusters. Then it’s likely that the centers are more evenly spaced
throughout the region, and this will also likely reduce the average
distance of cluster points to the center.

18 / 1

Clustering: Use the Centers to Move the Data!

Moving the centers to the center is a good idea. It will cause the
variance to decrease giving us a better clustering than before.
Interestingly, though, some of the points in each cluster now are
closer to the center of a different cluster.

Since we want the points to cluster to the nearest center, we can
transfer those points to the cluster where they seem to want to go.
This will also reduce the variance!

19 / 1

Clustering: It’s Time For an Iteration

Even if a single point moves to another cluster, this affects the
locations of the cluster centers of the cluster it left and the cluster
it joined.

That’s because we are now defining the cluster centers to be the
averages of all the points in the cluster.

So once again we must update the cluster centers, and this in turn
may cause some points to want to transfer.

We clearly will need to carry this out as an iteration. Luckily, each
step is guaranteed to reduce the variance. There is a minimum
variance, and there are only finitely many possibly clusterings (even
though this number is enormous) so the iteration will terminate.

But will it terminate at a clustering with the minimum possible
variance?

20 / 1

Clustering: P = 100 Points in 2D, K = 5 K-MEANS

21 / 1

K-Means Clustering

Overview

Clustering

The K-Means Algorithm

Running the Program

22 / 1

The K-Means Algorithm

Choose initial centers c1,...,ck.
..

While the clusters are changing,

..Reassign the data points.

..For i = 1, ..., n

....Assign data point pi to the cluster

....whose center cj is closest.

..end

..Update the cluster centers.

..For j = 1, ..., k

....nj = number of points in Cj;

....cj = 1
nj

∑
pi∈Cj

pi

..end

end

23 / 1

The K-Means Algorithm: Initialization

The initialization step is actually important. Because the algorithm
can sometimes stop too soon, it’s good to be able to retry it with
different starting values, perhaps several times.

If appropriate, you can set your centers using the rand() function.

If the range of your data is not [0,1], then you can scale the output
of the rand() function.

You can use MATLAB’s randperm() function to come up with a
random permutation of the n data values, and choose the first k
data values to be your starting centers.

24 / 1

The K-Means Algorithm: Initialization

f u n c t i o n c = km e a n s i n i t i a l i z e (dim , n , p , k)

%% KMEANS INITIALIZE randomly choose s K data v a l u e s f o r c l u s t e r c e n t e r s .
%
% Get a random permuta t i on o f the i n t e g e r s 1 through N.
%

perm = randperm (n) ;
%
% Use the f i r s t K e n t r i e s o f the pe rmuta t i on to s e l e c t K
% data v a l u e s to use as c l u s t e r c e n t e r s .
%

c (1 : dim , 1 : k) = p (1 : dim , perm (1 : k)) ;

r e t u r n
end

25 / 1

The K-Means Algorithm: Update the Clusters

f u n c t i o n ptoc = kmean s upd a t e c l u s t e r s (dim , n , p , k , c)

%% KMEANS UPDATE CLUSTERS a s s i g n s data to c l u s t e r s based on the c e n t e r s .
%

f o r i = 1 : n
f o r j = 1 : k

d i s t (j) = norm (p (1 : dim , i) − c (1 : dim , j)) ;
end
[dummy , ptoc (i)] = min (d i s t (1 : k)) ;

end

r e t u r n
end

xmin = min(x) returns the minimum value of a vector;
[xmin, i] = min(x) returns the minimum and its index;

26 / 1

The K-Means Algorithm: Update the Centers

f u n c t i o n c = kmean s upda t e c en t e r s (dim , n , p , k , ptoc)

%% KMEANS UPDATE CENTERS r e s e t s the c l u s t e r c e n t e r s to the data a v e r ag e s .
%

f o r j = 1 : k
i ndex = f i n d (ptoc (1 : n) == j) ;
n j = l e n g t h (i nd e x) ;
c (1 : dim , j) = sum (p (1 : dim , i nd ex) , 2) / n j ;

end

r e t u r n
end

index = (ptoc(1 : n) == j) returns indices where ptoc = j.
nj = length(index) tells us how many indices there were.
sum(p(1 : dim, index), 2) sums on the second index.

27 / 1

The K-Means Algorithm: Compute the Variance

f u n c t i o n v = kmeans va r i ance (dim , n , p , k , c , ptoc)

%% KMEANS VARIANCE computes the v a r i a n c e o f the K−means c l u s t e r i n g .
%

v = 0 . 0 ;
f o r i = 1 : n

j = ptoc (i) ;
v = v + (norm (p (1 : dim , i) − c (1 : dim , j))) ˆ 2 ;

end

r e t u r n
end

This quantity is similar to the statistical variance, but it is not the
same. (We have multiple centers, we don’t divide by the number
of objects, and we add the K variances together.)

28 / 1

The K-Means Algorithm: Main Program

f u n c t i o n [c , ptoc] = km (dim , n , p , k)

%% KM c a r r i e s out the K−Means a l g o r i t hm .
%

%
% I n i t i a l i z e the c l u s t e r c e n t e r s .
%

c = km e a n s i n i t i a l i z e (dim , n , p , k) ;
%
% Repea t ed l y update c l u s t e r s and c e n t e r s t i l no change .
%

v = −1;
w h i l e (1)

ptoc = kmean s upd a t e c l u s t e r s (dim , n , p , k , c) ;

c = kmean s upda t e c en t e r s (dim , n , p , k , ptoc) ;

v o l d = v ;
v = kmeans va r i ance (dim , n , p , k , c , ptoc) ;

i f (v == v o l d)
break

end

end

r e t u r n
end

29 / 1

The K-Means Algorithm: Overview of the Program

The program is “randomized” because we call randperm() for
initialization. Each time we call, we will get a new random set of
starting centers.

It is possible, when we update the centers, that a particular center
will have no data points in its cluster. This will cause this
algorithm to break. How can you fix that?

If the algorithm is written correctly, then on each iteration, if any
point moves from one cluster to another, the variance will
decrease. Therefore, if the variance stops decreasing, this
execution of the program is done.

30 / 1

K-Means Clustering

Overview

Clustering

The K-Means Algorithm

Running the Program

31 / 1

Running the Program: Random Data

The program km.m can be used to solve a simple K-Means
problem.

To define a random problem set P of dimension D and size N and
try the program on it you can simply type the commands:

dim = 2;

n = 100;

p = rand (dim, n);

k = 5;

[c, ptoc, v_data] = km (dim, n, p, k);

The extra output argument v data contains the variance after each
iteration. We will want to plot that!

32 / 1

Running the Program: Observing Local Minimums

Since random data doesn’t break into groups naturally, there will
be cases where the program returns a “local minimum” (not the
best answer). To see this, run the program several times, and look
at the last entry of v data, which you get by referring to index end:

[c, ptoc, v_data] = km (dim, n, p, k);

v_data(end)

ans = 16.3745

[c, ptoc, v_data] = km (dim, n, p, k);

v_data(end)

ans = 15.5957

[c, ptoc, v_data] = km (dim, n, p, k);

v_data(end)

ans = 16.5975

33 / 1

Running the Program: Plotting the Variance

Another way to get a feel for what is going on is to plot the
whole v data vector for several runs. To do this, you need to use
the hold on command so that each new plot is added to the
current one.

[c, ptoc, v_data] = km (dim, n, p, k);

plot (v_data);

hold on

[c, ptoc, v_data] = km (dim, n, p, k);

plot (v_data);

[c, ptoc, v_data] = km (dim, n, p, k);

plot (v_data);

Type hold off when you are done!

34 / 1

Running the Program: Multiple Variance Plots

35 / 1

Running the Program: The Scores Datafile

The file scores.txt contains the scores for reading and arithmetic
tests at the 4th and 6th grade levels, at 25 area elementary schools.

The text begins like this:

2.7 3.2 4.5 4.8

3.9 3.8 5.9 6.2

4.8 4.1 6.8 5.5

3.1 3.5 4.3 4.6

3.4 3.7 5.1 5.6

3.1 3.4 4.1 4.7

4.6 4.4 6.6 6.1

3.1 3.3 4.0 4.9

...

(25 lines total)

36 / 1

Running the Program: Data From a File

To cluster the data in scores.txt, we need to get a copy of the
file in our current MATLAB directory, and read the data using the
load command:

p = load (’scores.txt’);

Each line of the data file represents one of our “points”. But when
we store data in MATLAB, we want each column of the array to
be a point. So we have to transpose the data that we just read,
before we can run the program.

p = p’;

[dim, n] = size (p);

k = 3;

[c, ptoc, v_data] = km (dim, n, p, k);

37 / 1

Running the Program: ASSIGNMENT

Copy the program km.m and the dataset scores.txt from Scholar.
They will be available in the Clustering Resource.

Read the dataset into MATLAB as demonstrated on the previous
slide. Transpose the data so it is 4x25 in dimension. Then run the
km program, using K=3 clusters. Record the final value of v data
that you get.

Run the program five times.

Turn in:

EITHER a list of the final variance for each run (5 numbers);

OR one plot that shows all 5 v data curves.

Submit this to SCHOLAR, or turn it in to me, by class time,
Friday, 25 September!

38 / 1

Running the Program: Background

The material on the K-Means algorithm is based on Chapter 11 of
the textbook, “Classified Information: The Data Clustering
Problem”.

A copy of these slides is available online through Scholar, in the
Clustering Resource. The file is called clustering kmeans.pdf.

You can also get a copy of these slides from my web page:
http://people.sc.fsu.edu/∼burkardt/presentations/clustering kmeans.pdf

39 / 1

