The Singular Value Decomposition
ML _2022: Machine Learning

https://people.sc.fsu.edu/~jburkardt/classes/ml_2022/svd_lecture /svd_ lecture.pdf

Points x on unit circle, right singular vectors V ° A*x and left singular vectors U

D

Y axis:
“ o =
.
j g
o o
a
Y axis:
“ o -
E
>
®
o

A*z distorts a unit circle. SVD identifies fundamental directions.

The SVD

Many machine learning cases can be seen as linear mappings x — A x x. The singular value decom-
position reveals the structure of such transformations.

o Every matriz A (square/rectangular, real/complex, singular/nonsingular) has a singular value
decomposition A =U xS *xV;

e U and V are orthogonal basis vectors for domain and range;

e S is a diagonal matrix whose entries represent growth or shrinkage of components;

Note: “everyone” writes the SVD as A = UxS*V', except for Python’s numpy library prefers the formulation
A=UxS«V. We can live with either pattern, but this means that there will be many times when you have
to stop and ask yourself which pattern is being used!

Machine learning extracts information from massive sets of data.

The singular value decomposition (SVD) starts with “data” which is a matrix A, and produces “information”
which is a factorization A = U % S x V that explains how the matrix transforms vectors to a new space;

In many machine learning problems, the massive sets of data can be regarded as a collection of m-vectors,
which can be arranged into an m x n matrix.

SVD application include:

least squares line, data: points in 2D;
curve-fitting, data: polynomial coefficients;
matrix approximation, data: entries in a matriz;
image compression, data: columns of an image;
facial recognition, data: pictures of a face .
principal component analysis;

SR e

1 Some linear algebra

Linear algebra has objects called vectors, and operators called matrices which transform vectors to new
vectors. We need to know how to set these things up in Python.

1.1 Row and column vectors, matrices

In mathematics, we primarily think of vectors as column vectors, that is, a vertical stack of numbers. Python’s
fundamental vector is a row vector, which is essentially just a list of numbers enclosed in square brackets. To
make a column vector, we must list several rows, each of length 1. Similarly, an m x n matrix is described
using m row vectors, each of length n. The transpose operation swaps the rows and columns of a vector or
matrix.

We create vectors and matrices using the numpy function array (). We can transpose a vector or matrix by
appending the transpose operator .T to its name.

import numpy as np

t = mnp.array ([1, 2, 3]) # a row wector;
u=mnp.array ([[4], [5], [6], [711) # a column vector
A = np.array ([\

[11, 12, 13, 14], \

[21, 22, 23, 24], \

[31, 32, 33, 24 | |) # a matriz of 8 rows and 4 columns
v=1t.T # converts our row vector t to a column wvector.
w = u.T # converts our column wvector w to a row vector.
B=AT # converts our 3z4 matriz A to a 4z8 matriz B.

We want to describe the size and shape of our objects. To recover the dimensions of any object, we can
simply use the shape() function, either as a numpy function, or as an attribute of the array.

np.shape (v)

v.shape # both return (1,3)
A.shape

np.shape (A) # both return (3,4)
A.shape [0] # returns 3
A.shape [1] # returns 4

1.2 Norm of a vector

When we describe the “length” of a vector, we usually don’t want the number of entries, but rather the
geometric length of the object. To avoid confusion, the word norm should be preferred over length. The
norm is represented mathematically by ||v|| or ||v||2, and has the formula:

A unit vector has norm 1; unit vectors are often denoted by w.

In Python, we can determine a vector norm by:

vnorm = np.linalg.norm (v)

It turns out that there are several other norms available, and that matrices can also have norms; however
these are advanced topics that may be considered elsewhere.

1.3 Angle between vectors

A vector has a direction as well as a norm. If two vectors v; and vy aren’t identical, we still might consider
them close, in the sense that they point in almost the same direction. To make this judgement, we need to
be able to measure the angle o between them. To do this, we start by computing the dot product, which
reveals the cosine of this angle:

n—1
vr vy =Y 01(i) va(i) = ||va]| [v2]| cos(a)
=0

We can solve for the angle:
V1 * U2

[loa]] []v2]|

Note that if v; and vy are both unit vectors, then the formula for the angle between them is simply:

a = arccos (

a = arccos(vy - vg)

In Python, we would write:

vldotv2 = np.dot (vl, v2)
alpha = np.arccos (vldotv2)

For any pair of vectors, we can rewrite the dot product relationship as:

() U1 - U2
cos(a) = ————————
[va][[foz]]

It is natural to use cos(a) as a measure of how close the vectors are in direction. If we feel that a vector
going in the exact opposite direction is essentially using the same direction, the we concentrate on |cos(a)|
instead. We can say:

1 vectors have exactly the same direction

between 0 and 1 vectors have somewhat the same direction
cos(a) =< 0 vectors are perpendicular, orthogonal

between -1 and 0 vectors have somewhat the opposite direction

-1 vectors have exactly opposite direction

In general, the magnitude of cos(a) is an important indicator of similarity, while the sign is not. If v; and
vo have opposite directions, then in fact vy is exactly a linear multiple of vy, with the minor point that the
coefficient must be negative:

Vo = —C* VU1

But in this case, how would we compute the value ¢? If you think about it, you can see that c is simply the
factor that divides v; by its length, and multiplies it by the length of vy. In other words:

[[v2]]
[[o]]

Another way to see this is to realize that the vector ﬁ has the same direction as vy, but has unit length.

A similar statement is true for ﬁ Since the direction of vy is the negative of the direction of vs, we have
V2 U1
|[v2]] [[v1]]

and rearranging this equation gives us the relationship above.

1.4 Projection

Suppose that we have a vector u of unit norm, and another vector v, and we want to know how closely v
points in the direction u. We do this by computing the projection of v onto u, which has the formula:

Vuproj = (V- w)u
The part of v that is perpendicular to w is found by subtracting the projection:
Vuperp = UV — Vuproj

The better way to consider this is that
U = Vuproj + Vuperp

that is, given a unit vector u, any vector v has a component in the u direction, plus the remainder in a
perpendicular direction.

Projection splits vector a into components parallel and perpendicular to b.

