
Math 3040: Introduction to Python

M. M. Sussman
sussmanm@math.pitt.edu

Office Hours: M-Th 11:10-12:10, Thack 622

May 12, 2014

1 / 32

Contents

Introduction to Python

Running python

File structure and line syntax

Python language syntax
Classes and inheritance

2 / 32

Introduction to Python

Resources I have used in preparing this introduction.
1. http://www.stavros.io/tutorials/python/
2. https://docs.python.org/2/tutorial/

3 / 32

Getting help

I From the command line: pydoc object name
I From the Python prompt: help(object name)

4 / 32

Contents

Introduction to Python

Running python

File structure and line syntax

Python language syntax
Classes and inheritance

5 / 32

Running python

I The best way is to use spyder
I Can run python or ipython from a command prompt
I “Applications” → “Development” → idle (using Python 2.7)
I Can run idle from a command prompt
I Can run ipython notebook (browser-based “notebook”

interface similar to Mathematica)

6 / 32

Spyder

1. K Menu→Applications→Development→Spyder
2. “Spyder is a powerful interactive development environment“
3. Editing
4. Interactive testing and debugging
5. Introspection
6. Aimed toward the scientific commjunity
7. Open source, running on Linux, Mac, MS-Windows

7 / 32

Spyder demo

1. Open IPython console
2. Automatic “pylab”

from numpy import *
from scipy import *
from matplotlib import *

3. Save console using Ctrl-S
I Can be used as part of your homework submission

8 / 32

Running python with a file without Spyder

I Filename should have .py extension.
I python filename.py from a command prompt

9 / 32

Contents

Introduction to Python

Running python

File structure and line syntax

Python language syntax
Classes and inheritance

10 / 32

File structure and line syntax
I No mandatory statement termination character.
I Blocks are determined by indentation
I Statements requiring a following block end with a colon (:)
I Comments start with octothorpe (#), end at end of line
I Multiline comments are surrounded by triple double quotes (""")

or triple single quotes (’’’)
I Continue lines with \

"""
Example of a file with blocks in it
example1.py
"""
print "Hello!" # just print a string
x=input("Guess an integer ") # dangerous function!
if x > 10: # colon

print "A big number :-)"
blank line when typing
else: # colon

print "Not big enough :-("
blank line when typing

11 / 32

Debugging hint (’’’)

One strategy during debugging:
1. Add special-purpose code
2. Test corrected code
3. “Comment out” the special-purpose code instead of removing it

at first
4. Triple single quotes are good
5. Easy to find for later cleanup

12 / 32

Formatted printing

Format controls as in C++, MATLAB, etc.

>>> n=35
>>> e=.00114
>>> print "Step %d, error=%e"%(n,e)
Step 35, error=1.140000e-03

>>> print "Step %d, error=%f"%(n,e)
Step 35, error=0.001140

>>> print "Step %d, error=%11.3e"%(n,e)
Step 35, error= 1.140e-03

13 / 32

Contents

Introduction to Python

Running python

File structure and line syntax

Python language syntax
Classes and inheritance

14 / 32

Python basic data types

I Integers: 0, -5, 100
I Floating-point numbers: 3.14159, 6.02e23
I Complex numbers: 1.5 + 0.5j
I Strings: "A string" or ’another string’

I Stick to double-quotes

I Unicode strings: u"A unicode string"
I Logical or Boolean: True, False
I None

15 / 32

Python basic data types

I Integers: 0, -5, 100
I Floating-point numbers: 3.14159, 6.02e23
I Complex numbers: 1.5 + 0.5j
I Strings: "A string" or ’another string’

I Stick to double-quotes
I Unicode strings: u"A unicode string"

I Logical or Boolean: True, False
I None

15 / 32

Python basic data types

I Integers: 0, -5, 100
I Floating-point numbers: 3.14159, 6.02e23
I Complex numbers: 1.5 + 0.5j
I Strings: "A string" or ’another string’

I Stick to double-quotes
I Unicode strings: u"A unicode string"
I Logical or Boolean: True, False
I None

15 / 32

Basic operations

I +, -, *, /
I ** (raise to power)
I // (“floor” division)
I % (remainder)
I divmod, pow
I and, or, not
I >=, <=, ==, !=

(logical comparison)

>>> x=10
>>> 3*x
30
>>> x-2
8
>>> x/3
3
>>> x>5
True
>>> divmod(x,3)
(3, 1)
>>> pow(x,3)
1000

16 / 32

Python array-type data types

I Numerical array data type is in numpy (later)

I List: [0,"string",another list]
I Tuple: immutable list, surrounded by ()
I Dictionary (dict): {"key1":"value1",2:3,"pi":3.14}

17 / 32

Python array-type data types

I Numerical array data type is in numpy (later)
I List: [0,"string",another list]

I Tuple: immutable list, surrounded by ()
I Dictionary (dict): {"key1":"value1",2:3,"pi":3.14}

17 / 32

Python array-type data types

I Numerical array data type is in numpy (later)
I List: [0,"string",another list]
I Tuple: immutable list, surrounded by ()

I Dictionary (dict): {"key1":"value1",2:3,"pi":3.14}

17 / 32

Python array-type data types

I Numerical array data type is in numpy (later)
I List: [0,"string",another list]
I Tuple: immutable list, surrounded by ()
I Dictionary (dict): {"key1":"value1",2:3,"pi":3.14}

17 / 32

Data types have “attributes”

I Lists have only function attributes. If L is a list, then
1. L.append(x) appends x to the list
2. L.index(x) finds the first occurrance of x in the list
3. x=L.pop() return last item on list and remove it from list

18 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d

y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d

y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

Equals, Copies, and Deep Copies

>>> import copy

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print x,y,z
[1, 2] [3, 4, [1, 2]] [3, 4, [1, 2]]

>>> c=copy.copy(y)
>>> d=copy.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> x
[9, 2]

Moral: Only deepcopy does it right!

19 / 32

pydoc for help
$ pydoc list OR >>> help (list)
Help on class list in module __builtin__:

class list(object)
| list() -> new empty list
| list(iterable) -> new list initialized from iterable’s items
|
| Methods defined here:
| __add__(...)
| x.__add__(y) <==> x+y
| __contains__(...)
| x.__contains__(y) <==> y in x
| more to ignore
| append(...)
| L.append(object) - append object to end
| count(...)
| L.count(value) -> integer - return number of occurrences of value
| extend(...)
| L.extend(iterable) - extend list by appending elements from the iterable
| index(...)
| L.index(value, [start, [stop]]) -> integer - return first index of value.
| Raises ValueError if the value is not present.
| insert(...)
| pop(...)
| L.pop([index]) -> item - remove and return item at index (default last).
| Raises IndexError if list is empty or index is out of range.
| remove(...)
| L.remove(value) - remove first occurrence of value.
| Raises ValueError if the value is not present.

20 / 32

Flow control

I if
I for
I while
I range(N) generates

the numbers 0,. . . ,N

print out even numbers
for n in range(13):

if n%2 == 0:
print n

else:
not necessary
continue

21 / 32

Assert

One extremely valuable feature of Python is the assert.
I Use it whenever you think something is impossible!
I “Impossible” branches of if-tests
I “Impossible” endings of loops
I You will be expected to use assert!

if x > 0:
some code for positive x

elseif x < 0:
some code for negative x

else:
x should never to be zero!
assert(x!=0)

22 / 32

Functions
I Functions begin with def
I The def line ends with a colon
I Functions use return to return values

def sine(x):
"""
compute sin(x) to error of 1.e-10
using Maclaurin (Taylor) series
"""

tol=1.e-10
s=x
t=x
n=1
while abs(t) > tol: # abs is built-in

n+=2
t=(-t)*x*x/(n*(n-1))
s+=t
assert(n<10000) # too long! Do something else!

return s

23 / 32

Functions
I Functions begin with def
I The def line ends with a colon
I Functions use return to return values

def sine(x):
"""
compute sin(x) to error of 1.e-10
using Maclaurin (Taylor) series
"""

tol=1.e-10
s=x
t=x
n=1
while abs(t) > tol: # abs is built-in

n+=2
t=(-t)*x*x/(n*(n-1))
s+=t
assert(n<10000) # too long! Do something else!

return s

23 / 32

Functions
I Functions begin with def
I The def line ends with a colon
I Functions use return to return values

def sine(x):
"""
compute sin(x) to error of 1.e-10
using Maclaurin (Taylor) series
"""
tol=1.e-10
s=x
t=x
n=1
while abs(t) > tol: # abs is built-in

n+=2
t=(-t)*x*x/(n*(n-1))
s+=t

assert(n<10000) # too long! Do something else!
return s

23 / 32

Functions
I Functions begin with def
I The def line ends with a colon
I Functions use return to return values

def sine(x):
"""
compute sin(x) to error of 1.e-10
using Maclaurin (Taylor) series
"""
tol=1.e-10
s=x
t=x
n=1
while abs(t) > tol: # abs is built-in

n+=2
t=(-t)*x*x/(n*(n-1))
s+=t
assert(n<10000) # too long! Do something else!

return s

23 / 32

Functions
I Functions begin with def
I The def line ends with a colon
I Functions use return to return values

def sine(x):
"""
compute sin(x) to error of 1.e-10
using Maclaurin (Taylor) series
"""
tol=1.e-10
s=x
t=x
n=1
while abs(t) > tol: # abs is built-in

n+=2
t=(-t)*x*x/(n*(n-1))
s+=t
assert(n<10000) # too long! Do something else!

return s

23 / 32

Importing and naming

I Include external libraries using import
I import numpy

Imports all numpy functions, call as numpy.sin(x)
I import numpy as np

Imports all numpy functions, call as np.sin(x)
I from numpy import *

Imports all numpy functions, call as sin(x)
I from numpy import sin

Imports only sin()

24 / 32

Pylab in Spyder

Automatically does following imports
from pylab import *
from numpy import *
from scipy import *

You must do your own importing when writing code in files

I strongly suggest using correct names.
import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt

25 / 32

Contents

Introduction to Python

Running python

File structure and line syntax

Python language syntax
Classes and inheritance

26 / 32

A Class is a generalized data type

I numpy defines a class called ndarray
I Define variable x of type ndarray, a one-dimensional array of

length 10:
import numpy as np
x=np.ndarray([10])

I Varibles of type ndarray are usually just called “array”.

27 / 32

Classes define members’ “attributes”

I Attributes can be data
I Usually, data attributes are “hidden”
I Names start with double-underscore
I Programmers are trusted not to access such data

I Attributes can be functions
I Functions are provided to access “hidden” data

28 / 32

Examples of attributes

One way to generate a numpy array is:

import numpy as np
x=np.array([0,0.1,0.2,0.4,0.9,3.14])

I (data attribute) x.size is 6.
I (data attribute) x.dtype is "float64" (quotes mean “string”)
I (function attribute) x.item(2) is 0.2 (parentheses mean

“function”)

29 / 32

Operators can be overridden

I Multiplication and division are pre-defined (overridden)
>>> 3*x
array([0. , 0.3 , 0.6 , 1.2 , 2.7 , 9.42])

I Brackets can be overridden to make things look “normal”
>>> x[2] # bracket overridden
0.2

30 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.

I Someone comes by and asks you to apply your program to
circles.

I You could just say, “Define your circle as an ellipse with major
and minor axes equal” (problem solved)

I Awkward, mistake-prone, and unfriendly
I Define a circle that IS an ellipse but with major and minor axes

forced to be equal.
I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.
I Someone comes by and asks you to apply your program to

circles.

I You could just say, “Define your circle as an ellipse with major
and minor axes equal” (problem solved)

I Awkward, mistake-prone, and unfriendly
I Define a circle that IS an ellipse but with major and minor axes

forced to be equal.
I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.
I Someone comes by and asks you to apply your program to

circles.
I You could just say, “Define your circle as an ellipse with major

and minor axes equal” (problem solved)

I Awkward, mistake-prone, and unfriendly
I Define a circle that IS an ellipse but with major and minor axes

forced to be equal.
I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.
I Someone comes by and asks you to apply your program to

circles.
I You could just say, “Define your circle as an ellipse with major

and minor axes equal” (problem solved)
I Awkward, mistake-prone, and unfriendly

I Define a circle that IS an ellipse but with major and minor axes
forced to be equal.

I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.
I Someone comes by and asks you to apply your program to

circles.
I You could just say, “Define your circle as an ellipse with major

and minor axes equal” (problem solved)
I Awkward, mistake-prone, and unfriendly
I Define a circle that IS an ellipse but with major and minor axes

forced to be equal.

I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance

I Suppose you write a program about ellipses.
I You “abstract” an ellipse as a plane figure with major and minor

axes.
I You use its area and its circumference, but nothing else.
I Someone comes by and asks you to apply your program to

circles.
I You could just say, “Define your circle as an ellipse with major

and minor axes equal” (problem solved)
I Awkward, mistake-prone, and unfriendly
I Define a circle that IS an ellipse but with major and minor axes

forced to be equal.
I Don’t have to write much code!
I Can use it wherever an ellipse was used before!
I Don’t have to debug stuff you are reusing.

31 / 32

Inheritance II

I Someone comes by and asks you to apply your program to
rectangles

I Still have area and circumference.

I Define a rectangle that IS an ellipse, but with modified area and
circumference functions.

I Lots of new code, but downstream code does not change!

32 / 32

Inheritance II

I Someone comes by and asks you to apply your program to
rectangles

I Still have area and circumference.
I Define a rectangle that IS an ellipse, but with modified area and

circumference functions.

I Lots of new code, but downstream code does not change!

32 / 32

Inheritance II

I Someone comes by and asks you to apply your program to
rectangles

I Still have area and circumference.
I Define a rectangle that IS an ellipse, but with modified area and

circumference functions.
I Lots of new code, but downstream code does not change!

32 / 32

	Introduction to Python
	Running python
	File structure and line syntax
	Python language syntax
	Classes and inheritance

