
MATH2070: LAB 8: Higher Order Interpolation

Introduction Exercise 1
Parametric Interpolation Exercise 2
Cubic Hermite Interpolation Exercise 3

Exercise 4
Mesh generation branch (do only one branch)

Two-dimensional Hermite interpolation and mesh generation Exercise 5
Matching patches Exercise 6

Exercise 7
Exercise 8
Exercise 9

Spline interpolation branch (do only one branch)
Cubic spline interpolation Exercise 10
Splines without derivatives Exercise 11
Monotone interpolation Exercise 12

Exercise 13
Exercise 14
Exercise 15

Extra credit
Extra credit: Bilinear interpolation in two dimensions Extra credit exercise

1 Introduction

Piecewise linear interpolation has many good properties. In particular, if the data come from a continuously
differentiable function f(x) and if the data points are suitably spread throughout the closed interval, then
the interpolant converges to the function. The resulting interpolant consists of straight line segments and so
has flats and kinks in it, making it inappropriate for many applications.

In this lab you will look at several examples of piecewise polynomial interpolation with continuous
derivatives from place to place. You will be looking first at piecewise Hermite cubic interpolation.

In this lab, after completing the sections on Parametric Interpolation and Cubic Hermite Interpolation
and completing Exercises 1 through 4, you will be given a choice of two branches. You need to do only one
of the branches to be given full credit for this lab. If you choose to do both branches, the second branch will
be graded as a 10 point extra credit exercise. This is in addition to the 8 point extra credit exercise at the
end of the lab. The two branches are:

Mesh generation Read the following sections

• Two-dimensional Hermite interpolation and mesh generation

• Matching patches

and do Exercises 5 through 9.

Spline interpolation Read the following sections

• Cubic spline interpolation

• Splines without derivatives

• Monotone interpolation

1



and do Exercises 10 through 15

This lab will take three sessions. If you print this lab, you may prefer to use the pdf version.

2 Parametric Interpolation

You are familiar with a parameterized curve, in which a special variable, often called t or s, is used to draw
objects for which the relationship between x and y may not be functional. For example, one simple definition
of a circle is:

x = cos t
y = sin t

(1)

for 0 ≤ t ≤ 2π. Writing the circle this way involves regarding both x and y as functions of the independent
variable t. (There is no way to write y as a single function of x, because taking square roots introduces “+”
and “−” options.)

Suppose we wanted to do interpolation of some complicated curve? If we have a drawing of the curve, we
could simply mark points along the curve that are roughly evenly spaced, and make tables of tdata, xdata
and ydata, where the values of tdata could be 1, 2, 3, ....

Now if we want to compute intermediate points on the curve, that’s really saying, for a given value of
tdata, what would the corresponding values of xdata and ydata be? This means doing two interpolation
problems, one for xdata as a function of tdata and the second for ydata as a function of tdata.

In the first exercise, you will be dealing with a slightly more complicated curve than a circle. You may
recall that a cardiod is a roughly heart-shaped closed curve, but it has no sharp point at the bottom. You
can find a nice description of cardioid curves with various ways of defining them at
http://mathworld.wolfram.com/Cardioid.html That article also remarks that a cardioid is a special case
of a limaçon, and parametric equations for a limaçon can be given by

r = r0 + cos t

x = r cos t (2)

y = r sin t.

Exercise 1: Try the following method for plotting a limaçon. Use eval plin.m from last lab, or you
can download eval plin.m and bracket.m from the web page. Copy the following code to a script
m-file named exer1.m

% generate the data points for a limacon

nintervals = 20;

tdata = linspace ( 0, 2*pi, nintervals + 1 );

r = 1.15 + cos ( tdata );

xdata = r .* cos ( tdata );

ydata = r .* sin ( tdata );

% interpolate them

tval = linspace ( 0, 2*pi, 10*(nintervals+1) );

xval = eval_plin ( tdata, xdata, tval );

yval = eval_plin ( tdata, ydata, tval );

% plot them with correct aspect ratio

plot ( xval, yval )

axis equal

You do not need to send me this plot.

2



You can see that the plot of the limaçon in Exercise 1 is not very smooth. This is because the line segments
are straiaght lines that meet at corners. In the following section you will see one way of interpolating curves
using curved sections whose derivatives are continuous so that there are no corners.

3 Cubic Hermite Interpolation

Hermite interpolation is discussed by Quarteroni, Sacco, and Saleri in Section 8.5.
If we were trying to design, say, the shape of the sheet metal pattern for a car door, kinks and corners

would not be acceptable. If that’s a problem, then perhaps we could try to make sure that our interpolant
is smoother by matching both the function value and the derivative at each point. (This assumes you can
get the derivative value.)

Suppose we have points xk, k = 1, 2, . . . , N and a differentiable function f(x), so that the values yk =
f(xk) and y′k = f ′(xk) can be regarded as data points.

Now consider the situation in the kth interval, [xk, xk+1]. There is a unique cubic polynomial on this
interval that takes on the function and derivative values yk and y′k at the two endpoints. You may recall that
Lagrange interpolation polynomials could be used to write eval plin in the previous lab. On the interval
[xk, xk+1] there are two special linear polynomials: ℓ0(x) is 1 at xk and zero at xk+1, and ℓ1(x) is 1 at xk+1

and zero at xk. This feature makes it easy to construct an arbitrary linear polynomial that matches the
values yk and yk+1 at the endpoints as plinear = ykℓ0(x) + yk+1ℓ1(x). For this lab, we want to match both
the function and derivative values at the endpoints, so we will need cubic Hermite polynomials instead of
linear ones.

Consder the four Hermite polynomials

h1(x) =
(x− xk+1)

2(3xk − xk+1 − 2x)

(xk − xk+1)3

h2(x) =
(x− xk)(x− xk+1)

2

(xk − xk+1)2

h3(x) =
(x− xk)

2(3xk+1 − xk − 2x)

(xk+1 − xk)3

h4(x) =
(x− xk+1)(x− xk)

2

(xk+1 − xk)2

These four cubic polynomials satisfy the following equalities, that are similar to Quarteroni, Sacco, and
Saleri, p349.

xk xk+1

h1(x) 1 0
h′
1(x) 0 0

h2(x) 0 0
h′
2(x) 1 0

h3(x) 0 1
h′
3(x) 0 0

h4(x) 0 0
h′
4(x) 0 1

(3)

(This table means that, for example, h2(xk) = 0, h′
2(xk) = 1, h2(xk+1) = 0, and h′

2(xk+1) = 0.) If you
know Mathematica, Maple or the symbolic toolbox in Matlab, you can check these equalities easily enough.
For the purpose of this lab, the easiest one to check is h2, so check it by hand. (Hint: Do not multiply the
factors out! You can check by staring at the formula long enough.)

3



Given these four polynomials, the unique polynomial with the values

yk = f(xk)

y′k = f ′(xk)

yk+1 = f(xk+1)

y′k+1 = f ′(xk+1)

can be written as
p(x) = ykh1(x) + y′kh2(x) + yk+1h3(x) + y′k+1h4(x) (4)

in the interval xk ≤ x ≤ xk+1. It is easy to see that both p and p′ are continuous at the points x = xk so
that p is C1.

We are now in a position to write a piecewise Hermite interpolation routine. This routine will be similar
to eval_plin.m.

Exercise 2:

(a) Begin a Matlab function m-file called eval_pherm.m with the signature

function yval = eval_pherm ( xdata, ydata, ypdata, xval )

% yval = eval_pherm ( xdata, ydata, ypdata, xval )

% comments

% your name and the date

and insert comments. the values in ypdata are the derivative values at the points xdata.

(b) Use the bracket function to find the interval in which xval lies. As in eval plin.m, this can be
done in a single line.

(c) Evaluate the four Hermite functions, h1(x), h2(x), h3(x), and h4(x) at xval. Use componentwise
operations if you can or use loops.

(d) Complete eval pherm with the evaluation of yval using the expression (4) for the Hermite inter-
polating polynomial.

(e) Check your work by using eval pherm four times, once for each of the polynomials y = 1, y = x,
y = x2, and y = x3 interpolated for the interval xdata=[0,2]. Each of these four interpolants
should be checked at four points of your choice. You can choose integers for these points, either
inside or outside [0,2] because points outside [0,2] are evaluated using the same formula as those
inside. Recall that four points uniquely determine a cubic polynomial, so if you get agreement
within roundoff at four points, you know your code is correct.

If your code is not correct, you can debug in the following way. You only need to do the
following steps if you are debugging.

i. For this test problem, there is only one interval, so the result of bracket should be the
vector ones(size(xval)). You can use the debugger to confirm this fact. This eliminates
bracket.m as the source of the bug.

ii. If you are using elementwise operations, make sure all your multiplications and divisions are
preceeded by a dot.

iii. Try the four polynomials y = 1, y = x, y = x2, and y = x3 on the interval xdata=[0,1]
(not [0,2]) one at a time. The reason to change the interval to [0,1] is that the length
of this interval is 1 so the denominators in the definitions of the hk polynomials all become
1. If all four polynomials work but eval pherm does not, odds are you have an error in the
denominators of one or more of the hk(x).

4



iv. If you cannot get agreement for the polynomials y = 1, y = x, etc., on [0,1], then one or
more of your hk(x) is probably wrong. Use eval pherm to reproduce each of the hk(x) for
xdata=[0,1]. The table (3) above provides ydata and ypdata values. Check your results at
the points x = 0 and x = 1 first, and then for the points x = 0.25 and x = 0.5 (you will have
to use the formulæ to get the data values. If these all agree but eval pherm still does not
work correctly, then your implementation of (4) is incorrect.

v. If you have completed the previous two steps and fixed all bugs you found, but you still cannot
interpolate the monomials y = 1, y = x, etc., on [0,2], then one or more of your hk(x) is
still wrong. Try interpolating each of the four Hermite polynomials on xdata=[0,2]. When
you are finished you will surely have found your bugs.

Now, we will use eval pherm.m to see how piecewise Hermite converges.

Exercise 3:

(a) First, modify your Matlab m-file runge.m so that it returns both the Runge function y = 1/(1+x2)
and its derivative y′. I will leave it to you to compute the derivative expression, but be sure you
are correct. The signature of the function should be

function [y,yprime]= runge ( x )

% [y,yprime]= runge ( x )

% comments

and it should have appropriate comments. Do not forget to use componentwise syntax.

(b) Copy your test_plin_interpolate.m function from last lab, or download my version. Rename
it to test_pherm_interpolate.m and modify it to use eval_pherm.m.

(c) Using equally spaced data points from 0 to 5 for xdata and the runge.m function to compute ydata
and ypdata. Estimate the maximum interpolation error by computing the maximum relative
difference (infinity norm) between the exact and interpolated values at 4001 evenly spaced points.
Fill in the following table:

Runge function, Piecewise Hermite Cubic

ndata = 5 Err( 5) = ________

ndata = 11 Err( 11) = ________ Err( 5)/Err( 11) = ________

ndata = 21 Err( 21) = ________ Err( 11)/Err( 21) = ________

ndata = 41 Err( 41) = ________ Err( 21)/Err( 41) = ________

ndata = 81 Err( 81) = ________ Err( 41)/Err( 81) = ________

ndata =161 Err(161) = ________ Err( 81)/Err(161) = ________

ndata =321 Err(321) = ________ Err(161)/Err(321) = ________

ndata =641 Err(641) = ________ Err(321)/Err(641) = ________

(d) Estimate the rate of convergence by examining the ratios Err(41)/Err(81), etc., and estimating
the nearest power of two. You should observe the theoretical convergence rate. (The rate is larger
than 2.)

Now, you are in a position to apply Hermite interpolation to generate a very smooth limaçon.

Exercise 4:

(a) Copy your script m-file exer1.m from Exercise 1 and rename it to exer4.m.

(b) Differentiate the equations (2) defining the cardiod and add expressions for xpdata and ypdata

to exer4.m.

(c) Replace eval plin with eval pherm.

5



(d) Plot the limaçon. If this plot does not appear smooth or if you can see where the boundaries of
the pieces that make it up lie, you probably have an error in your derivatives of the equations (2)
Similarly, wiggles and extraneous loops also indicate errors, probably in the derivatives. Please
include your corrected plot with your summary file.

4 Two-dimensional Hermite interpolation and mesh generation

In order to solve a partial differential equation, the region over which it is to be solved must be bro-
ken into small pieces. These pieces are often called “mesh elements,” and the process of generating them
for arbitrary regions is called “mesh generation.” You can see some examples of complicated meshes at
http://www.geuz.org/gmsh/gallery/spirale.gif The process of building the outline of a complicated
assembly and then using it to generate a mesh is very labor-intensive and can take weeks. The discussion in
this lab is most relevant to generation of quadrilateral and hexahedral meshes, not triangular or tetrahedral
meshes.

The lowest-level activity in generating meshes in many commercial packages is defining “Coons Patches.”
These are two- or three-dimensional geometrical entities that can, on the one hand, be combined together
smoothly, and, on the other hand, easily be subdivided into mesh elements. These Coons Patches are
generally built using bicubic Hermite polynomials in two dimensions, and tricubic Hermite polynomials in
three dimensions. We will be focussing on two dimensions in this lab.

Coons patches are also used in computer graphics, but I am not familiar enough with this application to
discuss it.

One approach to generating two-dimensional meshes is to take a drawing of the object and cover it with
a modest number of patches, each with four curved sides. These patches generally are chosen to match up
(to a reasonable approximation) with the boundaries of the object and fit against each other and are no
smaller than necessary for these tasks. Once the object in the drawing is completely covered with patches,
the patches themselves are broken into smaller mesh pieces. It is important that the mesh lines do not
undergo abrupt changes across patch boundaries and it is also important that the user be able to modify
the density of mesh lines and to concentrate them near, for example, one boundary. Commercial programs
such as Patran and Ansys use this approach.

Definition A two-dimensional bicubic Hermite patch (Coons patch) is a smooth map from the unit square
(s, t) ∈ [0, 1]× [0, 1] to a region (x(s, t), y(s, t)) ∈ R2. This mapping is a cubic polynomial in s for each fixed
t and a cubic polynomial in t for each fixed s and can be written as a linear combination of the sixteen terms
smtn for n,m = 0, 1, 2, 3.

A similar definition holds for a two-dimensional patch on a surface in R3, with an additional function
z(s, t). The extension of the definition of bicubic Hermite patches to tricubic Hermite patches in three
dimensions is straightforward.

Remark A mesh consisting of curved-sided quadrilaterals can be constructed from the union of several
bicubic Hermite patches that are adjacent to one another and whose parameterizations along adjacent edges
agree. Dividing the square [0, 1]× [0, 1] into rows and columns of smaller squares and mapping the smaller
squares using the bicubic Hermite mappings results in a computational mesh.

Consider the following sketch.

6



6t 6t

s��1

sPPq

A
v

CvDv

B
v

v
E

vF

The four outer curves, AB, BC, DC, and AD will form the boundary of the patch. The two curves AB and
DC are parameterized using Hermite cubics in s (with positive direction shown in the figure) and the curves
BC, AD and each of the intermediate curves such as EF are parameterized using Hermite cubics in t (with
positive direction shown in the figure). Obviously, the coordinates of each of the points A, B, C, and D will
be needed. Furthermore, since these are Hermite cubics, the derivatives of x(s, t) and y(s, t) with respect
to both s and t will be needed at each of the four corners. Finally, the cross-derivatives ∂2x/∂s∂t will be
needed at each of the four corners. These sixteen data are needed to construct the Coons patch since, in
general, a bicubic polynomial is a sum of the sixteen terms smtn for n,m = 0, 1, 2, 3.

Among these sixteen data, there is enough information to construct the boundary curve AB parametrically
using Hermite polynomials for x(s, 0) and y(s, 0), where s is the indepentent variable increasing from point
A to point B. This interpolation can be done using the eval pherm.m function you wrote earlier. Similarly,
the curve DC can be constructed using Hermite polynomials to give x(s, 1) and y(s, 1). Lines of constant
s, such as the line EF, can be constructed using the curves AB and DC. The result will be the parametric
coordinate functions x(s, t) and y(s, t) for all (s, t) ∈ [0, 1]× [0, 1]. This is the approach taken in the following
exercise.

In the following exercise you will write a script m-file that fills a square with smaller squares. This is
a special case of mesh generateion. In doing this exercise, we will not use any special facts about squares,
but will be writing as if the lines were curved. In subsequent exercises, we will see what meshes with curved
lines look like.

The four corners, A, B, C, and D, each require data for x and y regarded as functions of s and t. The
data are

x y
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∂2x
∂s∂t

∂2y
∂s∂t

To see to what these quantities refer, consider the point A. The value of x at point A means its abscissa.
The quantity ∂x

∂s means the derivative of x with respect to the parameter s and is the answer to the question,

“How rapidly does x change moving along the curve as s increases from point A?” The quantity ∂x
∂t is similar,

except with respect to the parameter t. Finally, ∂2x
∂s∂t is the cross derivative. These cross derivatives can be

difficult to calculate “in your head” but reasonable meshes can often be generated by taking both ∂2x
∂s∂t and

∂2y
∂s∂t to be zero.

Exercise 5: Generate a script m-file named exer5.m with the following commands, replacing the ???
with correct expressions. Running this script should produce a square divided into three rectangles

7



horizontally and four rectangles vertically, as shown here

t t

tt

A (0,0) B (1,0)

C (1,1)D (0,1)

t 6 t6

s

-s

-

Please include a copy of your plot with the files you send to me.

Hints:

• Read through the entire file before making any changes.

• In this simple case, the mapping (s, t) 7→ (x(s, t), y(s, t)) is the identity mapping.

• To see what quantities such as dxdsB should be, answer the question, “As you move along the
line from A to B, how is the coordinate x varying as you get to B?”

• If you are having trouble getting it to look right, first plot the outline (the lines with t = 0, t = 1,
s = 0, and s = 1). Then look at the corner points one at a time. You likely have some of them
right and others wrong. Fix the wrong ones, one at a time. Then add the lines with varying s,
and finally add the lines with varying t.

• Never make more than one change to the script before looking at the resulting plot!

% Generate a mesh based on Hermite bicubic interpolation

% values for point A

xA = 0; yA = 0;

dxdsA = 1; dydsA = 0;

dxdtA = 0; dydtA = 1;

d2xdsdtA = 0; d2ydsdtA = 0;

% values for point B

xB = 1; yB = 0;

dxdsB = ??? dydsB = ???

dxdtB = 0; dydtB = 1;

d2xdsdtB = 0; d2ydsdtB = 0;

% values for point C

xC = 1; yC = 1;

dxdsC = 1; dydsC = 0;

dxdtC = ??? dydtC = ???

d2xdsdtC = 0; d2ydsdtC = 0;

% values for point D

xD = 0; yD = 1;

dxdsD = 1; dydsD = 0;

dxdtD = 0; dydtD = 1;

d2xdsdtD = ??? d2ydsdtD = ???

8



% Start off with 4 points horizontally,

% and 5 points vertically

s=linspace(0,1,4);

t=linspace(0,1,5);

% interpolate x along bottom and top, function of s

xAB =eval_pherm([0,1],[xA,xB] ,[dxdsA,dxdsB], s);

dxdtAB=eval_pherm([0,1],[dxdtA,dxdtB],[d2xdsdtA,d2xdsdtB],s);

xDC =???

dxdtDC=???

% interpolate y along bottom and top, function of s

yAB =???

dydtAB=???

yDC =???

dydtDC=eval_pherm([0,1],[dydtD,dydtC],[d2ydsdtD,d2ydsdtC],s);

% interpolate s-interpolations in t-direction

% if variables x and y already exist, they might have

% the wrong dimensions. Get rid of them before reusing them.

clear x y

for k=1:length(s)

x(k,:)=eval_pherm([0,1],[xAB(k),xDC(k)],[dxdtAB(k),dxdtDC(k)],t);

y(k,:)=???

end

% plot all lines

plot(x(:,1),y(:,1),’b’)

hold on

for k=2:length(t)

plot(x(:,k),y(:,k),’b’)

end

for k=1:length(s)

plot(x(k,:),y(k,:),’b’)

end

axis(’equal’);

hold off

It seems natural that s and t would vary linearly along the sides, but that is not necessary. In the following
exercise, you will see how nonlinear variation of s can be used to vary the mesh distribution without changing
the outline of the figure. So long as s and t vary smoothly and map onto the square [0, 1]× [0, 1], they are
essentially arbitrary.

Exercise 6:

(a) Copy your exer5.m to exer6.m and change it to generate 10 rectangular elements horizontally
and 15 vertically (11 points horizontally, 16 points vertically).

(b) Modify ∂x/∂s at points A and D to be 3.0 and at points B and C to be 0.1. Leave all other values
alone. You should see that the mesh elements become much thinner as they get closer to the right
side. This is particularly valuable in aeronautical calculations because the “boundary layer” is

9



remarkably thin near an aircraft’s skin and mesh elements must be very thin there. Please send
me this plot with your work.

Just because you can correctly generate a straight-line mesh does not mean your code is correct. In
the next two exercises, you are going to continue debugging your Matlab programming by testing with two
more difficult shapes. The first shape is a quadrilateral with straight sides, and the subsequent exercise uses
curved sides.

Exercise 7: Copy the file exer5.m to a file exer7.m (or you can use “Save as” in the File menu).
Modify it in the following ways:

• Change the points so that point A is (-1,0) and point C is (1,0.5).

• Change the number of points for s to 20 and the number of points for t to 15.

• Choose the slopes of the lines so that the boundary lines are straight with mesh points uniformly
distributed along them. For example, both values dxdtA and dydtA should be 1 because both x
and y increase by 1 as t goes from 0 to 1 starting at point A and ending at point D.

• Change the values d2xdsdt=-1 and d2ydsdt=-0.5 at all four corner points.

All of the resulting mesh lines (both boundary and interior) should be straight lines with uniformly
spaced divisions. Please include a plot of your mesh with the files you send to me.

Hint: If you cannot get it to look right, try the following strategy.

(a) Starting from exer5.m, make the three changes:

i. Change the coordinates of point A to (-1,0) and of point C to (1,0.5);

ii. Change the number of points of s and t to 20 and 15, respectively; and,

iii. Change the values of d2xdsdt and d2ydsdt to -1 and -0.5 at all four corners.

Then plot the resulting figure. You will see that some boundary lines are straight and some are
not. One of these curved lines is AD.

(b) Focus on the line AD. This is a “t-line.” Take a piece of paper and use it as a straight edge to see
what the line AD should look like. You should see that the slope of the line at A is about right,
but the slope at D is not. Since the line AD is supposed to be straight, what should dxdt be at
D? Put your estimate of dxdtD into your script and run it again. If your estimate is correct, the
line AD is a straight line.

(c) Similarly, fix the other curved boundaries.

(d) Look at the line BC. It is straight, but the mesh spacing is not uniform. Since this is a “t-line,”
and since it is vertical, values of dydtB and dydtC may need to be adjusted.

(e) Similarly, adjust the other boundaries if their mesh spacing is not uniform.

Exercise 8: Consider the following sketch:

10



6t 6t

s��1

sPPq

A (0,0)
v

C (1,1)vD (0,1)v

B (1,0)
v

Regard each of the four curves as quarter-circles, so the slopes of each boundary curve at each corner
are dy

dx = ±1. (Do not confuse this with dx
ds or dy

ds .) You can see that the four corner points are at the
corners of the same unit square you used in Exercise 5.

(a) Addressing the bottom curve first, the curve AB is a quarter-circle (an arc with angle π/2). It is
hard to guess dx

ds and dy
ds of this arc at its ends, so in this part of the exercise you will plot the

curve parametrically and compute the derivatives. Write a simple set of parametric equations,
analogous to (1), for x and y in terms of the variable s ∈ [0, 1].

You may find the following figure helpful in generating the parametric equations.

As specified, the arc from A to B is a quarter-circle. To see how the coordinates of the center of
the circle, point G, were found, consider the following steps. Note that the circle does not have
unit radius.

• The x-coordinate of G must be 0.5, by symmetry of the figure.

11



• The line GH is vertical, parallel to the y-axis.

• The arc is a quarter-circle, so the angle AGB is π/2.

• Hence, the angle AGH is π/4, and the hence lines AG and BG have the same length and G
must be the center of the circle.

(b) Check your parametric equations by writing a script m-file exer8a.m to plot the quarter-circular
arc as a function of the parameter s ∈ [0, 1]. (The parameter s is not the arc length.) You should
see an arc AB very similar to the one shown above. From your parametric equations, what are
dx
ds and dy

ds evaluated at the points A and B?

(c) Write a script m-file exer8b.m based on exer5.m but only for the AB (bottom) portion of the
outer boundary. Use 25 points for the s values.

• Use the values of x, dx/ds and dy/ds at A and B that you found above.

• Plot the arc at 25 points, with marks showing the intermediate points. You can use a command
such as

plot(x,y,’r*-’) %color red, * at each data point, lines between *

• Use exer8a.m to plot the quarter-circle on the same plot. You should see 25 points that
appear to be uniformly distributed along a red arc connecting the points A and B. The red
arc should be close to, but not on top of, the quarter-circle from exer8a.m. Please include
this plot when you send me your work.

(d) Copy the file exer5.m to another file exer8.m and use it to generate an 25 × 25 mesh on the
curved-sided quadrilateral. Your mesh should clearly show two-fold symmetry (left-right and top-
bottom), and the mesh intervals along the perimeter should be roughly uniform. Please include
a plot of your mesh with the files you send to me. Hint: You already know the parameters for
the bottom boundary (AB). Insert these into the file and plot to be sure you have them right.
Ignore the other boundaries and the interior lines. Once you have AB correct, put the correct
parameters into the BC line, plot to be sure, and continue.

5 Matching patches

So far, you have not seen a reason for using Hermite cubic interpolation over any other method. There is
a good reason for this choice, namely, that two patches can be placed adjacent to each other and, if the
derivatives at the endpoints of the common side are given the same values, the mesh will smoothly transition
from one to the other. In the following exercise, there are two patches that touch along one edge. Consider
the following sketch.

12



�
�
�

�
�
�
�

�
�
�

�
�
�

A

B

CD

a b

c

d

Point Coordinates

A (0, 1)

B (
√
2/2,

√
2/2)

C (2, 2)
D (0, 2)
a (1, 0)
b (2, 0)
c (2, 2)

d (
√
2/2,

√
2/2)

Exercise 9: In this exercise, you will generate a mesh for the two-patch region in the sketch by
generating meshes for the two patches separately and seeing that they naturally match up. The inner
boundary in the sketch is circular, but we will be using a Hermite cubic approximation, which is pretty
good. If more accuracy were needed for this circular boundary, more patches could be used.

(a) Copy the following commands for patch ABCD to a file exer9a.m.

% Generate a mesh for the patch ABCD

sqrt2on2=sqrt(2)/2;

% values for point A

xA = 0; yA = 1;

dxdsA = pi/4; dydsA = 0;

dxdtA = 0; dydtA = 1;

d2xdsdtA = 0; d2ydsdtA = 0;

% values for point B

xB = sqrt2on2; yB = sqrt2on2;

dxdsB = sqrt2on2*pi/4; dydsB = -sqrt2on2*pi/4;

dxdtB = 2-sqrt2on2; dydtB = 2-sqrt2on2;

d2xdsdtB = 0; d2ydsdtB = 0;

% values for point C

13



xC = 2; yC = 2;

dxdsC = 2; dydsC = 0;

dxdtC = 2-sqrt2on2; dydtC = 2-sqrt2on2;

d2xdsdtC = 0; d2ydsdtC = 0;

% values for point D

xD = 0; yD = 2;

dxdsD = 2; dydsD = 0;

dxdtD = 0; dydtD = 1;

d2xdsdtD = 0; d2ydsdtD = 0;

(b) Using your earlier exercises as a model, add appropriate commands to complete exer9a.m so that
it generates and plots a 20× 30 mesh on patch ABCD.

(c) Make a copy of exer9a.m and call it exer9c.m. Add a second set of commands to exer9c.m so
that it generates a 20× 30 mesh on patch abcd. Make sure that the number of points along edge
BC is the same as the number of points along edge dc, so that the mesh lines are continuous.
Your mesh should be symmetric about the line BC (dc). Please include the plot of the combined
meshes on these two patches when you send your work to me.

(d) Hermite cubics will generate smooth mesh lines if the outline of the region is smooth. The outer
boundary DCcb has a corner, and the interior mesh lines clearly echo that corner. Make a copy
of exer9c.m, call it exer9d.m, and “round the corner off” by moving the points C and c from
(2,2) to (1.8,1.8), and making the boundary lines at point C (and c) have slope -1. It doesn’t
matter too much what parametric slopes dxdsC and dydsC (and dxdsc and dydsc) you use, so
long as the ratio is dy/dx = (dy/ds)/(dx/ds) = −1, but parametric slopes of ±0.5 generate a nice
picture. Please include this plot when you send me your work.

6 Cubic spline interpolation

One disadvantage of the Hermite interpolation scheme is that you need to know the derivatives of your
function. But it’s very possible that you don’t have any formula for your data, just the values at the data
points. A second problem is the Hermite interpolant is smooth, but not as smooth as it could be. The
discontinuities in the second derivative at the data points might be noticeable.

Cubic splines are piecewise cubic interpolants that are very smooth. They are continuous, with continuous
first and second derivatives. Only the third derivative is allowed to jump at the join points (called knots).

Suppose you have broken an interval [a, b] into subintervals

a = x1 < x2 < . . . < xn = b

then s(x) is a “spline function” if there is a value m ≥ 1 with

1. s(x) is a polynomial of degree ≤ (m− 1) on each subinterval [xk−1, xk]; and,

2. drs
dxr (x) is continuous on [a, b] for 0 ≤ r ≤ (m− 2).

Given data values yk at each of the “knots” xk, we are interested in interpolating the data, so that
s(xk) = yk.

The continuity and interpolation conditions are almost enough to specify the cubic. If we add one extra
condition at each endpoint, such as the value of the derivative, then the spline is determined. Unlike Hermite
interpolation, the derivatives are needed only at the endpoints of the curve, not at the endpoints of each
subinterval.

As with our other interpolation methods, we will first compute the parameters of the spline interpolant.
Given those parameters, we will compute the first derivatives s′(xk) at the knots, and use the eval pherm

function you have already written to evaluate the spline function.

14



Quateroni, Sacco, and Saleri, on pp. 357ff, describe how to find the second derivatives (M or s′′) of the
“complete” cubic spline interpolant. (this work uses indices starting with k = 0, but we will obey Matlab’s
convention and start indices with k = 1.)

Since the desired spline is a piecewise C2 cubic polynomial, its second derivative is continuous. Thus the
values Mk = s′′(xk) are well-defined. Since s(x) is a piecewise cubic polynomial, its second derivative s′′(x)
is piecewise linear. Thus,

s′′(x) =
(xk+1 − x)Mk + (x− xk)Mk+1

hk
for k = 1, . . . , n− 1

For each of the intervals [xk, xk+1], this expression can be integrated twice to yield

s(x) =
(xk+1 − x)3Mk + (x− xk)

3Mk+1

6hk
+ Ck(xk+1 − x) +Dk(x− xk),

where Ck and Dk are constants of integration. Since s(x) is continuous and interpolates, s(xk) = yk, so the
values of Ck and Dk can be evaluated, yielding the expression

s(x) =
(xk+1 − x)3Mk + (x− xk)

3Mk+1

6hk
+

(xk+1 − x)yk + (x− xk)yk+1

hk

− hk

6

(
(xk+1 − x)Mk + (x− xk)Mk+1)

)
. (5)

So far, the Mk remain unknown and we have used continuity of s(x) and of s′′(x). Continuity of s′(x)
yields equations for Mk. Differentiating (5) yields, for the interval [xk, xk+1]

s′(x) =
−(xk+1 − x)2Mk + (x− xk)

2Mk+1

2hk
+

yk+1 − yk
hk

− (Mk+1 −Mk)hk

6
, (6)

where
hk = xk+1 − xk for k = 1, 2, . . . , (n− 1). (7)

Applying (6) to evaluate s′(xk) yields

s′(xk) = −Mk
hk

3
−Mk+1

hk

6
+

yk+1 − yk
hk

. (8)

For k = 2, 3, . . . , n − 1, the knot xk is a member of two intervals, [xk, xk+1], as above, and also [xk−1, xk].
Replacing k with (k − 1) in (6), to make it refer to the interval [xk−1, xk], and applying it to the knot xk

yields

s′(xk) = Mk
hk−1

3
+Mk−1

hk−1

6
+

yk − yk−1

hk−1
. (9)

Putting these together gives (n− 2) equations for the n values Mk. We still need two more equations. One
way would be to require that values for s′(x1) = y′1 and s′(xn) = y′n be specified as part of the problem.
Using these two relations and equating (8) with (9) yields the following system of equations.

M1
h1

3 +M2
h1

6 = y2−y1

h1
− y′0

M1

6 +h1+h2

3 M2 +M3
h2

6 = y3−y2

h2
− y2−y1

h1

. . . = . . .

Mn−2
hn−1

6 +Mn−1
hn−1+hn−1

3 +Mn
hn−1

6 = yn−yn−1

hn−1
− yn−1−yn

hn

Mn−1
hn−1

6 +Mn
hn−1

3 = y′n − yn−yn−1

hn−1

(10)

15



This system is equivalent to the matrix equation

AM = D,

with the matrix

A =



h1

3
h1

6 0 0 . . .
h1

6
h1+h2

3
h2

6 0

0 h2

6
h2+h3

3
h3

6 0

. . .
. . .

. . .
. . .

. . .

0 hn−3

6
hn−3+hn−2

3
hn−2

6 0

0 hn−2

6
hn−2+hn−1

3
hn−1

6

. . . 0 hn−1

6
hn−1

3


(11)

and the vectors

D =



y2−y1

h1
− y′1

y3−y2

h2
− y2−y1

h1

...
yn−yn−1

hn−1
− yn−1−yn−2

hn−2

y′n − yn−yn−1

hn−1


(12)

and

M =


M1

M2

...
Mn−1

Mn

 .

Since each diagonal element of A is strictly larger than the sum of the off-diagonal elements, the Gershgorin
disk theorem shows that A is nonsingular so this equation can be solved for M .

Exercise 10: In this exercise you will write a function to implement the matrix A, the right side
D, and solve the resulting matrix system. Then, it will construct the values of the derivatives of the
complete cubic spline at the knots. This implementation uses loops rather than vector (componentwise)
operations because it is easier to see what is happening with loops. If you wish, you can replace the
loops with vector (componentwise) operations.

(a) Begin writing a file named ccspline.m to compute the values Mk and the values s′(xk). Its
signature should be

function sprime=ccspline(xdata,ydata,y1p,ynp)

% sprime=ccspline(xdata,ydata,y1p,ynp)

% ... more comments ...

% your name and the date

(b) Choose the proper value of n and write a loop to define the vector of interval lengths hk as given
in (7). It should be similar to the following:

for k=1:n-1

h(k)= ???

end

16



(c) Write a loop to define the column vector Dk in (12). It will use the quantities y′1 =y1p and
y′n =ynp and be similar to the following:

D(1,1)= ???

for k=2:n-1

D(k,1)= ???

end

D(n,1)= ???

(d) Write a loop to define the matrix A in (11). Your loop should be similar to the following:

A=zeros(n,n);

A(1,1)= ???

A(1,2)= ???

for k=2:n-1

A(k,k-1)=???

A(k,k) =???

A(k,k+1)=???

end

A(n,n-1)=???

A(n,n) =???

(e) Solve the matrix system AM = D for the vector M using the backslash operator.

(f) Write a loop to define the derivatives of the spline function given in (8). This vector should be
a row vector if ydata is a row vector and a column vector if ydata is a column vector. Recall
that, for a complete cubic spline, s′1 =y1p and s′n =ynp. Your loop should look something like
the following:

sprime=zeros(size(ydata));

sprime(1)=???

for k=2:n-1

sprime(k)=???

end

sprime(n)=???

(g) Test your function using the polynomial y(x) = x3 on the interval [0, 3] using unequal subintervals.
Since you are using a cubic polynomial, the resulting spline function is x3 back again, and you
know the derivatives.

xdata=[0 1 2 4];

ydata=[0 1 8 64];

y1p=0;

ynp=48;

If your results for sprime are correct, go on the the next exercise. If not, debug your work using
the following strategy.

i. Double-check your code for sprime against (8).

ii. Print the matrix A and check that it is symmetric. If it is not, fix your code and test it again
now.

iii. The Gershgorin theorem holds because the sum of the off-diagonal terms in each row is strictly
smaller than the diagonal term. Double-check that this fact holds for your matrix.

iv. If A is symmetric, then try your code on the interval [0, 2] using the following data

xdata=[0 1 2];

ydata=[0 1 8];

17



y1p=0;

ynp=12;

If your results are correct, then you have an mistake in your subscripts h(k). (Notice that
h(k)=1 for all k in this case but not in the previous case.) Fix your code and test it again
now.

v. If the results of the previous test are not correct, consider the case

xdata=[0 1 3];

ydata=[0 1 27];

y1p=0;

ynp=27;

and compute the 3 × 3 matrix A and the vector D by hand from equations (11) and (12).
Compare with the Matlab values, and fix the mistake.

vi. If your A and D are correct, compute sprime by hand from equation (8). Compare with the
Matlab values, and fix the mistake.

Now that you are confident of your ccspline function is correct, you can use it to interpolate a function.
Recall that one of the most common applications of spline interpolation is to interpolate tabular data so
that computing derivatives is a major difficulty.

Exercise 11:

(a) Copy your test pherm interpolate.m to test ccspline interpolate.m and modify it so that
the derivative values are computed using ccspline. You will still need derivatives at the end-
points. You can continue using eval pherm to evaluate your spline approximation because you
know both function values (ydata) and derivative values (y1p, ynp, and sprime).

(b) Using equally spaced data points from 0 to 5 for xdata and the runge.m function to Estimate
the maximum interpolation error by computing the maximum relative difference (infinity norm)
between the exact and interpolated values at 4001 evenly spaced points. Fill in the following
table:

Runge function, Complete Cubic Spline

ndata = 5 Err( 5) = ________

ndata = 11 Err( 11) = ________ Err( 5)/Err( 11) = ________

ndata = 21 Err( 21) = ________ Err( 11)/Err( 21) = ________

ndata = 41 Err( 41) = ________ Err( 21)/Err( 41) = ________

ndata = 81 Err( 81) = ________ Err( 41)/Err( 81) = ________

ndata =161 Err(161) = ________ Err( 81)/Err(161) = ________

ndata =321 Err(321) = ________ Err(161)/Err(321) = ________

ndata =641 Err(641) = ________ Err(321)/Err(641) = ________

(c) Estimate the rate of convergence by examining the ratios Err(41)/Err(81), etc., and estimating
the nearest power of two.

7 Splines without derivatives

If you have only function data (perhaps tabulated) without any way to compute derivatives, you need another
set of equations to completely specify Mk for k = 1, 2, . . . , n. One natural way of doing it is to assume that
M1 = Mn = 0, whereby the resulting approximation is assumed linear at the endpoints. Such splines are
called “natural cubic splines.”

An alternative approach is to require the s′′′(xk) is continuous at the two points k = 2 and k = n− 1, as
well as s′′(xk), s

′(xk), and s(xk) itself. Since s(x) is piecewise cubic, if those four conditions hold, then s(x)

18



is a single cubic on the intervals [xk−1, xk+1], k = 2 and k = n− 1, not two cubics meeting at xk. Hence, xk

is not properly a knot, and this is called the “not-a-knot” condition.
In the following two exercises, you will examine each of these alternatives.

Exercise 12:

(a) Copy your ccspline.m to a file ncspline.m and modify the signature to be

function sprime=ncspline(xdata,ydata)

% sprime=ncspline(xdata,ydata)

% ... more comments ...

% your name and the date

(b) Modify the first and last lines of the matrix A and the first and last components of the vector D
so that they embody the equations

M1 = 0, and

Mn = 0

Hint: The matrix system AM = D above is given explicitly by (10). Look at the first line of this
system. How would you change the matrix A so that the first line of the system in (10) becomes
M1 = 0? Similarly for the last line.

(c) Use (8) to get s′(x1) and (9) to get s′(xn).

(d) The following case represents a linear equation

xdata=[0 1 2 3];

ydata=[0 2 4 6];

Use it to test that ncspline works correctly for one case.

(e) Temporarily print the solution vector M, pick some nonlinear function to approximate and verify
that M(1)=M(n)=0. (You cannot exactly reproduce such a function using natural cubic splines,
but you can check the endpoints.) Remove the temporary printing.

(f) Test that ncspline and ccspline agree when given the same data. Choose

xdata=[0,1,2];

ydata=[0,-3,-16];

and compute s′ using ncspline and call it ncsprime. Next compute s′ using ccspline and
using ncsprime(1) and ncsprime(end) for the derivative values. Call the results of ccspline
ccsprime. Check that ncsprime and ccsprime are the same up to roundoff.

(g) Copy your test ccspline interpolate.m to test ncspline interpolate.m and modify it so
that the derivative values are computed using ncspline.

(h) Using equally spaced data points from 0 to 5 for xdata and the runge.m function to Estimate
the maximum interpolation error by computing the maximum relative difference (infinity norm)
between the exact and interpolated values at 4001 evenly spaced points. Fill in the following
table:

Runge function, Natural Cubic Spline

ndata = 5 Err( 5) = ________

ndata = 11 Err( 11) = ________ Err( 5)/Err( 11) = ________

ndata = 21 Err( 21) = ________ Err( 11)/Err( 21) = ________

ndata = 41 Err( 41) = ________ Err( 21)/Err( 41) = ________

ndata = 81 Err( 81) = ________ Err( 41)/Err( 81) = ________

19



ndata =161 Err(161) = ________ Err( 81)/Err(161) = ________

ndata =321 Err(321) = ________ Err(161)/Err(321) = ________

ndata =641 Err(641) = ________ Err(321)/Err(641) = ________

(i) Estimate the rate of convergence by examining the ratios Err(41)/Err(81), etc., and estimating
the nearest power of two.

In the following exercise, you will see how to use a spline generated using the not-a-knot condition. The
not-a-knot condition is more difficult to program, so we will take this opportunity to introduce the Matlab
spline function, whose default constructive behavior is to use the not-a-knot condition. Complete cubic
splines can also be generated using spline, and the syntax for that is presented in a remark following the
exercise.

Exercise 13:

(a) Copy your test ncspline interpolate.m to test spline interpolate.m and modify so that
the Matlab spline function is used to evaluate the spline function itself using the following syntax:

yval=spline(xdata,ydata,xval);

where xdata are the data points, ydata are the data values, and xval are the points at which the
interpolant is to be evaluated.

(b) Using equally spaced data points from 0 to 5 for xdata and the runge.m function to Estimate
the maximum interpolation error by computing the maximum relative difference (infinity norm)
between the exact and interpolated values at 4001 evenly spaced points. Fill in the following
table:

Runge function, Not-A-Knot Cubic Spline

ndata = 5 Err( 5) = ________

ndata = 11 Err( 11) = ________ Err( 5)/Err( 11) = ________

ndata = 21 Err( 21) = ________ Err( 11)/Err( 21) = ________

ndata = 41 Err( 41) = ________ Err( 21)/Err( 41) = ________

ndata = 81 Err( 81) = ________ Err( 41)/Err( 81) = ________

ndata =161 Err(161) = ________ Err( 81)/Err(161) = ________

ndata =321 Err(321) = ________ Err(161)/Err(321) = ________

ndata =641 Err(641) = ________ Err(321)/Err(641) = ________

(c) Estimate the rate of convergence by examining the ratios Err(41)/Err(81), etc., and estimating
the nearest power of two.

Remark 1: It should be clear that the complete cubic spline is smooth and accurate, but requires some
derivative values. The natural cubic spline requires no derivative values, but is less accurate than the
complete cubic spline. The not-a-knot spline retains the asymptotic accuracy of the complete cubic spline
without requiring any derivative information.

Remark 2: It is possible to use Matlab’s spline function to compute the complete cubic spline as well as
the not-a-knot cubic spline. Syntax for the complete cubic spline is

% complete cubic spline for row-vector ydata

yval = spline( xdata, [yp1, ydata, ypn], xval);

20



8 Monotone interpolation

Suppose you have a closed metal box containing some water and you heat it while you measure its temper-
ature. You will observe that the temperature rises monotonically until it reaches 100◦ C. The temperature
will then remain constant even as you apply heat until all the water boils away, and then it will begin to rise
again. Adding heat will always cause a nonnegative temperature change.

If you take this temperature data and attempt to interpolate it using splines, you may find non-physical
oscillations in temperature near the boiling point. If the temperature behavior near the boiling point is
important to you, you need to interpolate it using a method that respects monotonicity, even if it means
lower asymptotic accuracy.

Monotone interpolation is a topic of theoretical importance, and a seminal paper was written by Fritsch
and Carlson, “Monotone Piecewise Cubic Interpolation,” SIAM J. Numer. Anal. 17(1980)238-246. Matlab
provides a function called pchip that implements Fritsch and Carlson’s algorithm. In the following exercise
you will compare a spline interpolation with a pchip interpolation of data inspired by the water experiment
described above.

Exercise 14: Consider the function given by

xdata=[0, 1, 2, 3, 4];

ydata=[0, 1, 2, 2, 2];

where xdata=2 represents the time just after boiling starts.

(a) Plot the data using circles with no lines between them.

(b) Construct the not-a-knot spline interpolant using the Matlab function spline and plot it on the
same frame using at least 100 points.

(c) Construct the monotone cubic interpolant using the Matlab function pchip (using the same syntax
as spline but with the name pchip) and plot it on the same frame using at least 100 points.
Please include this plot with your summary. You should observe that the pchip interpolant is
more physically logical than the spline interpolant.

Exercise 15:

(a) Copy your test spline interpolate.m to test pchip interpolate.m and modify so that the
Matlab pchip function is used to evaluate the interpolant function.

(b) Using equally spaced data points from 0 to 5 for xdata and the runge.m function to Estimate
the maximum interpolation error by computing the maximum relative difference (infinity norm)
between the exact and interpolated values at 4001 evenly spaced points. Fill in the following
table:

Runge function, Monotone Cubic Interpolation

ndata = 5 Err( 5) = ________

ndata = 11 Err( 11) = ________ Err( 5)/Err( 11) = ________

ndata = 21 Err( 21) = ________ Err( 11)/Err( 21) = ________

ndata = 41 Err( 41) = ________ Err( 21)/Err( 41) = ________

ndata = 81 Err( 81) = ________ Err( 41)/Err( 81) = ________

ndata =161 Err(161) = ________ Err( 81)/Err(161) = ________

ndata =321 Err(321) = ________ Err(161)/Err(321) = ________

ndata =641 Err(641) = ________ Err(321)/Err(641) = ________

(c) Estimate the rate of convergence by examining the ratios Err(41)/Err(81), etc., and estimating
the nearest power of two. You should observe a lower rate of convergence than for the Matlab
spline function.

21



9 Extra credit: Bilinear interpolation in two dimensions (8 points)

This extra credit exercise involves interpolation in two dimensions using piecewise bilinear functions. For
simplicity, all work will be performed on a square.

In the previous sections, you used bicubic Hermite functions to map the unit square into a curved-sided
region in space. In this exercise, you will be using piecewise bilinear functions to interpolate a given function
defined over a square, and then measuring the interpolation error much as you did in the previous lab.
Matlab remark: Array (vector) syntax is more complicated in two dimensions than in one. I recommend
you use for loops in this exercise instead of array syntax. If you do wish to use array syntax, you should
look carefully at the documentation for the ndgrid command and generate matrix values for xval and yval.

First, note that a bilinear function (a bilinear function is the product of a linear function in x with a
linear function in y) can be constructed over an arbitrary rectangle as a linear combination of four functions.

u u

u u

P1 P2

P3P4

(xk, yℓ) (xk+1, yℓ)

(xk, yℓ+1) (xk+1, yℓ+1)

ϕ1(x, y) =

(
xk+1 − x

xk+1 − xk

)(
yℓ+1 − y

yℓ+1 − yℓ

)
ϕ2(x, y) =

(
x− xk

xk+1 − xk

)(
yℓ+1 − y

yℓ+1 − yℓ

)
ϕ3(x, y) =

(
x− xk

xk+1 − xk

)(
y − yℓ

yℓ+1 − yℓ

)
ϕ4(x, y) =

(
xk+1 − x

xk+1 − xk

)(
y − yℓ

yℓ+1 − yℓ

)
Exercise 16:

(a) Fill in a table similar to the following with the values ϕm(Pn)

ϕ1 ϕ2 ϕ3 ϕ4

P1

P2

P3

P4

22



and use it to explain why the unique bilinear function I(x, y) that interpolates a given function
f(x, y) at the four points {Pn}n=1,2,3,4 can be written as

I(x, y) =
4∑

n=1

f(Pn)ϕn(x, y) (13)

(b) Write a function m-file named runge2d to evaluate the function f(x, y) = 1/(1 + (x+ y)2).

(c) Write a function m-file named eval pbilin.m with beginning

function zval=eval_pbilin(f,xdata,ydata,xval,yval)

% fval=eval_pbilin(f,xdata,ydata,xval,yval)

% find the piecewise bilinear interpolant, I, of a function f

% xdata=vector of x data coordinates

% ydata=vector of y data coordinates

% xval=vector of x coordinates at which to compute the interpolant

% yval=vector of y coordinates at which to compute the interpolant

% zval=MATRIX of interpolated values

% zval(k,ell)= I(xval(k),yval(ell))

% your name and the date

Hint 1 It is much easier to use simple for-loops in this code than to try to use elementwise
operations.
Hint 2 Use bracket twice, once for xval, once for yval.

(d) Test that your code interpolates the runge2d function on the square [0, 1] × [0, 1] (xdata=[0,1]
and ydata=[0,1]) by computing

zval=eval_pbilin(@runge2d,xdata,ydata,xdata,ydata)

and comparing with the four exact values of runge2d at the four corners of the square.

(e) Write a function m-file test pbilin interpolate.m along the lines of test pherm interpolate.m

that compares the interpolant with the exact function value. Use only 401 values (not 4001) for
each of xtest and ytest. Do not use 4001 values for each!

(f) Test your code by computing the errors for the three functions f(x, y) = 1, f(x, y) = x, f(x, y) = y,
and f(x, y) = xy. Errors should be roundoff for these four bilinear functions.

(g) Compute the errors for the runge2d function using 11, 21, 41, 81, and 161 data values in the
interval [0,5] in each of the x and y directions. Estimate the rate of convergence of bilinear
interpolation.

Last change $Date: 2016/08/10 23:19:23 $

23


