
Lectures - Week 5

Four Basic Spaces

1. The column space (or equivalently the range) of A, where A is m × n matrix is all
linear combinations of the columns of A. We denote this by R(A).

• By definition (because it contains all linear combinations and is thus closed under
addition and scalar multiplication) the column space is a subspace of IRm.

• An equivalent statement to A~x = ~b being solvable is that ~b is in the range or column
space of A.

2. The null space of A, denoted N (A), where A is m × n matrix is the set of all vectors
~z ∈ IRn such that A~z = ~0.

• The null space is a subspace of IRn because it consists of vectors in IRn and is closed
under addition and scalar multiplication:

A~y = 0, A~z = 0 ⇒ A(~y + ~z) = A~y + A~z = 0

A~z = 0, k ∈ IR1 ⇒ A(k~z) = k(A~z) = k(0) = 0

3. The row space of A is the span of the rows of A and is thus a subspace of IRn. It can
be found by row reducing A because the resulting upper triangular matrix U has the same
row space because we are always taking linear combinations of the rows of A to get U .

4. The null space of AT , N (AT ), is a subspace of IRn and consists of all ~z ∈ IRn such
that AT~z = ~0. This space is often call the left null space of A.

Note that two of these spaces are subspaces of IRn and two of IRm. We want to be able to
find a basis and its dimension for each of these spaces and see any relationships they have
with each other.

Example Find the range of each matrix

A1 =

(

1 2
3 4

)

A2 =





3 2
1 0
1 6





The R(A1) = IR2 because the columns are two linearly independent vectors in IR2 and thus
form a basis for IR2. The R(A2) is the span{(3, 1, 1)T , (2, 0, 6)T} which is a subspace of
IR3.

Example Find the null space of each matrix

A1 =

(

1 2
3 4

)

A2 =

(

1 2
2 4

)

A3 =

(

0 0
0 0

)
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For A1 we have that N (A1) = ~0 because the matrix is invertible. To see this we could
take the determinant or perform GE and get the result.

For A2 we see that N (A2) is α(−2x2, x2)
T , i.e., the all points on the line through the

origin y = −.5x. To see this consider GE for the system

(

1 2
2 4

)

→

(

1 2
0 0

)

⇒ 0 · x2 = 0, x1 + 2x2 = 0

This says that x2 is arbitrary and x1 = −2x2.

For A3 we see that N (A2) is all of IR2.

Example What are the possible null spaces of a 3 × 3 matrix?

For an invertible matrix it is the (i) zero vector in IR3, we could have (ii) a line through
the origin, (iii) a plane through the origin or all of (iv) IR3.

Theorem If A is an n × n invertible matrix then

(i) N (A) = ~0

(ii) R(A) = IRn

The first part of the theorem says that the only solution to A~x = ~0 is ~x = ~0 for an invertible
matrix. The second part says that for A invertible, A~x = ~b is solvable for any right hand
side because ~b ∈ IRn and the range of A is all of IRn. So the columns of A form a basis for
IRn.
We now want to look at the general case where A is not invertible and A is rectangular.

Example Consider the system A~x = ~b where

A =





2 2 1
0 6 3
5 8 4





Are the rows of A linearly independent? Give the row space of A and its dimension. What
is the null space of A and its dimension? Are the columns of A linearly independent?
What is the range of A of its dimension? Is this system solvable for any right hand side
vector ~b? What is the range of AT and its dimension? What is the N (AT )?

To see if the rows are linearly independent and to get the row space of A we simply row
reduce A to get





2 2 1
0 6 3
5 8 4



 →





2 2 1
0 6 3
0 3 1.5



 →





2 2 1
0 6 3
0 0 0





so the row space is a subspace of IR3 given by span{(2, 2, 1)T , (0, 6, 3)T} so it has dimension
2. Clearly the rows of A are linearly dependent.

This also tells us about the null space of A; clearly there is a vector in the null space of A
and is α(0,−3, 6)T .
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The three columns are in IR3; we want to know if one of the columns can be formed by a
linear combination of the other two; if so they are linearly dependent. From inspection we
see that column two is twice column three so they are linearly dependent because

0





2
0
5



 + 1





2
6
8



 − 2





1
3
4



 =





0
0
0





If we didn’t see this relationship what could we do? If we perform GE as above this
doesn’t help us because the column space of the original matrix and the resulting upper
triangular matrix is NOT the same. Here we know that the column space of A is the
span {(2, 0, 5)T , (2, 6, 8)T} whereas the column space of U is the span {(2, 0, 0)T , (2, 6, 0)T}
which is clearly not the same space. What we could do is form AT and row reduce it
because each time we are taking a linear combinations of the rows of AT (i.e., columns of
A) so we are not changing the space. We have





2 0 5
2 6 8
1 3 4



 →





2 0 5
0 6 3
0 3 1.5



 →





2 0 5
0 6 3
0 0 0





So we get the same result as by inspection, R(A) =span{(2, 0, 5)T , (0, 6, 3)T} because
(2, 6, 8)T = (2, 0, 5)T + (0, 6, 3)T . Clearly the dimension is 2. This also says that we can

find a ~b which is not in the span of the columns of A; e.g., ~b = (4, 10, 1)T 6= c1(2, 2, 1)T +
c2(0, 6, 3)T .

Now the R(AT ) is a subspace of IR3 and we should be able to find it in an analogous way to
how we found R(A). We simply take the transpose and row reduce it; but we have already
row reduced A so we know that R(AT ) =span{(2, 2, 1)T , (0, 6, 3)T} so it has dimension 2.

Lastly the N (AT ) is found by row reducing AT which we have already done. We get that
it has dimension 1 and is α(0, 1,−2).

Two things to note are for this matrix (i) there are two rows and two columns that are
linearly dependent and (ii) R(AT ) is the row space of A.

Example Consider the under-determined system A~x = ~b where

A =

(

2 3 −1
0 4 6

)

Are the rows of A linearly independent? Give the row space of A and its dimension. What
is the null space of A and its dimension? Are the columns of A linearly independent?
What is the range of A of its dimension? Is this system solvable for any right hand side
vector ~b? What is the range of AT and its dimension? What is the N (AT )?

The rows are vectors in IR3 and because there are only two of them, we can see by inspection
that they are linearly independent. So the row space has dimension 2 and is given by
span{(2, 3,−1)T , (0, 4, 6)T}.
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For the columns we have three vectors in IR2 so we know that they are linearly dependent.
Any two of the columns are linearly independent so the dimension is 2 and is all of IR2.
The system is solvable for any right hand side in IR2 because although the columns are
linearly dependent, they span all of IR2 and so the R(A) = IR2.

Does A map anything to ~0 other than the zero vector? Clearly yes because the system is
already reduced by GE and

4x2 + 6x3 = 0 ⇒ x3 is arbitrary.

So if we choose, e.g., α(11/2,−3, 2)T it is in the null space of A.

The R(AT ) is found by row reducing A so clearly it is just span{(2, 3,−1)T , (0, 4, 6)T}.

The N (AT ) is found by row reducing AT





2 0
3 4
−1 6



 →





2 0
0 4
0 6



 →





2 0
0 4
0 0





and thus N (AT ) is ~0.

Here note that for the 2×3 matrix A there are two linearly independent rows and columns
and R(AT ) is the row space of A.

In these two examples the number of linearly independent rows and columns is the same.
This is always the case and we give it a name.

Definition The rank of a matrix is the number of linearly independent rows or columns
(it is the same).

If we know that there are e.g., three linearly independent rows then there are three linearly
independent columns and the rank is three.

Example For the two matrices in the previous examples, find their rank.

Clearly both have rank two.

The next result gives the dimensions of these spaces and is often called the Fundamental
Theorem of Linear Algebra, Part I.

Theorem Fundamental Theorem of Linear Algebra, Part I. Let A be an m × n matrix.
Then the following conditions hold.

• The R(A) is the column space of A and is a subspace of IRm. The dimension dim(R(A))
is the rank r and r ≤ m.

• The null space of A, N (A) is a subspace of IRn and has dimension n − r where r is
the rank of A

• The row space of A is a subspace of IRn and is the column space of AT , R(AT ) and
has dimension r.

• The N (AT ) is the left null space of A and is a subspace of IRm whose dimension is
m − r.
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Lets return to our two examples and look at them in light of this theorem.

Example For

A =





2 2 1
0 6 3
5 8 4





we have m = n = 3. We row-reduced the matrix to get 2 linearly independent rows so the
rank is 2. We immediately know that there are also 2 linearly independent columns and
we know that the R(AT ) is the same as the row space. We know that the dimension of
the null space of A has to be 3-2=1 and the dimension of N (AT ) is 3-2=1. For the second
matrix

A =

(

2 3 −1
0 4 6

)

m = 2 and n = 3. We found that the rank was 2 so the null space of A has dimension
n − r = 3 − 2 = 1. Also the left null space N (AT ) has dimension m − r = 2 − 2 = 0 so it
has dimension zero.

Example Analyze the four fundamental spaces for the matrix

A =





2 1 4 4
−4 2 −2 0
0 4 6 2





In this case m = 3 and n = 4 so the maximum the rank can be is 3. To see the row space
we row reduce A to get





2 1 4 4
−4 2 −2 0
0 4 6 2



 →





2 1 4 4
0 4 6 8
0 4 6 2



 →





2 1 4 4
0 4 6 8
0 0 0 −6





so the rank is 3 and a basis for the row space is {(2, 1, 4, 4), (0, 4, 6, 8), (0, 0, 0,−6)} or we
could have taken the three rows of A. The column space or range of A is a subspace of IR3

but its dimension is three (because the rank is three) so the column space is all of IR3 and we
can take the standard basis. The dimension of the null space N (A) is 4-3=1 and from our
row reduction we have x4 = 0, x3 = α, x2 = −1.5x3 and x1 = (−x2 − 4x3)/2 = −5/4α so
a basis for N (A) is (−5,−6, 4, 0)T . Finally the left null space of A, N (AT ) has dimension
3-3=0.

What do we know about these spaces for an invertible matrix? The following are
equivalent statements.

• A is an invertible n × n matrix.
• A is an n × n matrix with rank n.
• A is an n × n matrix and the range of A, R(A) is all of IRn and has dimension n
• A is an n × n matrix and the null space of A, N (A) is the zero vector and has

dimension 0.
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• A is an n×n matrix and the left null space of A, N (AT ) is the zero vector and has
dimension 0.

• A is an n×n matrix and the range of AT , R(AT ) is all of IRn and has dimension n.
• A is an n × n matrix and the row space of A is all of IRn and has dimension n.

Orthogonal Spaces

In the last section, we concentrated on determining the dimensions of the four
fundamental spaces. In this section we want to look at their orientation with respect to
each other.

Recall that two vectors are orthogonal if their dot product is zero. Suppose we had
two spaces V, W and they had the property that for any ~v ∈ V and any ~w ∈ W , ~vT ~w = 0.
Then this would be an analogous definition of orthogonality for spaces.

Definition Two spaces V, W are orthogonal provided ~vT ~w = 0 for any ~v ∈ V and ~w ∈ W .

If two spaces are orthogonal then the only vector they have in common is the zero
vector. If every ~v ∈ V is orthogonal to each basis vector of W then it is orthogonal to all
of W because every other vector in W can be written as a linear combination of the basis
vectors. Specifically if ~wi ∈ W , i = 1, . . . , n form a basis for W and ~vT ~wi = 0 for all i then

~p =

n
∑

i=1

ci ~wi ⇒ ~vT ~p = ~vT

(

n
∑

i=1

ci ~wi

)

=

n
∑

i=1

ci(~v
T ~wi) =

n
∑

i=1

ci(0) = 0

Example Let V be the plane spanned by the vectors ~v1 = (1, 0, 0, 0), ~v2 = (1, 1, 0, 0)
and W the line spanned by ~w = (0, 0, 4, 5). Then ~wT~v1 = 0 and ~wT~v2 = 0 so for any other
element of V , say α~v1 + β~v2, we have ~wT (α~v1 + β~v2) = α~wT~v1 + β ~wT~v2 = 0 and the two
spaces are orthogonal.

We might ask ourselves if any of our four fundamental spaces are orthogonal. The
following theorem answers this question.

Theorem Let A be an m × n matrix.

(i) The null space of A, N (A) and the row space of A are orthogonal spaces.
(ii) The left null space of A and the column space of A, R(A) are orthogonal spaces.

Proof To see why (i) holds we first take a vector in N (A), say ~w ∈ N (A); thus A~w = ~0.
This means that we take the first row of A and dot it into ~w to get 0; then the second row
of A and dot it into ~w and get zero and so forth. Clearly this implies that ~w if orthogonal
to each row of A. To see why (ii) holds we have to take ~w ∈ N (AT ) and~b ∈ R(A) and show

that ~wT~b = 0 where ~w,~b were arbitrary. Now AT w = ~0 and as in the previous argument
this implies ~w is orthogonal to each row of AT . But the rows of AT are the columns of A
so ~w is orthogonal to each column of A, i.e., orthogonal to R(A).

We could prove these results in a more rigorous way. For example, another way to prove
(i) is a bit more abstract, but insightful. As before let ~w ∈ N (A); another way to say that
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~v is in the row space of A is to say ~v ∈ R(AT ). This says there is a vector ~x such that
AT~x = ~v. Using this we have

~wT~v = ~wT AT~x = (A~w)T~x = 0

because A~w = ~0.

This theorem says that every vector in the null space of A is perpendicular to every vector
in the row space of A; however something stronger is actually true. The fact is that every
vector in IRn which is perpendicular to the row space of A is in the null space of A; that
is, the null space contains every vector in IRn which is orthogonal to row space of A. The
analogous condition holds for (ii). To this end, we make the following definition.

Definition Let V be a given subspace of IRn. Then the set of all vectors in IRn which
are orthogonal to V is called the orthogonal complement of V and is denoted V ⊥.

We want to say that the null space is the orthogonal complement of the row space and the
row space is the orthogonal complement of the null space. Our theorem didn’t prove this; it
only proved they were orthogonal spaces. Why can’t there be another vector orthogonal to
the null space of A other than a linear combination of the rows of A? We will demonstrate
this by “proof by contradiction”; i.e., we will assume such a vector exists and then get
a contradiction. Let ~z be another vector orthogonal to any ~w ∈ N (A); i.e., ~zT ~w = 0
and assume that ~z is NOT a linear combination of the rows of A. Now lets form another
matrix B which is (m + 1) × n and is the same as A except in the (m + 1) row we add
our vector ~z. Now because ~z is not in the row space of A, our new matrix B has one more
linearly independent row than A and so its rank must be increased by one compared to
the rank of A. On the other hand the null space of B is the same as the null space of A.
However, we know that n is the sum of the rank and the dimension of the null space so we
have our contradiction. The second part of the Fundamental Theorem of Linear Algebra
summarizes these results.

Theorem Fundamental Theorem of Linear Algebra, Part II.

N (A) =
(

R(AT )
)⊥

R(AT ) =
(

N (A)
)⊥

N (AT ) =
(

R(A)
)⊥

R(A) =
(

N (AT )
)⊥

We already know that A~x = ~b has a solution if ~b ∈ R(A). This second equality also says

that A~x = ~b has a solution if ~b is orthogonal to every vector in N (AT ); i.e., if AT ~w = ~0,

then ~bT ~w = 0.

Two spaces can be orthogonal and not be orthogonal complements of each other. However,
in IRn if V, W are orthogonal and if the dimension of V plus the dimension of W is n,
then they are orthogonal complements. A very useful fact is that if V, W are orthogonal
complements in IRn then any vector ~x ∈ IRn can be written as the sum of a vector in V
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and one in W , i.e., there exists ~v ∈ V , ~w ∈ W such that ~x = ~v + ~w. However, this result
only says it is possible to do this, it doesn’t say how to construct such a decomposition. In
the next section we will see how these results can be used to understand how to solve the
linear least squares problem of fitting a polynomial to a set of data where there are more
data points than degrees of freedom in the polynomial; i.e., we have an over-determined
system which probably doesn’t have a solution.

Before we move on to linear least squares, lets first look at the matrix AT A where A is
m × n. Clearly it is a square symmetric matrix because

(AT A)T = AT (AT )T = AT A

but is it positive definite? Recall that a square matrix B is positive definite if ~xT B~x > 0
for all ~x 6= 0. We have

xT (AT A)x = (xT AT )(Ax) = (Ax)T (Ax) = yT y where y = Ax

Now yT y is just the scalar (or inner or dot) product of a vector with itself or also it is
the square of the Euclidean length of ~y which is always non-negative. It is only zero if
~y = ~0. Can ~y ever be zero? Remember that y = A~x so if ~x ∈ N (A) then ~y = ~0. When can
the rectangular matrix A have something in the null space other than the zero vector? If
we can take a linear combination of the columns of A (with coefficients nonzero) and get
zero, i.e., if the columns of A are linearly dependent. In other words, if the rank of A is
not n. We say that AT A is symmetric positive definite if the columns of A are linearly
independent; otherwise it is positive semi-definite (meaning that xT AT Ax ≥ 0).
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