
Lecture 5 - Triangular Factorizations & Operation Counts

LU Factorization

We have seen that the process of GE essentially factors a matrix A into LU . Now we
want to see how this factorization allows us to solve linear systems and why in many cases
it is the preferred algorithm compared with GE. Remember on paper, these methods are
the same but computationally they can be different.

First, suppose we want to solve A~x = ~b and we are given the factorization A = LU .
It turns out that the system LU~x = ~b is “easy” to solve because we do a

forward solve L~y = ~b and then back solve U~x = ~y.

We have seen that we can easily implement the equations for the back solve and for
homework you will write out the equations for the forward solve.

Example If

A =

 2 −1 2
4 1 9
8 5 24

 = LU =

 1 0 0
2 1 0
4 3 1

 2 −1 2
0 3 5
0 0 1


solve the linear system A~x = ~b where ~b = (0,−5,−16)T .

We first solve L~y = ~b to get y1 = 0, 2y1+y2 = −5 implies y2 = −5 and 4y1+3y2+y3 = −16
implies y3 = −1. Now we solve U~x = ~y = (0,−5,−1)T . Back solving yields x3 = −1,
3x2 + 5x3 = −5 implies x2 = 0 and finally 2x1 − x2 + 2x3 = 0 implies x1 = 1 giving the
solution (1, 0,−1)T .

If GE and LU factorization are equivalent on paper, why would one be computationally
advantageous in some settings? Recall that when we solve A~x = ~b by GE we must also
multiply the right hand side by the Gauss transformation matrices. Often in applications,
we have to solve many linear systems where the coefficient matrix is the same but the right
hand side vector changes. If we have all of the right hand side vectors at one time, then
we can treat them as a rectangular matrix and multiply this by the Gauss transformation
matrices. However, in many instances we solve a single linear system and use its solution
to compute a new right hand side, i.e., we don’t have all the right hand sides at once.
When we perform an LU factorization then we overwrite the factors onto A and if the
right hand side changes, we simply do another forward and back solve to find the solution.

One can easily derive the equations for an LU factorization by writing A = LU and
equating entries. Consider the matrix equation A = LU written as

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...
...

an1 an2 an3 · · · ann

 =


1 0 0 · · · 0

`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

...
...

`n1 `n2 `n3 · · · 1




u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n
...

...
...

...
...

0 0 0 · · · unn


1

Now equating the (1, 1) entry gives

a11 = 1 · u11 ⇒ u11 = a11

In fact, if we equate each entry of the first row of A, i.e., a1j we get

u1j = a1j for j = 1, . . . , n.

Now we move to the second row and look at the (2,1) entry to get a21 = `21 · u11 implies
`21 = a21/u11. Now we can determine the remaining terms in the first column of L by

`i1 = ai1/u11 for i = 2, . . . , n.

We now find the second row of U . Equating the (2,2) entry gives a22 = `21u12 +u22 implies
u22 = a22 − `21u12. In general

u2j = a2j − `21u1j for j = 2, . . . , n.

We now obtain formulas for the second column of L. Equating the (3,2) entries gives

`31u12 + `32u22 = a32 ⇒ `32 =
a32 − `31u12

u22

and equating (i, 2) entries for i = 3, 4, . . . , n gives

`i2 =
ai2 − `i1u12

u22
i = 3, 4, . . . , n

Continuing in this manner, we get the following algorithm.

Let A be a given n × n matrix. Then if no pivoting is needed, the LU factorization of A
into a unit lower triangular matrix L with entries `ij and an upper triangular matrix U
with entries uij is given by the following algorithm.

Set u1j = a1j for j = 1, . . . , n

For k = 1, 2, 3 . . . , n− 1
for i = k + 1, . . . , n

`i,k =

ai,k −
k−1∑
m=1

`imum,k

uk,k

for j = k + 1, . . . , n

uk+1,j = ak+1,j −
k∑

m=1

`k+1,mum,j

2

Note that this algorithm clearly demonstrates that you can NOT find all of L and
then all of U or vice versa. One must determine a row of U , then a column of L, then a
row of U , etc.

Example Perform an LU decomposition of

A =

 2 −1 2
4 1 9
8 5 24


The result is given in a previous example and can be found directly by equating elements
of A with the corresponding element of LU .
• Does LU factorization work for all systems that have a unique solution?

Example Consider A~x = ~b where

A =
(

0 1
1 1

)(
1
1

)
=
(

1
2

)
which has the unique solution ~x = (1, 1)T . Can you find an LU factorization of A?

Just like in GE the (1,1) entry is a zero pivot and so we can’t find u11.

Theorem Let A be an n× n matrix. Then there exists a permutation matrix P such
that

PA = LU

where L is unit lower triangular and U is upper triangular.

Example For the matrix above find the permutation matrix P which makes PA have
an LU decomposition and then find the decomposition.

We want to interchange the first and second rows so we need a permutation matrix
with the first two rows of the identity interchanged.

PA =
(

0 1
1 0

)(
0 1
1 1

)
=
(

1 1
0 1

)
=
(

1 0
0 1

)(
1 1
0 1

)

Variants of LU Factorization

There are several variants of LU factorization.
1. A = LU where L is lower triangular and U is unit upper triangular. This is

explored in the homework.

2. A = LDU where L is unit lower triangular, U is unit upper triangular and D is
diagonal.

3

Example If

A =

 2 −1 2
4 1 9
8 5 24

 = LŨ =

 1 0 0
2 1 0
4 3 1

 2 −1 2
0 3 5
0 0 1


perform an LDU decomposition.

All we need to do here is write our Ũ as DU where U is unit upper triangular. We
have  2 −1 2

0 3 5
0 0 1

 =

 2 0 0
0 3 0
0 0 1

 1 −1
2 1

0 1 5
3

0 0 1


Definition An n× n matrix is positive definite provided

~xTA~x > 0 for all ~x 6= 0

3. If A is symmetric and positive definite then A = LLT where L is lower triangular.
This is known as Cholesky decomposition. If the diagonal entries of L are chosen to be
positive, then the decomposition is unique.


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...
...

an1 an2 an3 · · · ann

 =


`11 0 0 · · · 0
`21 `22 0 · · · 0
`31 `32 `33 · · · 0
...

...
...

...
...

`n1 `n2 `n3 · · · `nn




`11 `21 `31 · · · `n1

0 `22 `32 · · · `n2

0 0 `33 · · · `n3
...

...
...

...
...

0 0 0 · · · `nn


Equating the (1,1) entry gives

`11 =
√

a11

Clearly, a11 must be ≥ 0 which is guaranteed by the fact that A is positive definite (just
choose ~x = (1, 0, . . . , 0)T). Next we see that

`11`i1 = a1i = ai1 ⇒ `i1 =
ai1
`11

, i = 2, 3, . . . , n

Then to find the next diagonal entry we have

`221 + `222 = a22 ⇒ `22 =
(
a22 − `221

)1/2
and the remaining terms in the second row found from

`i2 =
ai2 − `i1`21

`22
i = 3, 4, . . . , n

4

Continuing in this manner and similar to obtaining the equations for the LU factorization
we have the following algorithm.

Let A be a symmetric, positive definite matrix. Then the Cholesky factorization A =
LLT is given by the following algorithm

For i = 1, 2, 3, . . . , n

`ii =
(
aii −

i−1∑
j=1

`2ij

)1/2

for k = i + 1, . . . , n

`ki = `ik =
1
`ii

[
aki −

i−1∑
j=1

`kj`ij

]

Operation Count
One way to compare the work required to solve a linear system by different methods

is to determine the number of operations required to find the solution. We first look at the
number of operations required to multiply a vector by a matrix, then to perform a back
solve and finally to perform an LU decomposition. For homework you will be asked to do
an operation count for the decomposition of a tridiagonal matrix.

Multiplication of an n-vector by an n × n matrix. Suppose we want to perform the
multiplication 

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...
...

an1 an2 an3 · · · ann




x1

x2

x3
...

xn


We know that the result is a vector ~b so if we can determine the number of operations
required to compute one component of ~b then we can simply multiply this result by n. To
compute b1 we have to perform

b1 =
n∑
j=1

a1jxj

Consequently we need to multiply each a1j times xj and because there are n terms we
have n multiplications. We also need to sum up the n terms so we have n − 1 additions.
So for all n components we have n(n) multiplications and n(n− 1) additions. We say that
it requires order n2 multiplications and a like number of additions which means a constant
times n2. We denote this as O(n2) and say “order n squared”. Note that we have not
included the −n terms in the additions because this is negligible for large n.

Back solve. Recall the equations for performing a backsolve.
Given an n × n upper triangular matrix U with entries uij and an n-vector ~b with

components bi then the solution of U~x = ~b is given by the following algorithm.

5

Set xn =
bn
unn

For i = n− 1, n− 2, . . . , 1

xi =
bi −

∑n
j=i+1 ui,jxj

uii

Now computing the number of operations in this case is a bit more complicated than a
matrix vector multiplication. For xn we require one division; we will count multiplications
and divisions the same. For xn−1 we have one multiplication, one division and one addition.
For xn−2 we have two multiplications, one division and two additions. We have

Component multiplications divisions additions

xn 0 1 0
xn−1 1 1 1
xn−2 2 1 2
xn−3 3 1 3
...
x1 n 1 n-1

So counting multiplications and divisions as the same we have

(n) + (1 + 2 + 3 + · · ·+ n) = n +
n∑
i=1

i multiplications/divisions

and
n−1∑
i=1

i additions

Now we would like to have the result in terms of O(nr) for some r. If you recall from
calculus

p∑
i=1

i =
p(p + 1)

2

p∑
i=1

i2 =
p(p + 1)(2p− 1)

6

Using this first expression we obtain

n +
n2 + n

2
= O(n2) multiplications/divisions

and
(n− 1)2 + (n− 1)

2
= O(n2) additions

So we say that performing a back solve requires O(n2) operations.

6

LU factorization We now want to demonstrate that an LU factorization requires O(n3)
operations so that the bulk of the work is required for the LU factorization. Note that
when n is small there is not that much difference in O(n2) and O(n3) but when n is large, it
is hugely different. It is important to know the power of n in each of the major operations.
The same is true of GE; to transform a system to an equivalent upper triangular system
requires O(n3). Recall that back solving (and consequently forward solving) requires O(n2)
operations so to solve A~x = ~b by LU or GE requiresO(n3). If we have a symmetric, positive
definite system, then the operation count should be approximately half what it is for the
full matrix but that still means it’s O(n3).

Lets look at the first few terms until we see a pattern.

Component multiplications/div additions/sub

u1j 0 0
`i1, i = 2, . . . , n (n-1)(1) 0
u2j , j = 2, . . . , n (n-1)(1) (n-1)(1)
`i2, i = 3, . . . , n (n-2)(2) (n-1)(1)
u3j , j = 3, . . . , n (n-2)(2) (n-2)(2)

If we consider L we have

(n− 1)(1) + (n− 2)(2) + (n− 3)(3) + · · ·+ (1)(n− 1) =
n−1∑
i=1

i(n− i) = n
n−1∑
i=1

i−
n−1∑
i=1

i2

multiplications/divisions and using our formulas from calculus

n
n−1∑
i=1

i−
n−1∑
i=1

i2 = n
(n(n− 1)

2

)
−
((n− 1)n(2n− 3)

6

)
≈ n3

2
− n3

3
= O(n3)

We should get the same operation count for U so that the LU factorization requires O(n3)
operations.

Norms
We said that one of our goals was to determine whether a matrix was well-conditioned;

that is, if we perturb the data in a linear system by a small amount then we expect the
solution to be changed by a small amount. We have seen that the linear system can be
written as A~x = ~b so what we are really saying is if we perturb the vector ~b or the matrix A
by a small amount then the vector solution ~x should change by a small amount. But what
do we mean formally by changing a vector or a matrix by a small amount? The concept
of norm will be useful in this case and in many more settings.

The Euclidean length of a vector is actually a norm. We call that this is found by√√√√ n∑
i=1

x2
i

7

We want to generalize this concept to include other measures of a norm. We can view
the Euclidean length as a map (or function) whose domain is IRn and whose range is all
scalars i.e., f : IRn → IR1. What properties does this Euclidean length have? We know
that the length is always ≥ 0 and only =0 if the vector is identically zero. We know what
multiplication of a vector by a scalar k does to the length; i.e., it changes by the length by
|k|. Also, from the triangle inequality we know that the length of the sum of two vectors is
always ≤ the sum of the two lengths. We combine these properties into a formal definition
of a vector.

Definition A vector norm, denoted ‖~x‖, is a map from IRn to IR1 which has the properties
1. ‖~x‖ ≥ 0 and = 0 only if ~x = ~0
2. ‖k~x‖ = |k|‖~x‖
3. ‖~x‖+ ‖~y‖ ≤ ‖~x‖+ ‖~y‖

for all ~x, ~y ∈ IRn.

We can have other ways to measure vectors. All we have to do is find a map which
satisfies the above three conditions; however, practically it should be useful. Three of the
most useful vector norms are defined below.

Definition Most common vector norms are:

1. Euclidean norm, denoted ‖~x‖2 and defined by ‖~x‖2 =

√√√√ n∑
i=1

x2
i

2. Max or infinity norm, denoted ‖~x‖∞ and defined by ‖~x‖∞ = max
1≤i≤n

|xi|

3. one-norm, denoted ‖~x‖1 and defined by ‖~x‖1 =
n∑
i=1

|xi|

Example Determine ‖~x‖1, ‖~x‖2 and ‖~x‖∞ for each vector.

~x =


−3
2
4
−7


‖~x‖1 = | − 3|+ 2 + 4 + | − 7| = 16 ‖~x‖2 =

√
9 + 4 + 16 + 49 =

√
78

‖~x‖∞ = max{| − 3|, 2, 4, | − 7|} = 7

Example It is interesting to sketch the unit ball for each norm, i.e., sketch all points in
IR2 such that

{(x1, x2) such that ‖~x‖p = 1} for p = 1, 2,∞

Many times we will use a norm to measure the length of an error vector, i.e., we will
associate a number with a vector. In the previous example we saw that different norms

8

give us different numbers for the same vector. How different can these numbers be? Each
norm actually measures a different attribute of a norm. However, should we be worried
that if we can show a particular norm of the error goes to zero, then will the other norms
go to zero too? The following definition helps us to quantify this concept.

Definition Let ‖ · ‖α and ‖ · ‖β denote any two vector norms Then these norms are
norm-equivalent if there exists constants C1, C2 greater than zero such that

C1‖~x‖β ≤ ‖~x‖α ≤ C2‖~x‖β for all ~x

Note that if this inequality holds, we also have the equivalent statement

1
C2
‖~x‖α ≤ ‖~x‖β ≤

1
C1
‖~x‖α for all ~x

If two norms are norm-equivalent and we have that ‖~x‖β → 0 then clearly ‖~x‖α → 0.

We claim that any pair of our three vector norms are norm-equivalent. We show one
set here and you are asked to do another set for homework.

Example The norms ‖~x‖∞ and ‖~x‖2 are equivalent.
We have

‖~x‖22 =
n∑
i=1

x2
i ≥ max |xi|2 = ‖~x‖2∞

so C1 = 1.
Also

‖~x‖22 =
n∑
i=1

x2
i ≤ n max |xi|2 = n‖~x‖2∞

so C2 =
√

n.

‖~x‖∞ ≤ ‖~x‖2 ≤
√

n‖~x‖∞ for all ~x

Our next goal is to associate a matrix with a number; i.e., we want to define a matrix
norm.

9

