
Lecture 3 - Vectors and Matrices

Last time we saw that if we have n equations in n unknowns then there are n2

coefficients (some may be zero) and n right hand side components. To efficiently study
linear systems we need to write all linear systems in a generic form. To do this we need
to review vectors and matrices. Once we write our linear system as a matrix problem,
then we can view Gauss elimination in terms of matrices. Throughout we will assume that
the entries of our vectors and matrices are real; the results can be easily extended to the
situation where the entries are complex.

Vectors

To sketch IR2 (Euclidean space in two dimensions) we indicate the origin and the x
and y axes. Then any point can be represented as the ordered pair (x1, x2) which we can
associate with a vector ~x starting at the origin (0,0) and ending at the point (x1, x2). In
this case the vector ~x has a direction and a magnitude. In algebra, we calculated the length
of a vector by using the standard Euclidean distance, i.e.,√

x2
1 + x2

2 .

We call a vector which has length one a unit vector. We can think of IR2 as the set of pairs
(x1, x2) or equivalently all vectors with two components.

In IRn we have n dimensions so a point is represented by the ordered tuple (x1, x2, x3, . . . , xn)
and we can associate a vector ~x as emanating from the origin and terminating at this point.
IRn is the set of all n-tuples or equivalently all n-vectors. When we solve a system of n
equations in n unknowns then there are n values for the right hand sides and n unknowns
so these will be stored as vectors.

We will often use~i, ~j, ~k as notation for unit vectors in the x, y and z directions. This
means they have length one and lie along a coordinate axis.

• How do we perform standard operations with vectors such as scalar multiplication,
addition/subtraction and multiplication?

Scalar multiplication means we are multiplying our vector ~a by a number, say k, and
each component of the vector is multiplied by k. We have

k~a = k

(
a1

a2

)
=
(
k a1

k a2

)
If we think about this in IR2 we realize that we are just changing its Euclidean length by
the magnitude of k, i.e., the length of k~a is |k| times the length of ~a. To see this the length
of k~a is √

(k a1)2 + (k a2)2 =
√
k2
[
(a1)2 + (a2)2

]
= |k|

√
a2
1 + a2

2 .

Multiplying a vector by -1 does not change its length but it changes its direction.
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addition/subtraction of two vectors is done in the usual manner, i.e., addition/subtraction
of corresponding components. We should note that addition only makes sense if the two
vectors are of the same length. Because addition and scalar multiplication are performed
in the standard ways, the usual properties such as commutative, etc. hold. For example,

~x+ ~y = ~y + ~x α~x+ β~x = (α+ β)~x α(~x+ ~y) = α~x+ α~y

Example Which of the following are defined? If defined, determine the result of the
given operation. Here

~a =

 1
2
3

 ~b =
(

0
−4

)
~c =

(
−4
3

)

(i) the length of 10 ~c

(ii) 2~a−~b
(iiii) 3(~c−~b)
For (i) the length of 10~c is just ten times the length of ~c which is

√
15 + 9 = 5 so the

answer is 50. For (ii) ~a is a vector in IR2 and ~b is a vectors in IR3 so the operation is NOT
defined. For (iii) ~c,~b are vectors in IR2 so the operation is defined. ~c − ~b = (−4, 7)T so
three times this is (−12, 21)T .

Multiplication of vectors is different than multiplying two numbers. We can “multi-
ply” two vectors in two ways - in one (the dot or scalar product) the result is a number
and in the other (cross product )the result is a vector. Recall that in IR2 when we took the
dot product of two vectors we multiplied corresponding components and added to get

~x · ~y =
(
x1

x2

)
·
(
y1
y2

)
= x1y1 + x2y2

The same is true in IRn

~x · ~y =
n∑

i=1

xiyi .

Thus in order for the operation of scalar product to be defined, the vectors have to
have the same number of components. Note also that

~x · ~y = ~y · ~x

In vector calculus you learned an equivalent definition of dot product

~x · ~y = (magnitude of ~x)(magnitude of ~y) cos θ

where θ is the angle between the two vectors and we use the standard Euclidean length
for the magnitude. Because the cosπ/2 = 0 we immediately see that two vectors are
perpendicular or orthogonal if their dot product is zero.
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Note that if we take the scalar product of a vector with itself then the result is the
square of its Euclidean length; i.e., in IR2

~x · ~x = x2
1 + x2

2 =
[√

x2
1 + x2

2

]2
So the Euclidean length of a vector in IRn can be written as

√
~x · ~x =

[ n∑
i=1

x2
i

]1/2

.

In general, we think of a vector ~x as a column vector, i.e.,

~x =


x1

x2
...
xn


Sometimes it is useful to use a row vector, i.e., (x1, x2, . . . , xn). We write this row vector
as ~xT where the “T” means transpose. Because in written text it is easier to type a row
vector we often write, e.g., (x1, x2)T to mean a column vector in IR2.

a second way to “multiply” vectors is the cross product which results in a vector. We
will look at its definition in a later example.

Example Determine the following. Here

~a =

 2
1
0

 ~b =

 0
−4
1

 ~c =

 1
0
0


(i) ~a · 2~b
(ii) 3~cT

(iii) are ~b, ~c orthogonal vectors?

all operations are defined because all are vectors in IR3. For (i) ~a ·2~b is ~a · (0,−8, 2)T which
is 2 · 0 + (1)(−8) + 0(2) = 8. For (ii) we have (3, 0, 0), a row vector. For (iii) the vectors
are orthogonal because ~b · ~c = 0.

Matrices

Recall that we have n2 coefficients in our system so we need to store this information.
To do this, we introduce matrices which are rectangular arrays of numbers. We say A is
an m×n matrix if it has m rows and n columns. If the entries of A are denoted aij where
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i refers to the row and j to the column, then an m×n matrix A is written componentwise
as

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...
...

am1 am2 am3 · · · amn


an m× n matrix has mn entries so we can store our coefficients in an n× n matrix. Note
that an n-vector could be viewed as an n × 1 matrix. a row of a matrix is a row vector
and a column is a column vector.

Some matrices which have special structure are given individual names. The zero
matrix is simply what the name implies, a matrix with all zero entries. The diagonal
entries of a matrix are the entries aii. a diagonal matrix is one which aij = 0 for all i 6= j;
e.g., a 3× 3 diagonal matrix has the form

A =

 a11 0 0
0 a22 0
0 0 a33


The identity matrix, usually denoted I, is a diagonal matrix whose diagonal entries are
all ones. an upper triangular matrix is one where aij = 0 for j < i; e.g., a 3 × 3 upper
triangular matrix has the form

A =

 a11 a12 a13

0 a22 a23

0 0 a33


Note that by this definition a diagonal matrix is also an upper triangular matrix. Similarly
a lower triangular matrix is one where aij = 0 for i < j. Sometimes we will need a unit
lower or upper triangular matrix; these are just special lower or upper triangular matrices
which have ones as the diagonal entries; e.g., a unit 3× 3 lower triangular matrix is

A =

 1 0 0
a21 1 0
a31 a32 1


We can also take the transpose of a matrix. AT means to reflect the matrix around the
diagonal so if B = AT then bij = aji. Note that the diagonal entries are unchanged. If
the original matrix is not square, i.e., m× n then the transpose is n×m. For example,

AAT =
(

1 2 3
4 5 6

)T

=

 1 4
2 5
3 6


a matrix which has the property that A = AT is called symmetric; clearly a symmetric
matrix must be square. We can take the transpose of the product of two matrices for
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which multiplication is defined. If A is m×n and B is n×p then the product AB is m×p
and its transpose is p×m. We can use the following formula for computing (AB)T ; note
that BT is p× n and aT is n×m so BTAT is p×m:

(AB)T = BTAT

• How could you describe a matrix which is both lower and upper triangular?

addition and scalar multiplication of matrices is done in the standard way just as we
did for vectors. To multiply a matrix by a scalar k we simply multiply each entry by k.
To add two matrices, first they must have the same number of rows and columns, then
we simply add corresponding components. Because these operations are performed in the
standard way, we have the usual laws holding; e.g.,

A+B = B +A α(A+B) = αA+ αB

To define matrix multiplication, we could define it by multiplying corresponding en-
tries. However, our goal is to use a matrix and two vectors to represent our linear system.
Consequently, we need to define matrix multiplication in a meaningful way for this appli-
cation.

We first look at the definition of an m × n matrix A times an n × p matrix B. For
matrix multiplication to be defined, the number of columns of the first matrix must equal
the number of rows of the second matrix. We have

Am×nBn×p = Cm×p where cik =
n∑

j=1

aijbjk

that is, we can view this entry as taking the dot product of the ith row of A and the kth
column of B.

Example Determine AB and BA, if defined, where

A =

 3 2
1 −1
0 4

 B =
(

0 1
−2 1

)

First C = AB is defined because A has two columns and B has two rows. Then C = AB
has three rows and two columns and is given by

C =

 3 ∗ 0 + 2 ∗ (−2) 3 ∗ 1 + 2 ∗ 1
1 ∗ 0 + (−1)(−2) 1 ∗ 1 + (−1) ∗ 1
0 ∗ 0 + 4 ∗ (−2) 0 ∗ 1 + 4 ∗ 1

 =

−4 5
2 0
−8 4


Now D = BA is not defined because B has two columns and A has three rows. This
example shows us that, in general,

AB 6= BA
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in fact, if AB is defined BA many not be. Sometimes we use the terminology premultiply
B by A to mean AB and the terminology post-multiply B by A to mean BA.

Example Let I be the n× n identity matrix and A an n× n matrix. What is AI? IA?
Clearly pre- or post-multiplying a matrix by the identity matrix has no effect. Consider
pre-multiplying the m× n matrix A by the m×m identity matrix

1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
...

am1 am2 am3 · · · amn

 = A

Example If A, B are square, i.e., n×n then both AB and BA are defined. If AB = BA
then we say that the matrices commute. Do all square matrices commute?
Clearly no. as a counterexample consider(

1 −1
0 2

)(
2 4
−1 1

)
=
(

3 3
−2 2

)
but

(
2 4
−1 1

)(
1 −1
0 2

)
=
(

2 6
−1 3

)

Example What is the effect of premultiplying the given 3× 3 matrix A by the matrix

C =

 1 0 0
0 0 1
0 1 0

 where A =

 2 1 3
4 1 0
−6 0 2

?

Note that C is the identity matrix with the last two rows interchanged. The effect is to
interchange the last two rows of A which can be seen by direct multiplication.

Example What is the effect of premultiplying the given 3× 3 matrix A by the matrix

M =

 1 0 0
−2 1 0
3 0 1

 where a =

 2 1 3
4 1 0
−6 0 2

?

The matrix Ma is a matrix with the first row of A the same (because the first row of M
is the same as in identity matrix) and zeros have been introduced into the (2, 1) and (3, 1)
entries, i.e.,  1 0 0

−2 1 0
3 0 1

 2 1 3
4 1 0
−6 0 2

 =

 2 1 3
0 −1 −6
0 3 11


To write our linear system as a matrix equation we will have a matrix times a vector.

Because we can view an n-vector as simply an n × 1 matrix we already know how to do

6



this. If A is an n× n which contains our n2 coefficients, ~x is an n-vector of the unknowns
and ~b is the right hand side terms, then we have A~x = ~b. The ith row of A contains the
coefficients (in order) in the ith equation because the ith component of the vector a~x is

(A~x)i =
n∑

j=1

aijxj

We can also view our system using the columns of A which we denote by ~a1,~a2, . . .~an.
Then solving the linear system is equivalent to finding ~x such that

x1~a1 + x2~a2 + x3~a3 + · · ·+ xn~an = ~b

Example Form A~x where

A =

 2 1 1
4 −6 0
−2 7 2

 ~x =

x1

x2

x3

 .

Using matrix multiplication we have A~x is the vector

A~x =

 2x1 + x2 + x3

4x1 − 6x2

−2x1 + 7x2 + 2x3



Example Use your result in the previous example to write the linear system

2x1 + x2 + x3 = 1
4x1 − 6x2 = 2

−2x1 + 7x2 + 2x3 = 3

as a matrix equation a~x = ~b. Then write the equation in column form.
Clearly we have  2 1 1

4 −6 0
−2 7 2

x1

x2

x3

 =

 1
2
3


So now we can see the reason that matrix multiplication was defined in this way. We

can also view the linear system as finding ~x such that

x1

 2
4
−2

+ x2

 1
−6
7

+ x3

 1
0
2

 =

 1
2
3


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that is, we seek a combination of the columns of A (which themselves are vectors) which
forms the right hand side. This viewpoint is especially useful when we talk about the
solvability of A~x = ~b.

For an n × n matrix A we may be able to define an n × n matrix B which has the
property that

AB = BA = I

where I is the n × n identity matrix. If this holds, then B is called the inverse of A. If
such a matrix exists, then we denote it by A−1. Please realize that this is notation, it does
not mean 1/a because this doesn’t make sense. If A−1 exists then

AA−1 = A−1A = I

Why is A−1 important? Because

A~x = ~b⇒ A−1A~x = A−1~b⇒ I~x = A−1~b⇒ ~x = A−1~b

So analytically, if we have A−1 then we can obtain the solution by performing a matrix
times vector operation to get A−1~b. It turns out that computationally this is NOT an
efficient way to find the solution; we will address this later.

A matrix whose inverse is its transpose is called orthogonal; that is A−1 = AT

if AAT = ATA = I then A is orthogonal.

This tells us that if A is orthogonal then the linear system A~x = ~b is readily solved by
forming ~x = AT~b; i.e., we only have to perform a matrix times vector operation.

Example Let

A =
(

2 4
−1 −3

)
, A−1 =

−1
2

(
−3 −4
1 2

)
B =

(
1 −1
0 2

)
B−1 =

1
2

(
2 1
0 1

)
Demonstrate that AA−1 = I and BB−1 = I, then form AB, its inverse and the product
B−1A−1.
Now AB and its inverse are given by

AB =
(

2 6
−1 −5

)
(AB)−1 =

−1
4

(
−5 −6
1 2

)
and B−1A−1 is

B−1A−1 =
−1
4

(
−5 −6
1 2

)
= (AB)−1

In the last example we saw that the inverse of the product of two specific matrices
is the product of their inverses with the order of multiplication reversed. This is true in
general.
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Let AA−1 = I, BB−1 = I then
(
AB
)−1 = B−1A−1

The Matrix Form of Gauss Elimination (GE)

Now that we have written our linear system of equations as a matrix problem A~x = ~b,
we want to describe our GE algorithm in terms of matrix operations. First, recall an
example that we did in the previous lecture.

2x+ y + z = 5
4x− 6y = −2

−2x+ 7y + 2z = 9
⇒

2x+ y + z = 5
0− 8y − 2z = −12
0 + 8y + 3z = 14

⇒
2x+ y + z = 5

0− 8y − 2z = −12
z = 2

Lets concentrate on the left hand side for now and write the coefficient matrices for the
three systems above. 2 1 1

4 −6 0
−2 7 2

⇒
 2 1 1

0 −8 −2
0 8 3

⇒
 2 1 1

0 −8 −2
0 0 1


We first recognize that the last matrix is upper triangular so the goal in GE is to convert
the original system to an equivalent upper triangular system because we saw that this
type of system is easy to solve. What we want to do now is take the process we used to
eliminate x from the second and third equations in the first step of GE above and write it
as a matrix times A; e.g., find M1 such that

M1

 2 1 1
4 −6 0
−2 7 2

 =

 2 1 1
0 −8 −2
0 8 3


Now we want M1 as simple as possible. If we return to a previous example, we can guess
what M1 should be. We have 1 0 0

−2 1 0
1 0 1

 2 1 1
4 −6 0
−2 7 2

 =

 2 1 1
0 −8 −2
0 8 3


OurM1 is just a modified identity matrix where in the first column we have included the
factors we multiplied the first equation by so that when we added it to another equation
it removed the first variable. Note that M1 is unit lower triangular.

Our next step is to find M2 such that

M2

 2 1 1
0 −8 −2
0 8 3

 =

 2 1 1
0 −8 −2
0 0 1


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Now M2 must have the property that the first two rows remain unchanged but we know
that multiplication by the identity matrix doesn’t change anything. Clearly the first two
rows of M2 must be the identity matrix. Now we modify the (3,2) entry of M2 so that
we introduce a zero into the (3,2) entry . We have 1 0 0

0 1 0
0 1 1

 2 1 1
0 −8 −2
0 8 3

 =

 2 1 1
0 −8 −2
0 0 1


because our multiplier in the equation was one. We have converted the original matrix A
to

M2M1A = U

where U is an upper triangular matrix and each Mi is unit lower triangular.
We multiplied the left hand side of our equation first by M1 and then by M2 so we

have to do the same thing to both sides of the equations:

M2M1A~x =M2M1~b

Notice that the order here is important because, in general, matrix multiplication is not
commutative. Now in our example if we multiply our vector ~b byM1 and then byM2 we
should get (5,−12, 2)T . You should verify this.

If we have an n× n system then M1 has the form

M1 =


1 0 0 · · · 0
m1

21 1 0 · · · 0
m2

31 0 1 · · · 0
...

...
...

. . .
...

mn1 0 0 · · · 1


where

m1
21 = −a21/a11 m1

31 = −a31/a11 m1
i1 = −ai1/a11

Recall that a11 is called our first pivot and must be nonzero for the algorithm to work. M1

is a unit lower triangular matrix but moreover, it is the identity matrix modified to have
nonzero entries only in the first column below the diagonal. M2 is a unit lower triangular
matrix but moreover, it is the identity matrix modified to have nonzero entries only in
the second column below the diagonal. Note that the entries of M2 in the second column
below the diagonal are determined by the pivot in the modified matrix A1 =M1A.

• If A is the 10 × 10 coefficient matrix for a linear system (with ten unknowns) that
has a unique solution, what is the maximum number of matrices Mi that we must
determine to transform A into an upper triangular matrix?

The matrices Mi are called elementary matrices or Gauss transformation matrices.
Because they differ from the identity matrix in only one column their inverse can be easily
determined. From our example above

M1 =

 1 0 0
−2 1 0
1 0 1

 [
M1

]−1 =

 1 0 0
2 1 0
−1 0 1


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and

M2 =

 1 0 0
0 1 0
0 1 1

 [
M2

]−1 =

 1 0 0
0 1 0
0 −1 1


You should verify this by multiplication. So we can immediately obtain the inverse ofMk

by multiplying our entries in the kth column below the diagonal by -1. So the inverse of
an elementary matrix is also a unit lower triangular matrix and it differs from the identity
by entries in one column below the diagonal.

Example Find the Gauss transformation matricesM1 andM2 which converts the given
matrix to an upper triangular matrix; give this upper triangular matrix. If the right hand
side of the corresponding linear system is ~b = (−1, 0,−2)T , what is the resulting upper
triangular system that needs to be solved? Here

A =

 1 −1 0
3 4 7
−2 0 1


We have

M1A =

 1 0 0
−3 1 0
2 0 1

 1 −1 0
3 4 7
−2 0 1

 =

 1 −1 0
0 7 7
0 −2 1


and

M2(M1A) =

 1 0 0
0 1 0
0 2/7 1

 1 −1 0
0 7 7
0 −2 1

 =

 1 −1 0
0 7 7
0 0 3

 = U

The resulting system is then 1 −1 0
0 7 7
0 0 3

 ~x =M2M1

−1
0
−2

 =

 1 0 0
−3 1 0
2 2/7 1

−1
0
−2

 =

−1
3
−4


So far, we have constructed Gauss transformation matrices Mk such that

MqMq−1 · · ·M2M1A = U

where U is an upper triangular matrix. Our system A~x = ~b becomes

MqMq−1 · · ·M2M1A~x =MqMq−1 · · ·M2M1~b⇒ U~x =MqMq−1 · · ·M2M1~b .

Because we can immediately write down the inverse of each Mk we can write

A =
[(
M1

)−1(M2
)−1 · · ·

(
Mq−1

)−1(Mq
)−1
]
U
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which says that A can be written as the product of unit lower triangular matrices times an
upper triangular matrix. If we can show that the product of unit lower triangular matrices
is itself a unit lower triangular matrix, then we have shown that GE is equivalent to writing

A = LU

where L is unit lower triangular matrix and U is upper triangular. We will see later how
this interpretation of GE can lead to an algorithm which is equivalent to GE on paper but
its implementation can be much more efficient in some situations.

Example Perform the product
[
M1

]−1[M2
]−1 where these are the matrices above. 1 0 0

0 1 0
0 −1 1

 1 0 0
2 1 0
−1 0 1

 =

 1 0 0
2 1 0
−1 −1 1


We notice that after multiplying these two matrices we see a definite pattern to the product.
Is this true in general? Let’s do a product

[
M1

]−1[M2
]−1 for general entries 1 0 0

0 1 0
0 ν3 1

 1 0 0
µ2 1 0
µ3 0 1

 =

 1 0 0
µ2 1 0
µ3 ν3 1


Of course this doesn’t prove that it is true in general but you can convince yourselves
that a product of lower triangular matrices is lower triangular and a product of unit lower
triangular matrices is unit lower triangular.

Of course if in the process of constructing Mk we find a zero pivot, i.e., ak
kk = 0

then the method fails because we are dividing by zero in our formula for the entries of
Mk. Previously, we found that we could interchange the equations to eliminate a zero
(or small) pivot. We now want to determine how interchanging rows of our matrix can be
done by premultiplying by some other matrix. If you recall we had an example where we
premultiplied a matrix by a matrix which looked like the identity matrix but the last two
rows were interchanged. Premultiplying by this matrix had the effect of interchanging the
last two rows.

Permutation matrices are n× n matrices which are formed by interchanging rows (or
columns) of the identity matrix. For example,

P =

 0 0 1
0 1 0
1 0 0

 Q =

 0 1 0
1 0 0
0 0 1


are permutation matrices. Premultiplying a 3× 3 matrix by P interchanges the first and
third rows; premultiplying a 3× 3 matrix by Q interchanges the first and second rows.

• What does post-multiplying a matrix by a permutation matrix do?
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If we include permutation matrices our GE process can be written as

MqP qMq−1P q−1 · · ·M2P 2M1P 1A = U

Of course if row interchanges are not needed then P k is just the identity matrix. One can
demonstrate that[(

Mq
)−1(

P q
)−1(Mq−1

)−1(
P q−1

)−1 · · ·
(
M2

)−1(
P 2
)−1(M1

)−1(
P 1
)−1
]

is also unit lower triangular so that we still have A = LU .

Back Solving

We have seen that GE can be viewed as converting our original problem A~x = ~b into
an equivalent upper triangular system U~x = ~c. In our examples, we saw that once we have
an upper triangular system we can easily solve it by starting with the last variable and
solving until we get to the first. This process is called a back solve. We can easily describe
the algorithm for a back solve. First, lets do a specific example to remind ourselves.

Example Solve the upper triangular system 2 1 1
0 −8 −2
0 0 1

x1

x2

x3

 =

 5
−12

2


Clearly x3 = 2; because −8x2 − 2x3 = −12 we have −8x2 = 8 which implies x2 = 1.
Lastly, substituting our values for x2, x3 into 2x1 +x2 +x3 = 5 implies 2x1 = 5−1−2 = 2
or x1 = 1.

Now consider the general upper triangular system

u11 u12 u13 u14 · · · u1n

0 u22 u23 u24 · · · u2n

0 0 u33 u34 · · · u3n
...

...
. . .

...
...

0 0 0 · · · un−1,n−1 un−1,n

0 0 0 0 · · · unn





x1

x2

x3
...

xn−1

xn

 =



b1
b2
b3
...

bn−1

bn


To write the equations we just equate entries on the vectors of the right and left sides of
the equation; recall that U~x is itself a vector. We have

xn =
bn
unn

Then to obtain xn−1 we equate the n− 1 component

un−1,n−1xn−1 + un−1,nxn = bn−1 ⇒ xn−1 =
bn−1 − un−1,nxn

un−1,n−1
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For xn−2 we equate the n− 2 component

un−2,n−2xn−2+un−2,n−1xn−1+un−2,nxn = bn−2 ⇒ xn−2 =
bn−2 − un−2,n−1xn−1 − un−2,nxn

un−2,n−2

In general, we can find the ith component of ~x for i < n by

xi =
bi −

∑n
j=i+1 ui,jxj

uii

We can write the general algorithm in the following manner using pseudo-code. Note that
we want to write it in such a way that another person could take the algorithm and code
it in the language of their choice.

Given an n× n upper triangular matrix U with entries uij and an n-vector ~b with compo-
nents bi then the solution of U~x = ~b is given by the following algorithm.

Set xn =
bn
unn

For i = n− 1, n− 2, . . . , 1

xi =
bi −

∑n
j=i+1 ui,jxj

uii
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