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Example: A 9-D Space with a 2-D Subspace (Sirovich)
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Example: Composite Photographs (Francis Galton)
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Example: Facial Recognition (Muller, Magaia, Herbst)

Image from Muller, Magaia, Herbst
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Example: Fluid Flow with Varying Input
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Model Reduction

Earth satellites generate too much data to send; most of what is
received is sent to archives and ignored.

Particle accelerators record billions of collisions; human
investigators only see the tiny fraction selected by computer
scanning.

Cheap data floods the world, but the information still hides inside.

To extract that information: model reduction or reduced order
modeling..
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Model Reduction

Suppose we have N records, each of M computer words.

Suppose there are patterns and structures in this data.

We want to keep most of the information, but using less than
M ∗ N computer words.

Also, can we detect and exhibit the structures?
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The IN/OUT Flow: region
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The IN/OUT Flow, Governing Equations

Navier-Stokes equations for velocity vector u(x , y) and pressure
p(x , y):

ρut − µ∆u + ρ(u · ∇)u +∇p = 0

ρ∇ · u = 0
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Finite Elements: The Elements

We create a mesh of “elements”.
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Finite Elements: Function approximation

FEM approximates velocity and pressure using basis functions
generated by mesh:

u(x , y) ≈ U(x , y) =
NV∑
i=1

ai φi (x , y)

p(x , y) ≈ P(x , y) =
NP∑
j=1

bj ψi (x , y)

Pack coefficients a and b into one vector c .

The set of possible vectors C are now a “model” of the problem.
(but certainly a “fat” model, in need of reduction.)
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Finite Elements: State equations

For true solutions u and p of the state equations, the momentum
and continuity equations are satisfied exactly, and everywhere in
the region.

Momentum(u(x , y), p(x , y)) = 0

Continuity(u(x , y), p(x , y)) = 0
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Finite Elements: Galerkin method

form approximate U(x , y), P(x , y);

evaluate state equation residuals for U and P.

require orthogonality of residuals to corresponding basis
functions.

∫
Ω
Momentum(U(x , y),P(x , y)) φi (x , y)dΩ = 0∫

Ω
Continuity(U(x , y),P(x , y)) ψj(x , y)dΩ = 0 (1)

13 / 1



The IN/OUT Flow: Solution

41 by 41 grid of nodes;

800 quadratic triangular elements;

M = 3,362 velocity coefficients.

Solve for N=500 time steps.
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The IN/OUT Flow, Boundary Conditions

We control the strength of the parabolic inflow at lower left.

Inflow strength abruptly changed at step 250.

During startup and for boundary shock at step 250 the flow will
exhibit a wide range of transient patterns.
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The IN/OUT Flow, Direction Field, Time Step 1

16 / 1



The IN/OUT Flow, Direction Field, Time Step 100
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The IN/OUT Flow, Direction Field, Steady State
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FACES: A Second Set of Data

200 people were each photographed in 3 poses for N=600 images.

If each image used 400 * 800 pixels, this makes about 300,000
pixels, each with R, G and B values, for about M=1,000,000
numeric values.
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SVD: The Singular Value Decomposition

The singular value decomposition will be our key to reduced order
models.

The SVD of an M by N (real) matrix A:

A = U · Σ · V ′

U is M by M orthogonal;

Σ is an M by N (nonnegative) diagonal matrix.

V is N by N orthogonal;
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SVD: Diagram

Image from Muller, Magaia, Herbst
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SVD: What the SVD Tells Us

For a system with patterns, the SVD decomposition tells us where
the information is concentrated.

A = U · Σ · V ′

The leading columns of U are the “preferred behaviors”;

The diagonal of Σ is an energy or importance weight;

The entries of Σ are positive, and sorted in decreasing order;

For information with patterns, the entries of Σ are rapidly
decreasing.
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SVD: Creating a Reduced Model

The reduced model chooses the first L columns of U. (L might be
prespecified, or determined by Σ )

Replace Σ by Σ̂, zeroing entries beyond L.

The “interesting” or dominant information in A should be well
described by

Â = U · Σ̂ · V ′
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SVD Model Reduction for IN/OUT

500 flow fields were computed.

Subtracting a multiple of the steady state solution “normalized”
the data to zero boundary conditions.

The 16 dominant (and orthogonal) modes were extracted.
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SVD Model Reduction for IN/OUT: Vector 1
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SVD Model Reduction for IN/OUT: Vector 2
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SVD Model Reduction for IN/OUT: Vector 3
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SVD Model Reduction for IN/OUT: Vector 4
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SVD Model Reduction for IN/OUT: Vector ”Importance”

Index Value Relative Cumulative

1 26.9107 0.527 0.527
2 7.0878 0.138 0.666
3 6.5015 0.127 0.794
4 3.1420 0.061 0.855
5 1.6973 0.033 0.889
6 1.4947 0.029 0.918
7 0.9253 0.018 0.936
8 0.7592 0.014 0.951
9 0.5738 0.011 0.962

10 0.4570 0.008 0.971
... ... ... ...
16 0.0994 0.001 0.997
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SVD Model Reduction for IN/OUT: Vector ”Importance”
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SVD Model Reduction for FACES

Using similar SVD methods on the face data, here are first 8
modes or “eigenfaces”.

Usually 100 or 150 “eigenfaces” are enough to store almost all the
facial information.

Image from Muller, Magaia, Herbst
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SVD Model Reduction for FACES: Vector ”Importance”

Image from Muller, Magaia, Herbst
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SVD Model Reduction: An Empirical Model

For the IN/OUT flow, we started with a model, namely the Navier
Stokes equations.

For faces, we have no prior “theory” or formulas for what faces
should do.

In both cases, the SVD identified the important basis functions.

The SVD can form an empirical model without any underlying
theory.
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ROM: Reduced Order Modeling

Reduced order modeling applied to the data extracts an orthogonal
basis, in order of importance.

The singular values tell us how much information we are saving
from the raw data.

If the raw data is a good sample, and the SVD allowed us to select
a small but very important basis, then we may accidentally have an
empirical basis set, a sort of accidental physical law that we can
use.
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ROM: Representing New Data

“Eigenfaces” extracted and compressed information from face
dataset.

Can the eigenface basis set recognize new faces?

The flow vectors represented dominant modes in the flow field.

Can we solve new problems in the same region using this smaller
basis?
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ROM: Solving New IN/OUT Problems

Any flow vector (original data, or extracted singular vector)

is a sum of the finite element basis vectors

defines a flow function (U(x , y),P(x , y)).

The extracted singular vectors:

may or may not satisfy boundary conditions;

satisfy the continuity equation;

Linear combinations of the first few singular vectors can represent
most of the behavior of our data.

Why not use them as a new finite element basis?

36 / 1



ROM: Solving New IN/OUT Problems

The strength of the boundary input flow varies in new ways. 37 / 1



ROM: Solving New IN/OUT Problems

L2 difference between ROM and full FEM solutions.
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ROM: Solving New FACES Problems

Reconstruction using 40, 100, 450 eigenfaces.

Image from Muller, Magaia, Herbst
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ROM: The Covariance Matrix

The SVD includes information that can be used to recognize or
reject new data. If we “gently” preprocess the data, we get usable
covariance information.

Subtract average from all data;

Scale, dividing by
√
N;

U vectors are maximum variation directions

Σ contains standard deviations
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ROM: The Covariance Matrix

Image from Muller, Magaia, Herbst
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ROM: The Covariance Matrix

Suppose we have a new item. Is it a face?

Subtract the average, and project it onto the U vectors.

From the SVD information, we can compute the probability that
an item of data would fall this far from the average.
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Summary of ROM

SVD is a key approach.

unknown information and patterns discovered.

compact representation of huge dataset;

a natural (secondary) basis for FEM calculations.

projection can be used to “recognize” new data.
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