
Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
1 / 255

Where Did the PDE Go?

The problems we want to work on involve partial differential
equations.

But, as Acting Professor Hans-Werner van Wyk suggested in his
lecture, we can think of the PDE’s as being a “black box” that
operates in some unknown way on our input ~x to produce our
output ~u(~x), based on which we can compute a quantity of
interest QoI = q(~u(~x)).

We want to think about adding uncertainty to the input ~x . Here,
by “input”, we might mean the initial conditions, boundary
conditions, right hand side, coefficients, or even the geometry of
the problem. But we can still wrap up all these quantities into the
mysterious input ~x .

2 / 255

Integration Estimates Uncertainty

If our input is uncertain, so is our output. Instead of solving one
problem, we need to imagine solving every problem, and then
saying something about the average or expected result.

This will be done using integration, and we can talk about
integration as an abstract process that looks something like

I (f , [a, b]) =

∫ b

a
f (x) ρ(x) dx

The uncertainty is hidden in ρ(x), the PDE is hidden inside of f (x).

My lectures will concentrate on the questions of setting up an
integral involving an uncertain quantity, and estimating that
integral, with a final discussion of what happens if the integration
space is high dimensional.

3 / 255

One Page Summary

We need integrals to formulate the stochastic partial differential
equations in a way that allows us to determine the solution
functions, or (more typically) the statistical quantities that
characterize them.

We need high dimensional integrals because the stochastic
influence on the PDE typically involves a potentially unlimited
number of factors or coefficients.

We need to approximate high dimensional integrals because
closed-form solutions are unavailable.

We may need sparse grids to approximate high dimensional
integrals because the standard approximation methods for high
dimensional integrals quickly become overloaded with excessive
(and unnecessary!) work.

4 / 255

”Reality” (Actually, an Engineering Model)

5 / 255

Computational Model

6 / 255

A “Simple” Function F(X)

7 / 255

Focus on Effect of Uncertainty

The forebody simulator problem is an example of a deterministic
problem in which input (inflow profile and bump shape) influences
the solution of a PDE (Navier Stokes flow equations), resulting in
a state variable (velocity field and pressure) from which we can
extract a quantity of interest (integral of difference between
computed and ideal flow along a profile line).

It can be convenient to “forget” that a PDE was involved, and to
simplify the process to

x → u(x)→ Q(u(x))

When we add uncertainty, our problem becomes something like

(x , ξ)→ u(x , ξ)→ Q(u(x , ξ))→ E (Q(u(x , ξ)))

I will ignore the PDE, which explains how (x , ξ) becomes u(x , ξ),
and concentrate on the uncertainty questions.

8 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

9 / 255

INT: The Sum as an Average

Why are integrals so important in stochastic problems - or in
mathematics, in general?

The integral is an averaging process. To see this, let’s begin with
the related idea of summation. If f () is some quantity we have
measured and indexed n times, then we know the average value is:

f =

∑n
i=1 fi

n

The averaging process has produced a single value f that
represents all the values we collected.

10 / 255

INT: The Integral as an Average

In the integral case, we usually think that the integral of f (x)
from a to b represents the area under the curve.

Since the the region described has a base at the x axis, a height of
f (x), and a horizontal extent of (b − a), we could say that the
integral is computing the area by getting an averaged height and
multiplying it by the width.

In other words:

f =

∫ b
a f (x)dx

(b − a)

Thus, when we are dealing with a function over a finite range, the
integral can be used to produce an average value of the quantity,
and, if f is continuous, we can also see that:∫ b

a
f (x)dx = f · (b − a) = f (ξ) · (b − a) for some ξ ∈ [a, b]

11 / 255

INT: The Weighted Sum

If I roll two dice n = 1000 times, I can write down 1000 results
fi , and compute the average.

f =

∑1000
i=1 fi

1000

Or, I might realize that there are 11 possible results, and simply
keep track of how many times each result occurs. Then, I have 11
kinds of results fj = j + 1, j = 1 to 11, each with an associated
value vj that indicates how many times it occurred, and I can
average by:

f =

∑11
j=1 vj fj

1000
=

∑11
j=1 vj fj∑11
j=1 vj

12 / 255

INT: The Weighted Sum

Another way of looking at the first averaging process, (in which
each outcome was equally likely) is to let wi = 1

1000 so that we can
write:

f =
1000∑
i=1

wi fi

Similarly, in the case where the outcomes had different likelihoods,
I can normalize my weights by writing wj =

vj∑12
j=2 vj

so that we

again have:

f =
11∑

i=1

wi fi

13 / 255

INT: Discrete Probability as a Weight

I rolled 2 dice 1,000 times, and counted how many times I got a
2, a 3, and so on up to a 12. Let’s change notation a little bit, so
that our index is i , it runs from 2 to 12, and the quantity fi

indicates the frequency with which we got the value i . Thus, the
value f5 = 51 means we rolled a 5 51 times.

We assume that our results sample the behavior of the dice, and
that, if we roll the dice again, the results will follow the same
pattern. The easiest way to express this requires us to divide the
observed frequency fi by the number of trials n to get an estimate
of the (discrete) probability of the event i :

pi =
fi

n

When probabilities come from observations, many unlikely events
won’t be observed; our model assigns them probability 0, but
hurricanes and earthquakes are...very, very “interesting”.

14 / 255

INT: Discrete Probability as a Weight

An estimated probablity is better than a frequency, because we
can carry out n = 100 trials and n = 1000 trials and easily compare
the two probability estimates. If we have observed “enough” trials,
we can expect the probability estimates to be very similar.

More importantly, probabilities are weights, and are normalized to
sum up to 1.

So we can use probabilities to get average outcomes.

If our probability is an estimate from observations, then the
average means the average over the observed data.

But if our probability comes from a mathematical theory, then this
idea allows us to predict the average of results that we have
not yet observed.

fi =
n∑

i=1

pi fi

15 / 255

INT: Estimated Probablity of Observed Data

I have rolled two dice 1,000 times. There are 36 possible
outcomes, whose observed frequencies are:

1 2 3 4 5 6

1 37 18 16 24 24 38
2 19 29 23 28 38 28
3 21 30 28 32 22 30
4 22 29 33 31 34 31
5 29 19 41 29 27 22
6 30 27 37 22 23 29

Obviously, these numbers sum to 1000. To estimate probabilities, I
divide frequencies by 1000. I estimate the probability of rolling
(1,2) to be 0.018, and the probability of (2,1) is estimated to be
0.019.

16 / 255

INT: Average of Quantity of Interest of Observed Data

A quantity of interest can be thought of as any function of our
fundamental variables. In our work, these fundamental variables
have some random variation.

If my fundamental variables are the values showing on my two
dice, a simple quantity of interest q is the sum. To compute q, the
average value of q, from my observations, I compute the sum of
the following 36 terms:

q =
6∑

i=1

6∑
j=1

p(i , j) · q(i , j)

where p(i , j) is my estimated probabilities:
q_bar =

0.037 * 2 + 0.018 * 3 + 0.016 * 4 + 0.024 * 5 + 0.024 * 6 + 0.038 * 7

+ 0.019 * 3 + 0.029 * 4 + 0.023 * 5 + 0.028 * 6 + 0.038 * 7 + 0.028 * 8

+ 0.021 * 4 + 0.030 * 5 + 0.028 * 6 + 0.032 * 7 + 0.022 * 8 + 0.030 * 9

+ 0.022 * 5 + 0.029 * 6 + 0.033 * 7 + 0.031 * 8 + 0.034 * 9 + 0.031 * 10

+ 0.029 * 6 + 0.019 * 7 + 0.041 * 8 + 0.029 * 9 + 0.027 * 10 + 0.022 * 11

+ 0.030 * 7 + 0.027 * 8 + 0.037 * 9 + 0.022 * 10 + 0.023 * 11 + 0.029 * 12

and the result of this is 7.071.
17 / 255

INT: Average Quantity of Interest of Observed Data

Number of trials
n = 1000;

Compute N random pairs of integers between 1 and 6
d = randi ([1, 6), n, 2);

Count how many times each pair occurs.
for i = 1 : 6

for j = 1 : 6

f(i,j) = length (find (d(:,1) == i & d(:,2) == j));

end

end

Convert frequency to estimated probablity.
p(1:6,1:6) = f(1:6,1:6) / n;

Our quantity of interest is the sum.
for i = 1 : 6

for j = 1 : 6

q(i,j) = i + j;

end

end

Determine the exact average quantity of interest.
q_bar = 0.0;

for i = 1 : 6

for j = 1 : 6

q_bar = q_bar + p(i,j) * q(i,j)

end

end

7.071

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/sum estimate.m

18 / 255

INT: Average Quantity of Interest of Theoretical Data

I assume a pair of dice are constructed to be uniform or fair
(1/6 chance of each result) and independent (so 1/6 * 1/6
chance of each pair of results.) Without rolling the dice, I can
compute a table of probabilities. Every entry is 1/36 = 0.0278.

Since we haven’t actually rolled the dice, we aren’t really
computing the average value, but the expected value, which is a
sort of average over probability space. The formula is very familiar:

E (q) =
6∑

i=1

6∑
j=1

p(i , j) · q(i , j) =
6∑

i=1

6∑
j=1

1

36
(i + j)

and the result is exactly 7.

Now I haven’t actually rolled any dice. I am averaging events that
have not occurred. I am making a prediction, or a probabilistic
judgment, based on my model of the behavior of the dice.

19 / 255

INT: The Expected Value

When we were talking about observed data, it was clear that we
could compute q, the average of the quantity of interest, by
computing its value for each observation, and averaging.

Instead of estimating probabilities from observed frequencies, we
can simply produce a set of probabilities in advance, as a model or
theory of a process. Now, for the basic variables, or any quantity
of interest, we compute an average weighted by the probabilities,
and call the result E (q), the expected value.

If our model is correct, actually rolling the dice many times
produces a sequence of values of q whose average tends to E (q).

We can compute it because probabilities express our model, and
integration produces the resulting average or representative value.

20 / 255

INT: The Expected Value

Exercise 1: Suppose we have two fair dice. What is the
expected value of the quantity of interest Q which is the product
of the values of the two dice?

Exercise 2: When we draw cards from a standard deck of 52, the
second event is not independent of the first. But suppose the deck
is very large, so that the probabilities stay the same after each
draw. The game of Blackjack starts with the player receiving two
cards from the deck. The suit of the card doesn’t matter, so there
are really only 13 distinct cards. Cards 2 through 10 have their
face value, J, Q and K count as 10, and for simplicity we will
assume the Ace counts as 11. What is the expected value of the
sum of your two cards?

21 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

22 / 255

PDF: Continuous Probability as a Weight

Now suppose that our probabilistic system does not select one of
a set of discrete values. Instead, our outcome is a real number in
some range Ω, which is typically an interval, finite, semi-infinite, or
infinite.

For the discrete case, we interpreted a probability as an expected
relative frequency. If the ace of spades had a 1/52 probability of
being selected from a deck, that is, p(A♠) = 1

52 , then we expected
to pick it about 10 times in 500 draws.

But, except for special cases, when we have a continuously varying
set of outcomes, every outcome x must have zero probability, that
is, p(x) = 0!

We will explain this in a moment, but realize one thing: for
continuous variables, an event with zero probability is not the same
thing as an impossible event.

23 / 255

PDF: Continuous Probability as a Weight

For continuous variables, instead of thinking of probability, we
think of probability density. If our outcome variable is x , then
this density is often written as ρ(x), that is, “rho of x”.

The probability density is a nonnegative weight with unit integral:∫
Ω
ρ(x)dx = 1

Instead of asking about a single outcome x , we will want the
probability of events such as a < x , or x < b, or a < x < b:

p(a < x < b) =

∫ b

a
ρ(x)dx

If the desired outcome is not an interval, we can write D as the set
of desired outcomes, and the probability of an outcome e that
belongs to the set D is

p(e) =

∫ b

a
χD ρ(x)dx =

∫
D
ρ(x)dx

24 / 255

PDF: Density for a Finite Interval

Over the interval [0,1], the uniform density is the function
ρ(x) = 1. The likelihood that the outcome will be in any
subinterval of [0,1] is simply the length of that subinterval.

For a general finite interval [a, b], the uniform density is

ρ(x) =
1

b − a

Suppose we want a linear density for the interval [0, 1]? We might
try the function ρ(x) = x , which is nonnegative (good), but whose
integral is 1

2 . If we normalize the function by dividing by its
integral, we get a linear density function for [0, 1]:

ρ(x) = 2 · x
In general, we can propose any nonnegative function f (x) as a
density function, as long as we normalize it by its integral. This
assumes, of course, that f (x) is integrable, and has a finite
integral!

25 / 255

PDF: Density for a Double Infinite Interval

It’s impossible to have a uniform density for an infinite interval.
Any density function must go to zero, and fast, as |x | → ∞.

If we want to guarantee that every polynomial function, multiplied
by the weight, goes to zero, some kind of negative exponential
weight is perfect.

For the domain (−∞,+∞), the Gaussian, or standard normal
density function, with mean µ = 0 and variance σ2 = 1 is:

ρ(x) =
1√
2π

e−
x2

2

A more general version of this density function allows you to
specify any mean µ and variance σ2:

ρ(µ, σ; x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

26 / 255

PDF: Density for a Semi-Infinite Interval

The exponential PDF applies to the semi-infinite interval
[0,+∞), with PDF

ρ(x) = λe−λx

where λ is a parameter that must be greater than 0. In the
standard case, we take λ = 1.

Exercise 3: What are the values of the mean µ and variance σ2

for the exponential PDF?

Exercise 4: With λ = 1 in the exponential PDF, what is the
expected value of x2?

27 / 255

PDF: The Expected Value for Continuous Variables

The density function ρ(x) holds all probabilistic information
about a random variable.

The zeroth moment is the integral of ρ(x), and is always 1. This is
the probability that something (anything) will happen.

To determine the average or expected value or first moment of the
random variable, we use ρ(x) to compute:

µ = x = E [x] =

∫
Ω

x ρ(x) dx

In particular, for the uniform density on [0,1], we have µ = 1
2 , and

for the normal density on (−∞,+∞), we have µ = 0.

The variance or σ2 or second centered moment is the expected
value of the squared difference of x and its expected value µ:

σ2 = E [(x − µ)2] =

∫
Ω

(x − µ)2ρ(x)dx

28 / 255

PDF: Mean and Variance for Uniform Density

For a variable described by the uniform density over [0, 1], we
know µ = 1

2 . For the variance, we compute:

σ2 ≡
∫

Ω
(x − µ)2ρ(x) dx

=

∫ 1

0
(x − 1

2
)2 · 1 dx

=

∫ 1

0
x2 − x +

1

4
dx

= (
x3

3
− x2

2
+

x

4
)

∣∣∣∣1
0

=
1

12
≈ 0.0833

Exercise 5: Show that, for any PDF, σ2 = E (x2)− (E (x))2.

29 / 255

PDF: Variance of Samples from Uniform Distribution

If we select n sample variables from some random process, we
can compute the sample mean and sample variance. If n is large,
we’d expect these to be close to the mean and variance of the
PDF.

There are some minor variations in how the variance σ2 might be
calculated.

x = rand (n, 1);

mu = sum (x) / n;

mu2 = sum (x.^2) / n;

v1 = sum ((x - mu).^2) / n;

v2 = mu2 - mu^2; <-- Actually the same as V1

v3 = sum ((x - mu).^2) / (n - 1); <-- Statisticians prefer this.

v4 = sum ((x - 0.5).^2) / n; <-- Variance of sample from PDF mean

N Mu MU2 V1 V2 V3 V4

1 0.7409 0.5489 0.0000 NaN 0.0580 0.0000

10 0.6087 0.4491 0.0785 0.0872 0.0903 0.0785

100 0.5181 0.3494 0.0809 0.0817 0.0812 0.0809

1000 0.5055 0.3453 0.0897 0.0898 0.0897 0.0897

10000 0.4956 0.3293 0.0837 0.0837 0.0837 0.0837

100000 0.5004 0.3337 0.0833 0.0833 0.0833 0.0833

1000000 0.5004 0.3336 0.0832 0.0832 0.0832 0.0832

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/uniform variance.m

30 / 255

PDF: Mean and Variance for Normal Density

For a variable described by the normal density over (−∞,+∞),
it’s easy to see that µ = 0. The variance is:

σ2 =

∫
Ω

(x − µ)2ρ(x)dx

=

∫ +∞

−∞
x2 · 1√

2π
e−

x2

2 dx

=
1√
2π

∫ +∞

−∞
x2e−

x2

2 dx

=1

Exercise 6: Show in two different ways how to determine the
value of E (x2) for the normal PDF.

31 / 255

PDF: Variance of Samples from Normal Distribution

x = randn (n, 1); <-- How to get normal random values in MATLAB;

mu = sum (x) / n;

mu2 = sum (x.^2) / n;

v1 = sum ((x - mu).^2) / n;

v2 = mu2 - mu^2;

v3 = sum ((x - mu).^2) / (n - 1);

v4 = sum ((x - 0.0).^2) / n; <-- Same as MU2, because mean is 0.

N Mu MU2 V1 V2 V3 V4

1 0.8632 0.7451 0.0000 0.0000 NaN 0.7451

10 0.1811 0.7267 0.6939 0.6939 0.7710 0.7267

100 -0.0167 1.1131 1.1128 1.1128 1.1241 1.1131

1000 -0.0041 1.0113 1.0112 1.0112 1.0123 1.0113

10000 -0.0111 1.0113 1.0112 1.0112 1.0113 1.0113

100000 -0.0038 0.9999 0.9998 0.9998 0.9999 0.9999

1000000 -0.0004 1.0006 1.0006 1.0006 1.0006 1.0006

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/normal variance.m

32 / 255

PDF: The Expected Value of a Quantity of Interest

Suppose that x is a random variable from the uniform density for
[0, 1]. We know that the expected value of x is 1

2 . What is the
expected value of x2? A natural guess might be 1

4 , the square of
the expected value, but this is wrong.

Unless the function f (x) is linear, it is not generally true that
E (f (x)) = f (E (x))!

E (x2) =

∫
Ω

x2ρ(x)dx =

∫ 1

0
x2 · 1dx

= (
x3

3
)

∣∣∣∣1
0

=
1

3
≈ 0.333... 6= 0.25 = (E (x))2

Exercise 7: Explain, demonstrate, or prove why it is true that for
a random variable x , E (a · x + b) = a · E (x) + b.

33 / 255

End Part 1, Begin Part 2

Ahem!

34 / 255

Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
35 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Distribution Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

36 / 255

SAM: Sampling Uniformly from [0,1]

To sample from a probability distribution function is a process
which selects possible outcomes according to their probability.

For the uniform distribution on [0,1], we can loosely think that
every value has an equal probablity of being chosen; however,
single values really only have a probability density, not a probability.
It’s more correct to say that intervals of the same length have an
equal probability that a value will be chosen from them.

To simulate a random process, we may want to compute enormous
sequences of random values. On a computer, most computer
languages include a procedure to sample uniformly from [0, 1]:

x = (double) rand() / (double) RAND MAX; in C and C++;

call random number (harvest = x) in Fortran90;

x = nextDouble(); in Java;

x = Random[] in Mathematica;

x = rand (1, 1); in Matlab;

x = random () in Python;

These values are not random in the usual sense; perfectionists call
them pseudorandom.

37 / 255

SAM: The State of a Random Number Generator

Most random number generators can be thought of as simply a
long list of numbers that have been shuffled for you, as though it
were a deck of cards. When you request a random number, the
generator returns the current value, and “turns over” the next card
in the deck, so to speak. This has the small advantage that you’re
not going to get the same random value twice in a row; in fact,
this guarantees that you will see every random number in the deck
before you get to the end and the sequence has to start over.

The current position of the random number generator (how the
deck has been shuffled, which card is on top, and so on) is called
its state.

38 / 255

SAM: The State of a Random Number Generator

Often, the numbers are shuffled in the same way, and the state
is completely described by a number which indicates the current
card, an integer, called the random seed.

The purpose of the random seed is to allow the random number
generator to be controlled by you. If you ran a program yesterday
and got a weird error, you want to run the very same program
today, so you want to use the same sequence of random numbers,
so you want to be sure the seed is the same.

If you are running a parallel program, then you want each process
to use a different random number seed, so that each process
generates a distinct sequence of random values.

Unfortunately, every computer language differs in how the random
number state is defined, what its default setting is, and how you
can access and modify it.

39 / 255

SAM: The State of a Random Number Generator

seed = 123456789;

rng (seed);

x = rand (5, 1)

x = 0.532833

0.534137

0.509553

0.713564

0.256999

seed = 123456789;

rng (seed);

x = rand (5, 1)

x = 0.0729883

0.216037

0.464753

0.62259

0.618388

seed = 123456789;

rng (seed);

x = rand (5, 1)

x = 0.532833

0.534137

0.509553

0.713564

0.256999

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/seeds.m

40 / 255

SAM: Uniform Density for Other Intervals

Suppose that we wish to sample a random variable ξ that is
uniformly distributed over the interval [a, b], but our random
number generator returns values x in [0,1] (which is the usual
situation on the computer).

We have to scale the variables to the width (b− a), and shift them
to start at a, using the formula

ξ = a + (b − a) · x

To check this, just ask what happens when x is 0, and when it is 1.

Exercise 8: If we shift the uniform density from [0,1] to [-1,+1],
what is the new value of σ2? What if we shift to [a, b]?

41 / 255

SAM: Sampling the Normal Density

Samples from the normal distribution can take on any real value,
although in practice the results will be fairly close to the mean
value (how close depends on the variance.)

1): A rough approximation of normally distributed values can be
found by summing 12 uniform variables and subtracting 6.0.

Exercise 9: Explain in 10 words or less why this method cannot be
exactly equivalent to a true normal distribution!

2): A second way, which is mathematically correct, computes two
normal variables η1 and η2 by first computing two uniform variables
x1 and x2 and then performing the following transformation:

η1 =
√
−2 log (x1) · cos(2πx2);

η2 =
√
−2 log (x1) · sin(2πx2);

3): MATLAB supplies normal samples with the function randn().
Most other languages don’t seem to care!

42 / 255

SAM: Displaying Sampling Results

If you compute 1,000 samples from the normal density, can you
get a feeling for whether you are doing the right thing? How do
you display 1,000 samples? The easiest way is to compute a
histogram, that is, a bar graph that displays the number of sample
values that fall into each interval.

With proper scaling, you can compare your histogram to the PDF
curve. (Divide your histogram data by frequency.)

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/histogram.m

43 / 255

SAM: The Cumulative Density Function

The PDF completely defines the behavior of a random variable.

For any probabilistic situation, we may need to sample, that is, to
generate hundreds of values that behave according to that PDF. If
the PDF is not a “textbook” example, what do we do?

Once again, the idea of the integral comes to our rescue. We begin
by defining the cumulative density function, or CDF, which is
simply the integral of our PDF. For a variable defined on the
interval [a, b], we would write:

cdf (x) =

∫ x

a
ρ(s) ds

We have immediately that cdf (a) = 0, cdf (b) = 1,
d cdf (x)

dx = ρ(x), for a ≤ x ≤ b, 0 ≤ cdf (x) ≤ 1 and cdf (x) must
be monotone increasing.

44 / 255

SAM: Uniform PDF, CDF, invCDF

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/uniform plots.m

45 / 255

SAM: Normal PDF, CDF, invCDF

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/normal plots.m

46 / 255

SAM: Exponential PDF, CDF, invCDF

For this exponential PDF, we will assume λ = 0.75.

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/exponential plots.m

47 / 255

SAM: Linear PDF, CDF, invCDF

Exercise 10: Create plots for the PDF, CDF, and inverse CDF
of the linear PDF:

ρ(x) = 2 · x

which is originally defined for x ∈ [0, 1], but which you have shifted
to the interval x ∈ [5, 10].

48 / 255

SAM: Kinky PDF, CDF, invCDF

Exercise 11: Create plots for the PDF, CDF, and inverse CDF
of the “kinky” PDF:

ρ(x) =

{
2/30 if 0 ≤ x ≤ 3
12/30 if 3 < x ≤ 5.

which is defined for x ∈ [0, 5].

49 / 255

SAM: Sampling From an Arbitrary PDF

Now cdf (x) is the probability that a random variable sampled
from the given PDF will be less than or equal to x .

So to sample variables from an arbitrary PDF, we choose a uniform
random number u between 0 and 1, and seek a value x for which
cdf (x) = u. Our selected value is then x .

Two issues can arise here. If ρ(x) is allowed to be zero within the
interval, we could have that cdf (x) is monotone, but not strictly
monotone. Then cdf (x) can have some flat spots, where more
than one value x could be chosen for a given u.

Second, we can’t draw pictures of cdf (x) to solve our problem.
When we start with u and seek x such that cdf (x) = u, we are
really trying to determine an inverse function x = cdf −1(u). In
some cases, such an inverse can be computed as a formula.
Otherwise, it must be approximated or computed.

50 / 255

SAM: Sampling From the Linear PDF

Let’s try an example of random sampling that we can’t do
directly with rand() or randn(). In fact, let’s take the “linear
pdf”, shifted to 5 ≤ x ≤ 10, mentioned in a previous exercise.

How do we figure out the formula for the PDF? It is a linear
function over [5, 10] which is 0 at x = 5. The function
ρ(x) = x − 5 has the right value at x = 5, but equals 5 at x = 10.
Without thinking, we assume we should divide by 5, to get:

ρ(x) =
x − 5

5
wrong!

Wait a minute, that’s not what we need. We don’t need a value of
1 at x = 10, we need that the density integrates to 1 over the
interval! We need an extra factor of 2/5 for our PDF:

ρ(x) =
2(x − 5)

25
right!

51 / 255

SAM: Sampling From the Linear PDF

Our CDF is simply the indefinite integral of the PDF, so that’s
not bad:

cdf (x) =

∫ x

5

2(s − 5)

25
ds =

(x − 5)2

25

and, if we want to sample, we need to compute the inverse cdf:

cdf (x) =u

x =icdf (u)

cdf (x) = u =
(x − 5)2

25
25u =(x − 5)2

icdf (u) = x =5 +
√

25u

so, to sample from the linear PDF on [5, 10], compute a uniform
random u, and use the icdf (u) formula to get x .

52 / 255

SAM: Sampling From the Linear PDF

n = 1000000;

u = rand (n, 1);

x = 5 + sqrt (25 * u);

hist (x, 20);

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/linear sample.m

53 / 255

SAM: Sampling From an Arbitrary PDF

Exercise 12: For the linear PDF on [5, 10], show that µ = 25
3

and σ2 = 25
18 .

Exercise 13: Consider the exponential PDF with λ = 0.5.
Compute n samples from this PDF. Compute the mean and
variance of your sample data, and compare it to the mean and
variance of the PDF.

54 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

55 / 255

QUAD: The Monte Carlo Method

I said at the beginning that the integral can be regarded as an
averaging process. We can turn this idea around, and assume that
if we can approximate an average, we can approximate an integral.

The integral of f (x) over [a, b] is the average value of f times the
width of the interval, so the Monte Carlo approximation to the
integral averages the value of f () at n points xi randomly chosen
within [a, b]:

I (f , [a, b]) ≈ MC (f , [a, b], n) =
(b − a)

n
·

n∑
i=1

f (xi)

The error in a Monte Carlo estimate tends to decreases like 1√
n

.

This means that, to double your expected accuracy, you might
need 4 times as many points. To get another decimal place of
accuracy, you might need about 100 times as many points.

56 / 255

QUAD: Battle of the Quadrature rules

Approximate
∫ π

0 cos(4sin(x))dx . We don’t see the kind of rapid
convergence we are used to!

N MC Rui watches the error
1 0.598
2 1.892
3 1.208
4 1.312
5 1.316 Rui says, Look, the error actually went up a little!
6 0.618
7 0.195
8 0.552 Rui says, look, the error went up a lot!
9 0.157

10 1.061 Rui says, look, the error went up even more!
11 0.117
12 0.517 Rui says, oh my!
13 0.591 Bad!
14 0.222
15 0.034
16 0.584 Again!
17 0.065
18 0.526 Rui says...I have nothing more to say!
19 0.466
20 0.532
21 0.330

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/mc test.m

57 / 255

QUAD: Battle of the Quadrature rules

Approximate
∫ π

0 cos(4sin(x))dx , but this time, use a lot of steps!

N MC Error halving?
1 1.827 Error about 2.0?
2 1.57215
4 0.859403 Error about 1.0?
8 0.461721

16 0.0144315 0.5?
32 0.0893733
64 0.138425 0.25

128 0.299616
256 0.0598655 0.125
512 0.0715631

1024 0.0239286 0.0625
2048 0.0335445
4096 0.0278803 0.03125
8192 0.0213013

16384 0.00175709 0.015625
32768 0.00986718
65536 0.00598231 0.0078125

131072 0.00148788
262144 0.00625448 0.00390625
524288 0.00258764

1048576 0.00159123 0.001853125

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/mc test.m

58 / 255

QUAD: LogLog Plot of N Versus MC Error

On a LogLog plot, we can see that the MC error (red line) does
tend to decrease like the inverse square root of n (the black line):

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/mc test.png

59 / 255

QUAD: Alternatives to Monte Carlo?

There are actually many good things to say about the Monte
Carlo method, and later on we will have to come back to it. But
for now, it certainly seems to be an expensive and slow method.

One problem with it is that it doesn’t notice an important feature
about continuous functions, namely, if the value of f is known at
x , then nearby it probably has a similar value. And if we know its
value at two points, a linear model is probably a good guess.

In cases where nearby locations have close values, it pays to
include that in the model.

Let’s see if we can think of another approach to integral
approximation that will get us good accuracy with just 10 sample
values, rather than 1,000,000!

60 / 255

QUAD: The Midpoint Rule

The integral of f (x) over [a, b] can be defined as the limit of
Riemann sums whose maximum subinterval size goes to zero.

That suggests that we can always try to approximate any integral
by dividing the interval (or domain) into small pieces, and
summing the product of the size of each piece times the function
evaluated at a point in that piece.

Our first quadrature rule for [a, b] is therefore, simply∫ b

a
f (x)dx ≈ Q(f , [a, b]) =

n∑
i=1

f (xi) · (bi − ai)

where we have decomposed [a, b] into n subintervals [ai , bi] and
somehow chosen xi ∈ [ai , bi]. Choosing xi = ai +bi

2 gives us the
composite midpoint rule, for instance.

61 / 255

QUAD: The Composite Midpoint Rule

The basic midpoint rule is:∫ b

a
f (x)dx ≈ Q(f , [a, b]) = f (

a + b

2
) · (b − a)

and our (uniform spacing) composite midpoint rule is:∫ b

a
f (x)dx ≈ Q(f , [a, b]) =

n∑
i=1

f (
ai + bi

2
) · (bi − ai)

with ∆x = h = b−a
n , and ai = a + (i − 1)∆x and bi = a + i∆x .

The basic midpoint rule only gives us one chance to approximate
the integral; but the composite rule allows us to increase n,
shrinking h, and presumably producing a sequence of better and
better estimates.

62 / 255

QUAD: Quadrature Rules

Notice that our uniform spacing composite midpoint rule∫ b

a
f (x)dx ≈ Q(f , [a, b]) =

n∑
i=1

f (
ai + bi

2
) ·∆x

can be thought of as

Q(f , [a, b]) =
n∑

i=1

wi · f (xi)

where wi are the weights and xi are the abscissas or nodes or
just plain old points. To estimate the integral, we only need to
know how to evaluate f () at a few points. A rule for
approximating integrals this way is called a quadrature rule.

63 / 255

QUAD: Midpoint Rule Approximation Error

Assume the function f (x) is at least twice continuously
differentiable and consider any interval [x1, x2] with midpoint xm.
By Taylor’s theorem, f () at any point x can be written as:

f (x) = f (xm)+ f ′(xm) ·(x−xm)+
1

2
f ”(xm) ·(x−xm)2 +O(x−xm)3

Therefore,∫ x2

x1

f (x)dx

=

∫ x2

x1

f (xm) + f ′(xm) · (x − xm) +
1

2
f ”(xm) · (x − xm)2 + O(x − xm)3dx

= f (xm) · (x2 − x1) + 0 +
1

24
f ”(xm) · (x2 − x1)3 + O(x2 − x1)4

= f (xm) · (x2 − x1) +
1

24
f ”(xm) · h3 + O(h4)

64 / 255

QUAD: Midpoint Rule Approximation Error

So, for one subinterval, we know:

I (f , [ai , bi])− Q(f , [ai , bi]) =

∫ bi

ai

f (x)dx − f (
ai + bi

2
) · (bi − ai)

=
1

24
f ”(xm) · h3 + O(h4)

and now we estimate

|I (f , [a, b])− Q(f , [a, b])| ≤
n∑

i=1

|I (f , [ai , bi])− Q(f , [ai , bi])|

=
n∑

i=1

| 1

24
f ”(

ai + bi

2
) · h3 + O(h4)|

≤n · (1

24
||f ”||∞ · h3 + O(h4))

=(b − a) · (1

24
||f ”||∞ · h2 + O(h3))

=O(h2).
65 / 255

QUAD: Midpoint Rule Approximation Error

Notice that I’ve picked a problem for which the exact answer is
about 22,000! This will make the error table seem a bit outrageous
at first.

n = 1;

a = 0.0;

b = 10.0;

exact = exp (b) - exp (a);

for nlog = 0 : 10

q = 0.0;

dx = (b - a) / n;

for i = 1 : n

a_i = a + (i - 1) * dx;

b_i = a + i * dx;

x_i = (a_i + b_i) / 2.0;

q = q + exp (x_i) * dx;

end

e = abs (exact - q);

n = 2 * n;

end

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/midpoint error.m

66 / 255

QUAD: Midpoint Rule Approximation Error

Quadratic convergence: h→ h/2 reduces error by 4.

N Q E Eold/E

1 1484.13 20541.3

2 9101.12 12924.3 1.58

4 17186.8 4838.68 2.67

8 20654.3 1371.19 3.52

16 21671.0 354.445 3.86

32 21936.1 89.3672 3.96

64 22003.1 22.3895 3.99

128 22019.9 5.60037 4.00

256 22024.1 1.40028 4.00

512 22025.1 0.350081 4.00

1024 22025.4 0.0875211 4.00

67 / 255

QUAD: Interpolatory Quadrature

Over the interval [a, b], the following constant function f0(x)
interpolates f (x) at the midpoint:

f0(x) = f (
a + b

2
)

The integral of f0(x) is:∫ b

a
f0(x)dx =

∫ b

a
f (

a + b

2
)dx

=f (
a + b

2
) · (b − a)

So the midpoint method can be explained as the result of finding
and integrating a (constant) polynomial interpolant to f (x).

This suggests that we might be able to use higher degree
interpolants to get new rules.

68 / 255

QUAD: Newton Cotes

One set of interpolatory rules is known as the Newton Cotes
closed NCC rules. The midpoint rule is the first entry. The n-th
entry uses n equally spaced points in [a, b], including the
endpoints, constructs the interpolant to f (x), and integrates it.

To compute the weights of the n point rule, we simply work out
the formula for the i-th Lagrange interpolation basis polynomial (1
at node i and 0 elsewhere) and integrate it. By linearity, we have
figured out how to integrate the interpolating polynomial for any
given function.

Assuming we work in the standard interval [−1,+1], then for any
rule size n, we can work out the weights in advance.

Therefore, a user can simply request the points and weights for the
standard interval, adjust them to any interval [a, b], and compute
the desired integral estimate.

69 / 255

QUAD: Battle of the Quadrature rules

Approximate
∫ π

0 cos(4sin(x))dx :

N MC NCC
1 0.598 0.805
2 1.892 4.389
3 1.208 0.925
4 1.312 0.201
5 1.316 0.662
6 0.618 0.348
7 0.195 0.025
8 0.552 0.372
9 0.157 0.065

10 1.061 0.036
11 0.117 0.014
12 0.517 0.010
13 0.591 0.003
14 0.222 0.001
15 0.034 0.002
16 0.584 0.001
17 0.065 2e-4
18 0.526 1e-4
19 0.466 9e-5
20 0.532 5e-5
21 0.330 4e-5

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/nc test.m

70 / 255

QUAD: Adjusting a Quadrature Rule

So many quadrature rules are tabulated in a standard way that it
is important to know how to adjust them to your purpose.

Suppose a quadrature rule is defined for the interval [a, b], but you
wish to use it over the interval [c , d].

You must shift and scale the abscissas:

xi → c +
d − c

b − a
· (xi − a)

and scale the weights:

wi → wi ·
d − c

b − a

71 / 255

QUAD: Adjusting a Quadrature Rule

function [x, w] = rule_adjust (a, b, c, d, n, x, w)

%% RULE_ADJUST maps a quadrature rule from [A,B] to [C,D].

%

% Input, real A, B, the endpoints of the old integration interval.

%

% Input, real C, D, the endpoints of the new integration interval.

%

% Input, integer N, the number of abscissas and weights.

%

% Input, real X(N), the abscissas.

%

% Input, real W(N), the weights.

%

% Output, real X(N), the adjusted abscissas.

%

% Output, real W(N), the adjusted weights.

%

x(1:n) = ((b - x(1:n)) * c ...

+ (x(1:n) - a) * d) ...

/ (b - a);

w(1:n) = ((d - c) / (b - a)) * w(1:n);

return

end

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/rule adjust.m

72 / 255

QUAD: Newton Cotes

The 1 point NCC rule can integrate constants and linears
precisely. The n point NCC rule can precisely integrate
polynomials of degree n or less.

For example, the third entry in the NCC family is a 3 point rule,
whose error is O((b − a)5) or O(h4) as a composite rule. It is
tabulated for the interval [-1,+1] as follows:

i xi wi

1 -1.0 1/3
2 0.0 4/3
3 1.0 1/3

This rule is precise for constants, linears, quadratics and cubics.

Exercise 14: Using the shift and scale formulas above, what are
the points and weights for the 3 point NCC rule, applied to the
interval [−π/2,+π/2]?

73 / 255

QUAD: Composite Newton Cotes

Suppose we wish to approximate an integral over [0, 10] using
the 3 point NCC rule. We must stretch our rule from [−1,+1] to
[0, 10], and using only 3 points won’t be very accurate.

We can instead make a composite rule, breaking up [0, 10] into
subintervals. If we repeatedly halve the interval size, here is the
pattern.

0 5 10

+----------------------------------

1 | O * O

2 | O * @ * O

4 | O * @ * @ * @ * O

8 | O * @ * @ * @ * @ * @ * @ * @ * O

The *’s are midpoints of intervals, the O’s and @’s are endpoints.
The @’s are common to two subintervals. We may waste a little
work evaluating the function twice there.

74 / 255

QUAD: Simpson’s Rule Approximation Error

n = 1; a = 0.0; b = 10.0;

exact = exp (b) - exp (a);

for nlog = 0 : 10

q = 0.0;

dx = (b - a) / n;

for i = 1 : n

w = (1.0 / 6.0) * (b - a) / n;

x = a + (i - 1) * dx;

q = q + w * exp (x);

w = (4.0 / 6.0) * (b - a) / n;

x = x + 0.5 * dx;

q = q + w * exp (x);

w = (1.0 / 6.0) * (b - a) / n;

x = x + 0.5 * dx;

q = q + w * exp (x);

end

e = abs (exact - q);

n = 2 * n;

end

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/simpson error.m

75 / 255

QUAD: Simpson’s Rule Approximation Error

Quartic convergence: h→ h/2 reduces error by 16.

N Q E Eold/E

1 37701.9 15676.4

2 24671.0 2645.53 5.92

4 22276.5 251.031 10.53

8 22043.3 17.8372 14.07

16 22026.6 1.15352 15.46

32 22025.5 0.072723 15.86

64 22025.5 0.00455509 15.97

128 22025.5 0.000284848 15.99

256 22025.5 1.78055e-05 16.00

512 22025.5 1.11288e-06 16.00

1024 22025.5 6.95582e-08 16.00

76 / 255

QUAD: Clenshaw Curtis Rules

Clenshaw Curtis CC rules are an interpolatory family, typically
defined on the interval [−1,+1], that do not use equally spaced
points. These rules tend to place more points near the endpoints.

The CC rules of order 10, 20 or 30 can be safely used, but NCC
rules beyond order 10 become very unreliable because of numerical
instability.

For any order n, there is a simple formula for computing the
weights and abscissas.

The 1 point CC rule can integrate constants and linears precisely.
The n point CC rule can precisely integrate polynomials of degree
n or less.

77 / 255

QUAD: Clenshaw Curtis Rules

Formula for n Clenshaw Curtis points: divide the semicircle
by n equally spaced rays; the cosines of their angles are the points.

The CC rule is just as (mathematically) precise as NCC rules of
the same order, but the rule is (computationally) stable, while the
NCC rules are not.

78 / 255

QUAD: Clenshaw Curtis Rules

function [x, w] = clenshaw_curtis_compute (n)

if (n == 1)

x(1) = 0.0;

w(1) = 2.0;

return

end

theta(1:n) = (n-1 : -1 : 0) * pi / (n - 1);

x(1:n) = cos (theta(1:n));

for i = 1 : n

w(i) = 1;

for j = 1 : floor ((n - 1) / 2)

if (2 * j == (n - 1))

b = 1;

else

b = 2;

end

w(i) = w(i) - b * cos (2 * j * theta(i)) / (4 * j * j - 1);

end

end

w(1) = w(1) / (n - 1);

w(2:n-1) = 2 * w(2:n-1) / (n - 1);

w(n) = w(n) / (n - 1);

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/clenshaw curtis compute.m

79 / 255

QUAD: Battle of the Quadrature rules

Approximate
∫ π

0 cos(4sin(x))dx :

N MC NCC CC
1 0.598 0.805 0.805
2 1.892 4.389 4.389
3 1.208 0.925 0.925
4 1.312 0.201 1.059
5 1.316 0.662 0.294
6 0.618 0.348 0.066
7 0.195 0.025 0.028
8 0.552 0.372 5e-4
9 0.157 0.065 1e-4

10 1.061 0.036 2e-4
11 0.117 0.014 8e-5
12 0.517 0.010 3e-5
13 0.591 0.003 2e-6
14 0.222 0.001 1e-6
15 0.034 0.002 7e-7
16 0.584 0.001 2e-7
17 0.065 2e-4 9e-8
18 0.526 1e-4 3e-8
19 0.466 9e-5 6e-10
20 0.532 5e-5 7e-10
21 0.330 4e-5 8e-10

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/cc test.m

80 / 255

End Part 2, Begin Part 3

Ahem!

81 / 255

Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
82 / 255

QUAD: Gauss Rules

For the NCC and CC rules, we picked the nodes in advance, and
the interpolation requirement determined the weight values. Gauss
rules make both abscissas and weights unknown, which allows
them to be about twice as precise.

Gauss rules can be defined for any region and suitable pdf or
weight, but the classic example uses [−1,+1] with a uniform
weight. In that case, the rules are sometimes called
Gauss-Legendre or GL rules.

The one point GL rule is the midpoint rule, and it is precise for
constants and linears. The two point GL rule is precise for
constants, linears, quadratics and cubics. The n point GL rule can
integrate exactly any polynomial of degree 2n − 1 or less.

83 / 255

QUAD: Gauss Rules

When a function is well approximated by its Taylor series, we can
see that, by increasing the order of the GL rule, we are capturing
the initial part of the Taylor series for the function twice as fast as
in the NCC and CC cases.

The abscissas and weights of a Gauss rule must either be
tabulated, or computed. They are typically defined on [−1,+1], so
they generally must be modified to handle the user’s interval [a, b].

A typical usage might be:

[x, w] = legendre_ek_compute (n);

x = pi * (x + 1.0) / 2.0; <-- Shift x from [-1,+1] to [0,pi];

w = pi * (w / 2.0); <-- Shift w from [-1,+1] to [0,pi];

fx = cos (4.0 * sin (x)); <-- Evaluate F(X)

q = w’ * fx; <-- Q is the vector dot product of W and FX.

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/legendre ek compute.m

84 / 255

QUAD: Battle of the Quadrature rules

Approximate
∫ π

0 cos(4sin(x))dx :

N MC NCC CC GL
1 0.598 0.805 0.805 0.805
2 1.892 4.389 4.389 1.201
3 1.208 0.925 0.925 0.654
4 1.312 0.201 1.059 3e-4
5 1.316 0.662 0.294 0.044
6 0.618 0.348 0.066 0.007
7 0.195 0.025 0.028 5e-4
8 0.552 0.372 5e-4 3e-4
9 0.157 0.065 1e-4 3e-5

10 1.061 0.036 2e-4 2e-6
11 0.117 0.014 8e-5 9e-7
12 0.517 0.010 3e-5 1e-7
13 0.591 0.003 2e-6 2e-9
14 0.222 0.001 1e-6 1e-9
15 0.034 0.002 7e-7 2e-10
16 0.584 0.001 2e-7 4e-12
17 0.065 2e-4 9e-8 1e-12
18 0.526 1e-4 3e-8 2e-13
19 0.466 9e-5 6e-10 1e-14
20 0.532 5e-5 7e-10 1e-15
21 0.330 4e-5 8e-10 6e-16

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/gl test.m

85 / 255

QUAD: Nesting

A nested family of quadrature rules is a sequence of rules of
increasing order, with the property that each rule includes all the
points of the previous one.

For the NCC family, the points are equally spaced. That means
that we can easily create nested families. A simple example is the
rules of order 1, 3, 5, 9, 17, ..., 2n + 1.

We like nested rules if evaluating our function is expensive, and we
want an error estimate for our approximations, and if the error
estimate isn’t small enough, we plan to try harder.

In such a case, we might compute Q(1) and Q(3), the integral
estimates using 1 and 3 points, with error estimate E(1) = Q(3) -
Q(1). If E(1) is not small, we compute Q(5), with error estimate
E(2) = Q(5) - Q(3), and so on. Because the rules are nested, we
greatly reduce the number of function values needed.

86 / 255

QUAD: Nesting

We can also produce a nested family using the CC rules. Again,
the orders will be 1, 3, 5, 9, 17, ..., 2n + 1. Since the CC rules are
stable, but the NCC rules are not, this is actually a much better
nested family to use.

It is not possible to create a nested sequence of Gauss-Legendre
rules, because the points that occur in a given rule will never show
up in a later rule, with the single exception of the point x = 0.0.

87 / 255

QUAD: Precision

It may be surprising that an integral can be approximated by a
quadrature rule. It is even more surprising if, sometimes, the
approximation turns out to be exact. For interpolatory rules,
however, this should not be so surprising, since they are designed
to be exact for low degree polynomials.

A quadrature rule Q(f,[a,b]) is said to have precision p or to be
precise through degree p if it is the case that

Q(f , [a, b]) = I (f , [a, b]) ≡
∫ b

a
f (x) dx

whenever f (x) is a polynomial of degree p or less.

88 / 255

QUAD: Precision Results

We have already claimed the following precision results:

Rule p Range

midpoint rule 1 (x0, x1)
odd n-point NCC rule n (x0 : xn)
even n-point NCC rule n-1 (x0 : xn−1)
odd n-point CC rule n (x0 : xn)
even n-point CC rule n-1 (x0 : xn−1)
n-point GL rule 2*n-1 (x0 : x2n−1)

Now, what is the precision of the MC rule? No matter how many
points n we use, the MC rule is precise for ... a constant function,
but nothing else.

Since we know that an MC approximation is eventually good
enough, this reminds us that we don’t need precision to get a good
result. So why is it useful?

89 / 255

QUAD: Precision Controls Asymptotic Accuracy

To see why precision is useful, let’s suppose we have a sequence
of quadrature rules Qi with the property that Qp has precision p.

Suppose, further, we are approximating the integral of a function
f (x) whose derivatives are bounded by some fixed constant C , or,

more precisely, that 1
k!

dk f
dxk is bounded by C .

Then the error between Qp(f , [a, b]) and I (f , [a, b]) is bounded by
C · (b − a)p, meaning that asymptotically, the error decreases with
the precision first linearly, then quadratically, then cubically, and so
on. Such behavior is sometimes called subexponential because it’s
almost an exponential decay.

A family of rules of increasing precision is a great tool. In 1D, the
NCC, CC and GL rules give us such families. In higher dimensions,
we will also be able to create precise rules, but we will see that the
cost (number of points or function evaluations) required to each a
given precision becomes an issue.

90 / 255

QUAD: Precision Controls Asymptotic Accuracy

Let us approximate three integrands, with the idea of precision
in mind, using the CC rule. Can you explain what we see?

N 1+2x+3x^2+4x^3 exp(x) x^7

1 0.75 0.0695606 0.9375

2 1.5 0.140859 3

3 0 0.000579323 0.375

4 8.88178e-16 0.000143757 0.0807292

5 0 3.42536e-07 0.00416667

6 0 4.33745e-08 0.000520833

7 0 6.41081e-11 4.44089e-16

8 0 1.60063e-11 1.11022e-16

9 0 1.64313e-14 2.22045e-16

10 0 5.32907e-15 0

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/cc precision.m,

91 / 255

QUAD: Integrals over [0,+∞)

We’d like to be able to have similar tools for problems involving
a semi-infinite interval, and the negative exponential weight:

Q(f , [0,+∞)) ≈ I (f , [0,+∞)) =

∫ ∞
0

f (x)e−x dx

The Gauss-Laguerre quadrature rules handle this problem.

Rule Qn() consists of n points and weights, and the integral is
approximated by a sum, in the usual way:

Qn(f , [0,+∞)) =
n∑

i=1

wi f (xi) ≈
∫ ∞

0
f (x)e−x dx

There is no need to evaluate the negative exponential weight. Its
effect is included in wi . Like the Gauss-Legendre rules, the
Gauss-Laguerre rule of order n is precise for any function f (x)
which is a polynomial of degree 2n − 1 or less.

92 / 255

QUAD: Integrals over (−∞,+∞)

For the normal or Gaussian PDF, our quadrature problem is:

Q(f , (−∞,+∞)) ≈ I (f , (−∞,+∞)) =
1√
2π

∫ ∞
−∞

f (x)e−
x2

2 dx

The Gauss-Hermite quadrature rules handle this problem. The
same remarks apply as for the Gauss-Laguerre rules.

Note that the points and weights for Gauss rules are not easy to
compute. To use them, you either get them from a table, or find a
program that can compute them for you. Typically, a matrix
eigenvalue problem has to be solved.

93 / 255

QUAD: Summary

You can estimate the integral of almost any function using an
MC approach. It doesn’t matter whether the function is
oscillatory, smooth, or discontinuous. But convergence will
generally be very slow. Roughly speaking, each decimal place of
accuracy requires 100 times as much work as the last one.

If your function is very smooth over the whole interval (no jumps,
no kinks, no singularities, all derivatives exist) then a (global)
interpolatory rule like CC or GL will do very well.

If your function may have jumps or kinks, you may need to use a
composite rule, (midpoint, Simpson, ...) which is essentially a local
interpolatory rule. In some cases, you can estimate the location of
a singularity or kink, use a very small interval just near that
problem area, and get accurate and efficient results.

94 / 255

QUAD: Exercises

Exercise 15: Let f (x) = 7 ∗ x6, so that the integral of f () over
[0, 1] is exactly 1. How many Monte Carlo points must you use in
order to estimate this integral to an error of less than 0.001?

Exercise 16: What is the smallest number of points you would
need in order to get the previous integral exactly for the
Clenshaw-Curtis, Newton-Cotes, or Gauss-Legendre rule?

Exercise 17: Consider the function f (x) = 1
1+x2 . The integral of

this function over [−5,+5] is 2 arctan 5. Estimate this integral
using a Gauss-Legendre rule. Can you be confident in your answer?

Exercise 18: Repeat the previous exercise, but use a
Newton-Cotes rule. What is your confidence in your answer?

95 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

96 / 255

BANG: A Model of Flame Propagation

When a match ignites, a ball of flame appears, and grows rapidly
until reaching a critical size. At this size, there is a balance
between the amount of oxygen available at the surface of the ball,
and the amount of combustible material within the ball.

If r denotes the radius of the sphere, then the surface area is like
r 2, the volume like r 3, and if we ignore all the scaling units, then
we may assume that the fireball reaches its equilibrium size when
r 2 equals r 3.

This can be expressed as the ordinary differential equation (ODE):

dr

dt
= r 2 − r 3

r(0) = δ

0 ≤ t ≤ 2

δ

97 / 255

BANG: Our Model is an Idealization

A real match flame isn’t spherical, we’re ignoring many chemical
effects, but the sudden transition to full flame is what we’re really
interested in.

98 / 255

BANG: Solution for δ = 0.01

Letting δ = 0.01, we get a solution that looks like this, with the
flame undergoing a very sudden jump to the radius r = 1. For
future reference, we note that the flame reaches r = 0.99 at time
t = 108.176 seconds.

http://people.sc.fsu.edu/∼jburkardt/m src/flame ode/base run.m

99 / 255

BANG: Explosion Varies with δ?

It’s reasonable to assume that δ, the initial size of the flame, has
a significant influence on when the explosive growth of the fireball
occurs. Since this growth occurs over a finite stretch of time, we
can simplify our record keeping by simply noting when the flame
has reached a radius of r = 0.99.

If we use MATLAB’s solver ode45, it can monitor the solution and
report back to us exactly when this moment occurs.

Suppose we are in the business of making matches, and these vary

in size in [δ2 , 2δ], where δ = 0.01.

Our customers ask:

What is the typical time until the match has 99% ignited?

100 / 255

BANG: PDF for ln(δ)

We need to describe the variation in the match flame size δ.
Suppose we discover that, relative to the standard size δ = 0.1, the
actual initial flame size is always between half as big and twice as
big, with a smooth variation.

This suggests that the logarithm of δ is uniformly distributed, in
which case, the formula for the density is

ρ(ln(δ)) =
1

ln(4)
, δ/2 ≤ δ ≤ 2δ

101 / 255

BANG: PDF for δ

If we can get a PDF for ln(δ), then let s = ln(δ), and figure:∫ s2

s1
ρ(s)ds =

∫ s2

s1

1

ln(4)
ds =

∫ s2

s1

1

ln(4)

ds

dδ
dδ =

∫ δ2

δ1

1

ln(4)δ
dδ

so ρ(δ) = 1
ln(4)δ :

Once we have chosen a model for the PDF of δ, we can calculate
quantities of interest.

102 / 255

BANG: Solutions for δ near 0.1

Here we have 10 runs using logarithmically uniform samples for
δ, as well as a plot estimating the relationship of δ to our quantity
of interest, q=time til solution = 0.99.

The average time looks to be something like 100 seconds.
http://people.sc.fsu.edu/∼jburkardt/m src/flame ode/uniform run.m

103 / 255

BANG: Expected value of explosion time

To get the expected value for Q, we have to be clear about our
model for the uncertainty or variation in δ. We can think of this as
follows:

select u uniformly from [−1,+1];

set δ = 2u · δ
solve the ODE for r(t) until time t∗, when r(t∗) = 0.99;

define q(u) = t∗;
The integral that defines q can be written

q =

∫ +1

−1
q(u) ρ(u) du

and since we believe that u is uniformly likely over the interval
[−1,+1], we know that ρ(u) = 1

2 .

104 / 255

BANG: Computed results

Using a Clenshaw Curtis rule, which is conveniently set up
exactly for the interval [−1,+1], we get the following estimates:

N Estimated q

1 108.176
2 133.169
3 116.507
4 116.326
5 116.375
6 116.367
7 116.363
8 116.367
9 116.372

10 116.360
11 116.368
12 116.370

http://people.sc.fsu.edu/∼jburkardt/m src/flame ode/qoi quad output.txt

105 / 255

BANG: Alien Blob Exercise

Exercise 19: A meteor strikes the earth at time t0 = 0; the
meteor includes a blob of alien life, whose volume at time t0 is
approximately v0 = 50cc . The blob begins to grow at an
exponential rate, governed by

dv

dt
= k

where, based on previous alien infestations, the hourly growth
factor k is estimated to be k = 0.35h−1. If the estimated values of
v and k are taken to be exact, then after 10 hours, the blob will
weigh about 1, 655cc . Instead, suppose k is chosen uniformly at
random from the interval [0.30, 0.40].

What is the expected value of v(10)?

106 / 255

BANG: Projectile Exercise

Exercise 20: A projectile is fired from (0, 0), at angle α, with
initial speed s. Let q be the horizontal distance traveled. Then:

dx

dt
=s cos(α)

dy

dt
=s sin(α)− gt

with (x(0), y(0)) = (0,0), and g = 9.8m/s2.

We can integrate the two equations to get exact formulas for x(t)
and y(t), with s and α still unknown.

If α is 30 degrees, and s is 100, what is q? (The y formula tells
when the cannonball lands, the x formula how far it went.)

Suppose s is 100, and α is uniformly in [25, 35] (degrees!).

What is the expected value of q?
107 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

108 / 255

MULT: A Discrete Example

A natural way in which a problem becomes multidimensional
occurs if we have more than one outcome, and we cannot describe
all the outcomes as the result of a single random process.

A common example involves rolling two dice, (which we can
distinguish because they are different colors). Assuming fair dice,
then for either die, the 6 outcomes each have a 1

6 probability.

If we roll the dice together, our outcome space Ω is the product
Ω = Ω1 × Ω2, of the outcome spaces for each separate die.

In the product space Ω = Ω1 × Ω2:

a typical outcome is (e1, e2).

the number of possible outcomes is n1 × n2 = 36

the probability of outcome (e1, e2) is p = p1 × p2 = 1
36 ;

we notice that the probabilities of the 36 outcomes sum to 1.

109 / 255

MULT: 2D Discrete Probabilities Sum to 1

If the 1D probabilities sum to 1, so do the 2D probabilities. We
can think of this as computing the area of a square 1 inch on a
side. One set of probabilities determine horizontal lines, the other
verticals. The total area (probability) is 1.

The area of each box (event) is the product of the length and
width of its sides (component events).

This idea extends to 3D and beyond.
110 / 255

MULT: A Discrete Example

We are assuming that the separate dice outcomes are
independent. Under that natural assumption, the probability of
each pair of outcomes (e1, e2) in Ω is the product of the
probabilities of the outcomes in Ω1 and Ω2,

p1,2(e1, e2) = p1(e1) · p2(e2)

This is still true if the dice are not fair, that is, if some faces of
each die are more likely to turn up than others. Given the
individual probabilities for our unfair dice, we can work out the
probabilities for rolling them together.

Exercise 21: Make a probability table for the case where the dice
are unfair. The red die has probabilities 0.1, 0.1, 0.3, 0.2, 0.0, 0.3
and the blue die has probabilities 0.4, 0.1, 0.0, 0.3, 0.1, 0.1.

Exercise 22: Using the dice from the previous exercise, what is
the expected value of the quantity of interest e1 + e2, the sum of
the dice?

111 / 255

MULT: PDF’s For Continuous Variables

Now suppose the variables x and y vary continuously, and each
variable represents a separate independent probabilistic process.

Let ρ1(x) and ρ2(y) be the separate PDF’s for our two variables.
Because of independence, the PDF for the event (x , y) is:

ρ(x , y) = ρ1(x) · ρ2(y)

The 1D PDF’s each integrate to 1. Because we are assuming
independence, we have the same for the 2D product PDF:∫

Ω
ρ(x , y) dx dy =

∫
Ω2

∫
Ω1

ρ1(x) · ρ2(y) dx dy

=

∫
Ω2

∫
Ω1

ρ1(x)dx · ρ2(y) dy

=

∫
Ω2

1 · ρ2(y) dy

=1

112 / 255

MULT: Continuous Variables, Finite Domain

If we have

ρ1(x) =2x for x ∈ [0, 1]

ρ2(y) =
3

4
(1− y 2) for y ∈ [−1,+1].

then, assuming independence, the variable (x , y) has the pdf

ρ(x , y) =
3

2
x(1− y 2) for (x , y) ∈ [0, 1]× [−1,+1].

113 / 255

MULT: Continuous Variables, Semi-Infinite Domain

If we have

ρ1(x) =e−x for x ∈ [0,+∞)

ρ2(y) =
3

4
(1− y 2) for y ∈ [−1,+1].

then, assuming independence, the variable (x , y) has the pdf

ρ(x , y) =
3

4
e−x (1− y 2) for (x , y) ∈ [0,+∞)× [−1,+1].

114 / 255

MULT: Continuous Variables, Infinite Domain

Using the normal or Gaussian PDF, we might have:

ρ1(x) =e−
(x−5)2

2 /
√

2π for x ∈ (−∞,+∞)

ρ2(y) =e−
(y−3)2

8 /
√

4π for y ∈ (−∞,+∞).

then, assuming independence, the variable (x , y) has the pdf

ρ(x , y) = e−
4(x−5)2+(y−3)2

8 /π/
√

8 for (x , y) ∈ (−∞,+∞)×(−∞,+∞).

115 / 255

MULT: Expected Value for Continuous Variables

In order to compute the expected value of the event (x , y), we
need to compute a double integral:

(x , y) =

∫ b2

a2

∫ b1

a1
(x , y) ρ(x , y)dx dy

=(

∫ b2

a2

∫ b1

a1
x ρ1(x)ρ2(y)dx dy ,

∫ b2

a2

∫ b1

a1
y ρ1(x)ρ2(y)dx dy)

=(

∫ b1

a1
x ρ1(x)dx ,

∫ b2

a2
y ρ2(y)dy)

=(x , y)

Again, we must assume independence of x and y to make this
statement.

Exercise 23: Variable x is selected from the interval [0, 1], with a
PDF of ρ1(x) = 2 · x . Variable y is selected from the interval
[−1,+1] with a PDF of ρ2(y) = c · ey . Determine the value of c
so that ρ2(y) is a legitimate PDF. Then, assuming that x and y
are independent, what is the expected value of (x , y)?

116 / 255

MULT: Expected Value of QoI for Continuous Variables

In order to compute the expected value of a quantity of interest,
f (x , y), we need to compute a double integral in which each value
of f () is weighted by the probability that that particular pair of
input arguments (x , y) would occur. (Again, we are assuming
independence.)

f (x , y) =

∫ b2

a2

∫ b1

a1
f (x , y)ρ1(x)ρ2(y)dx dy

Exercise 24: For the variables in the previous exercise, what is the
expected value of the quantity of interest f (x , y) = x · y?

117 / 255

MULT: Continuous Variables

A problem can become multidimensional when we consider
multiple uncertainties in the input data.

The projectile problem, as originally posed, essentially asked the
question, what is the expected value of x , the horizontal distance
that the projectile has traveled when it lands, assuming that the
aiming angle α has a small uncertain variation.

This required us to think of the distance x as a function of α, and
to compute:

x =

∫ 35

25
x(α) · ρ(α) dα

If we further assume that the initial speed s is uncertain, we
instead must compute

x =

∫ s2

s1

∫ 35

25
x(α, s) · ρ1(α) dα · ρ2(s) ds

118 / 255

MULT: A Few Dimensions Becomes Many Dimensions

Obviously, we could have many uncertain input parameters, each
of which could be assigned a PDF, so that we would add another
layer of integration to average over that uncertainty. So you can
easily imagine integrals over probability product regions of
dimension 5, or maybe 10.

However, we may want to use many more dimensions than that.

Financial calculations involving a 30 year adjustable-rate mortgage
must consider 360 monthly payments. At the end of each month,
the mortgage rate may have changed. If we regard these rates as
independent, then we need to include 360 uncertain parameters,
each with a PDF, requiring 360 nested integral signs!

How can we approximate 360 iterated integrals?

119 / 255

MULT: A Few Dimensions Becomes Infinite Dimensions

Theoretically, our task can be even worse. Suppose we are
considering the steady heat equation over a rectangle, with an
uncertain boundary condition along one side. This boundary
condition might be written as f (x), and it represents a random
field, that is, the value of this function at every point x is unknown.

Many problems are like this, involving uncertain functions rather
than uncertain parameters (which are just a few numbers).

Computationally, we might handle this by discretizing f (x) as a
piecewise linear function. However, the more accuracy we need,
the more breakpoints we must use, and the higher the dimension
of our probability space.

Again, we need to approximate many iterated integrals.

120 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

121 / 255

PROD: Approximating a Multidimensional Integral is Hard

We consider the problem of approximating a multidimensional
integral that includes a weight or PDF of the vector argument ~x :

I (f ,Ω) =

∫
Ω

f (~x)ρ(~x) d~x

Our probability integrals will actually be much simpler than this
general form. But before we point that out, let’s take a moment to
give some more respect to the Monte Carlo method.

One reason that the Monte Carlo method is so powerful is that we
can easily see how to apply it in many situations where other
methods can’t be applied, or can’t produce a useful result in a
reasonable time.

122 / 255

PROD: Monte Carlo Can Handle Hard Problems

So suppose that our domain Ω is not a rectangle, and our
density ρ() does not factor into ρ1(x) · · · ρ2(x2) · · · ρn(xn). The
Monte Carlo method doesn’t care about that. All we need to be
able to do is provide the area or volume of the domain, V (Ω), and
be able to produce sample points within the region.

If we can sample points ui uniformly in the region, we write

I (f ,Ω) ≈ V (Ω)

n
·

n∑
i=1

f (~ui)ρ(~ui)

If we can sample points xi in a way that matches the density ρ(~x),
we write

I (f ,Ω) ≈ V (Ω)

n
·

n∑
i=1

f (~xi)

123 / 255

PROD: Monte Carlo Can Handle Hard Problems

To estimate the integral of x2 over the surface of the sphere of
radius r = 2, and center c = (1, 1, 1), with surface area 4πr 2, the
tricky part is getting n uniform sample points on the surface.

To do this, choose n triples of normal random numbers, normalize
each triple to have unit norm, multiply by r and add c.

Our Monte Carlo results are then:

N Estimate Error

---- -------- ----------

1 9.57065 107.715

10 56.6802 60.6059

100 101.817 15.4691

1000 116.302 0.984061

10000 116.01 1.2766

100000 116.961 0.324764

1000000 117.337 0.0507664
http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/sphere surface.m

124 / 255

End Part 3, Begin Part 4

Halfway there!

125 / 255

Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
126 / 255

PROD: Probabilistic Integrals are Simpler

Our probabilistic integrals are typically simpler:

the region Ω is actually a product of 1D regions;

the 1D regions are typically intervals;

the weight or PDF is actually a product of 1D PDF’s.

so we can write instead:

I (f ,Ω) =

∫
Ω

f (~x)ρ(~x) d~x

=

∫ bn

an

· · ·
∫ b1

a1

f (~x)ρ1(x1)dx1 · · · ρn(xn)dxn

127 / 255

PROD: Approximate Multiple Integrals with Monte Carlo

Let’s start by approximating a 2D integral of the form:

I (f , [a, b]× [c , d]) =

∫ d

c

∫ b

a
f (x , y) dx dy

This integral is defined over a product region [a, b]× [c , d].

So all we have to do is select n points (x , y) uniformly, with
x ∈ [a, b] and y ∈ [c , d], sum the function values and multiply by
(b−a)(d−c)

n .

For instance, suppose we wish to approximate the integral of
f (x , y) = e−(x−0.3)2−(y−0.4)2

over (x , y) ∈ [0, 1]× [0.1]. The exact
integral is

0.25π(erf(0.4)+erf(0.6))·(erf(0.3)+erf(0.7)) ≈ 0.81593734265560183526

128 / 255

PROD: Approximate Multiple Integrals with Monte Carlo

Notice, the behavior of the Monte Carlo error is exactly the
same for this 2D problem, that is, the rate of error decay seems to
have the same slope as the 1D problem.

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/mc 2d test.png
129 / 255

PROD: Approximate Multiple Integrals with Product Rules

Let’s try a different approach to approximating the
multidimensional integral, by considering it to be a sequence of
nested 1D integrals.

For each value of y , we could approximate the inner integral over x
by a quadrature rule, leaving us with an integral over y .∫ d

c

∫ b

a
f (x , y) dx dy ≈

∫ d

c

m∑
i=1

ui f (xi , y)dy

Now we just have a function of y to integrate:∫ d

c

∫ b

a
f (x , y) dx dy ≈

n∑
j=1

vj

m∑
i=1

ui f (xi , yj)

=
n∑

j=1

m∑
i=1

ui vj f (xi , yj)

130 / 255

PROD: Forming a Product Rule

We have a rule of order n1 for x , with points xi and weights ui ,
and another rule of order n2 for y , with points yj and weights vj .

Another way of looking at what we did on the previous slide
assumes that we created a 2D quadrature rule, of order n1 · n2, for
(x , y), with points (xi , yj) and weights ui · vj , as follows:

u1 *f(x1) u2 *f(x2) ... un1 *f(xn1)

+--

v1*f(y1) | u1*v1*f(x1,y1) u2*v1*f(x2,y1) ... un1*v1*f(xn1,y1)

v2*f(y2) | u1*v2*f(x1,y2) u2*v2*f(x2,y2) ... un1*v2*f(xn1,y2)

... |

vn*f(yn2)| u1*vn2*f(x1,yn2) u2*vn2*f(x2,yn2) ... un1*vn2*f(xn1,yn)

131 / 255

PROD: Approximate Multiple Integrals with Product Rules

Let us apply a product rule to our sample integral
f (x , y) = e−(x−0.3)2−(y−0.4)2

over (x , y) ∈ [0, 1]× [0.1].

Let’s use the Gauss-Legendre rule for both directions, but the
n1-point rule in x and the n2 point rule in y .

We can compute the 1D rules, use a for loop to carry out the
product, and we never actually have to form the 2D rule:

q = 0.0;

for j = 1 : n2

for i = 1 : n1

fxy = exp (- (x(i) - 0.3)^2 -(y(j) - 0.4)^2);

q = q + u(i) * v(j) * fxy;

end

end

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/quad 2d.m

132 / 255

PROD: Approximate Multiple Integrals with Product Rules

On the other hand, we may really want to set up the 2D rule:

k = 0;

for j = 1 : n2

for i = 1 : n1

k = k + 1;

z(1:2,k) = [x(i); y(j)];

w(k) = u(i) * v(j);

end

end

In that case, we can later use the 2D rule directly:

q = 0.0;

for k = 1 : n1*n2

q = q + w(k) ...

* exp (- (z(1,k) - 0.3)^2 -(z(2,k) - 0.4)^2);

end
http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/quad 2d compute.m

133 / 255

PROD: A 2D Quadrature Rule

If we use the Gauss-Legendre rule again, of orders n1 = 2 and
n2 = 3, adjusted to the interval [0, 1] we get the following 6 point
rule for 2D:

W X Y

------ ------ ------

0.1389 0.2113 0.1127

0.1389 0.7887 0.1127

0.2222 0.2113 0.5000

0.2222 0.7887 0.5000

0.1389 0.2113 0.8873

0.1389 0.7887 0.8873

Notice, in particular, that the sum of the elements of W is 1!

134 / 255

PROD: Picture of 2D Gauss Product Rule

Here is a picture of the arrangement of points for a product of
two Gauss-Legendre rules of orders 10 and 20:

135 / 255

PROD: Picture of 2D Clenshaw-Curtis Product Rule

Here is a picture of the arrangement of points for a product of
two CC rules of orders 5 and 9:

136 / 255

PROD: Picture of 3D Newton-Cotes Rule

Here is a picture of the arrangement of points for a product of
three Newton-Cotes rules of orders 7, 7 and 7:

137 / 255

PROD: A 2D Quadrature Rule

Now, whether we use the 1D rules in a pair of loops, or the 2D
rule, we can apply quadrature to our integral:

1 2 N1 = 3 4

+---

1 | 0.135292 0.060695 0.0630469 0.0629982

2 | 0.065077 0.00401373 0.0018354 0.00188054

N2= 3 | 0.0671508 0.00210248 0.0000809 0.00003573

4 | 0.0671109 0.00213933 0.0000440 0.00000121

5 | 0.0671114 0.0021388 0.0000445 0.00000068

Notice that moving along the diagonal seems the best bet!

http://people.sc.fsu.edu/∼jburkardt/latex/stochastic integrals/quad 2d.m

138 / 255

PROD: Product Rules

What this means is that if we have 1D quadrature rules
appropriate for integrals over the x and y intervals, then we now
have a formula for producing a quadrature rule for integrals over
the 2D product region.

If the 1D rules use n1 and n2 points respectively, then the 2D rule
uses n1× n2 points, whose points (xi , yj) are all possible pairs of
the 1D points, and whose weights are the corresponding products
vi wj of the 1D weights.

Moreover, the same technique extends to 3D regions and beyond.
The only requirement is that the integration region must be
expressed as a product region, that is, a sort of rectangle, or
hyper-rectangle, which includes cases where some dimensions are
semi-infinite or infinite.

139 / 255

PROD: Create a Clenshaw-Curtis Product Rule

Exercise 25:: Approximate the integral of
f (x , y) = e−(x−0.3)2−(y−0.4)2

over (x , y) ∈ [0, 1]× [0, 1], by
creating 3× 3, 4× 4 and 5× 5 product rules from 1D
Clenshaw-Curtis rules. How does the error in the CC product rules
compare to GL rules of the same order?

Exercise 26:: Approximate the integral of f (x , y , z) = x2y 3z over
(x , y , z) ∈ [0, 1]3 by creating and using a 4× 4× 4 product rule
from 1D Clenshaw-Curtis rules. Your integral estimate should be
exact. What happens if you try a 3× 4× 4 rule? How far can you
reduce each 1D order and still get an exact answer? Can you guess
the lowest order CC product rule you could use to integrate xay bzc

exactly?

140 / 255

PROD: Product Rules

Wonderfully enough, if the x rule is exact for polynomials up to
degree p and the y rule is exact for polynomials up to degree q,
then the product rule will be exact for polynomials whose x degree
does not exceed p and whose y degree does not exceed q.

In particular, if both rules are exact for linears, then the product
rule integrates 1, x , y , and xy exactly.

In general, if the quadrature rule Q() is the product of rules Q1()
and Q2(), with precisions p1 and p2 respectively, then Q() has
total precision p = min(p1, p2), and component precision (p1, p2).

141 / 255

PROD: Component Precision

If a 2D quadrature rule has component precision (3, 5), it can
integrate exactly any polynomial with the property that, in every
term, x never has an exponent greater than 3, and y never has an
exponent greater than 5.

A 2D quadrature rule with (3,5) component precision exactly
integrates:

y 5 y 5 xy 5 x2y 5 x3y 5

y 4 y 4 xy 4 x2y 4 x3y 4

y 3 y 3 xy 3 x2y 3 x3y 3

y 2 y 2 xy 2 x2y 2 x3y 2

y y xy x2y x3y
1 1 x x2 x3

x i y j 1 x x2 x3

142 / 255

PROD: Total Precision

If a 2D quadrature rule has total precision 4, it can integrate
exactly any polynomial with the property that, in every term, the
sum of the x and y exponents is always 4 or less.

A 2D quadrature rule with total precision 4 exactly integrates:

y 4 y 4 · · · · · · · · · · · ·
y 3 y 3 xy 3 · · · · · · · · ·
y 2 y 2 xy 2 x2y 2 · · · · · ·
y y xy x2y x3y · · ·
1 1 x x2 x3 x4

x i y j 1 x x2 x3 x4

143 / 255

PROD: Total/Component Precision

Exercise 27: If a quadrature rule has total precision p, does this
imply it has component precision (p, p, · · · , p)? If a quadrature
rule has component precision (p, p, · · · , p), does this imply it has
total precision p?

Exercise 28: A quadrature rule for 3D data has component
precision (4, 2, 3). What is the total precision of this rule?

Exercise 29: A quadrature rule for 2D data has total precision 6.
Specify a component precision (p1, p2) that this rule is guaranteed
to have. There are actually many possible answers.

144 / 255

PROD: Pascal Triangle for 2D Monomials

Here is a sort of Pascal triangle for all monomials in x and y .

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x7 x6y x5y2 x4y3 x3y4 x2y5 xy6 y7

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8

145 / 255

PROD: Monomials up to Component Degree (4,4)

If we use a 2D quadrature rule with (4,4) component precision,
we integrate exactly the 25 monomials in red.

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x7 x6y x5y2 x4y3 x3y4 x2y5 xy6 y7

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8

Roughly speaking, we can expect our error to be O(h5), because
there are monomials of that degree that we have missed.

146 / 255

PROD: Monomials up to Total Degree 4

If we use a 2D quadrature rule with total precision 4, we
integrate exactly the 15 monomials in red.

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x7 x6y x5y2 x4y3 x3y4 x2y5 xy6 y7

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8

Roughly speaking, we can expect our error to be O(h5).

147 / 255

PROD: A 2D Quadrature Rule

Recall our experience integrating a function with product rules of
different component precisions. It really did not pay to increase the
precision in x but not y . For a general integrand, the error in an
interpolatory quadrature rule will tend to be dominated by the
monomial of lowest degree that you can’t integrate exactly.

1 2 N = 3 4

+---

1 | 0.135292 0.060695 0.0630469 0.0629982

2 | 0.065077 0.00401373 0.0018354 0.00188054

M = 3 | 0.0671508 0.00210248 0.0000809 0.00003573

4 | 0.0671109 0.00213933 0.0000440 0.00000121

5 | 0.0671114 0.0021388 0.0000445 0.00000068

When we stray off the diagonal, we are focussing on one variable,
but ignoring the other.

148 / 255

PROD: Control Total Degree

To approximate the integral with an error estimate, we need a
sequence of rules of increasing precision.

If the x and y interval sizes are roughly equal (hx , hy ≈ h), and our
2D quadrature rule precisely integrates all monomials of total
degree p, the error will behave like hp+1.

If our 2D quadrature rule has component precision (p, p), then we
approximate more monomials, but our error still behaves like hp+1.

We prefer a sequence of rules that marches down Pascal’s triangle
a line at a time. The extra monomials below the line don’t help
our asymptotic error, and they presumably cost us in function
evaluations.

149 / 255

PROD: Not That Many Monomials!

We already noted that, in M dimensions, a product rule of 1D
quadrature of order K uses N = K M points. But how many
M-dimensional monomials of total degree K are there?

The space of M-dimensional polynomials of degree K or less has

dimension

(
K + M

M

)
≈ MK

K ! .

In particular, letting M = 100 and K = 1, we see that in
100-dimensional space, there are 101 monomials of degree 1 or
less, namely, 1, x1, x2, ..., x100, and only 5,151 quadratics or less,
and “only” 176,851 cubics or less. A good quadrature rule should
be able to capture these integrals without needing to evaluate the
function as trillions of points!

150 / 255

PROD: The Smolyak Approach

If we need to estimate the integral of a smooth function in a high
dimensional space, then we may be able to achieve highly accurate
results at low cost, using an approach proposed by Smolyak.

The idea is to construct a family of quadrature rules of increasing
total precision, that is, they try to fill in Pascal’s triangle (or
tetrahedron or multidimensional simplex) one more line at a time.

If this is done in the right way, we can reach a desired level of
accuracy, even in a fairly high dimension, at low cost in function
evaluations.

The surprising thing is that these rules are constructed out of (low
order versions of) the very product rules that they are going to
replace!

151 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

152 / 255

SPARSE: The Challenge of High Dimensions

Let’s ignore the complications of geometry, weight functions,
independence and so on, and focus on the issues that might arise if
we try to approximate an integral of the form∫

[0,1]m

f (x) dx

where the spatial dimension m is going to be “large”.

The natural approach to this problem would be to try a product
rule. Since we have no information about the function in advance,
we would use the same rule, of the same order, for each spatial
dimension. If our product rule is based on a 1D k point rule, then
we might expect our polynomial precision to be k .

Our strategy, then, might be to use a sequence of product rules
derived from the 1D rules of order 1, 2, 3, ... up to, say 10, which
seems enough accuracy, at least for smooth integrands.

153 / 255

SPARSE: Product Rules Blow Up!

Here is a partial table of the number of points N for a product
rule in M dimensions, based on a 1D rule of order K :

K=1 2 3 4 5

M=1 1 2 3 4 5
2 1 4 9 16 25
3 1 8 27 64 125
4 1 16 81 256 625
5 1 32 243 1,024 3,125

10 1 1,024 59,049 1,048,576 9,765,625
20 1 million
30 1 billion
40 1 trillion

100 1 forget it! N = K M

Even at dimension M = 10, we can see that a product rule based
on a 1D rule of 5 points is very expensive. Except for very limited
cases, we can’t go far in M or K !

154 / 255

SPARSE: Seeking Alternative to Product Rules

We can’t even use a product rule based on a 2 point 1D rule
beyond dimension M = 20, when really, in that case we are
essentially looking for linear behavior in the integrand.

This is especially odd because the 1D rule is essentially estimating
the linear behavior of the integrand. Even in 100 dimensions, we
could estimate this for each dimension by evaluating the function
once at a central point, and comparing its value in each of the 100
directions, for a total of 101 points, not 2100 points.

This is a hint that there may be a solution, despite the fact that
product rules are not the solution!

What we are hoping for is some family of quadrature rules that will
give us a choice of a family of rules of known precision, with a few
choices of increasing precision (so we can estimate error) that
works in dimensions of 20 or 30 or 50, perhaps, while using less
than 1,000,000 points per rule!

155 / 255

SPARSE: Beat the Product Rule!

An alternative to the product rules is known as the Smolyak
procedure.

We still assume that our integration region Ω is a product space of
dimension M. To keep things simple, we’ll assume for now that
Ω = [0, 1]M .

Let’s also assume that we have a family of quadrature rules for the
1D problem, and that these are indexed by order (number of
points) which we’ll also take to be equivalent to precision (degree
of highest polynomial the rule can integrate exactly.) We can call
these 1D rules Q(0), Q(1), Q(2), ..., Q(N).

If we form a 2D product rule, we would prefer to write something
like Q(2, 5), meaning Q(2, 5) = Q(2)× Q(5), but for brevity we
may occasionally just write (2, 5). We’ll let the numbers indicate
the precision.

156 / 255

SPARSE: Hard to Explain

Smolyak’s sparse grid procedure may seem hard to understand.
But be fair, it is also hard to explain! There are several approaches
to explanation:

”Null Physics is derived from the concept that our entire
universe is the internal structure of nothingness. In other
words, physical reality is an intricate, four-dimensional
geometric equation that adds to zero because it exists within
zero.”, Terence Witt;

”Explain it to me like I’m a Golden Retriever.”, a Wall Street
executive rejects his advisor’s report;

”’Shut up!’, he explained.”, Ring Lardner;

”Sir, I have given you an argument. I am not also obliged to
provide you with an understanding.”, Samuel Johnson;

”A little inaccuracy saves tons of explanation.”, Saki.

We will go with the last approach!
157 / 255

End Part 4, Begin Part 5

I left you hanging last time!

158 / 255

Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
159 / 255

SPARSE: Cover the Squares

Let’s look at the task of devising a 2D quadrature rule that has
total precision 3. That means it has to cover all the black squares
on the following diagram, where you must imagine that the x axis
represents 1, x , x2, x3, x4, the y axis is similar, and the box three
positions left and two up represents the term x2y .

Using a product rule Q(3, 3) = Q(3)× Q(3), with component
precisions (3, 3), we cover all the black boxes. It’s hard to imagine
a better solution.

160 / 255

SPARSE: Cover the Squares

But suppose we wanted to try to cover only the black boxes? A
(0, 3) rule would get the first column. We could “add” a (1, 2) rule
to get the next column, but there’s some overlap (dark red).

By “adding” the two quadrature rules, Q = (0, 3) + (1, 2), it looks
like we pick up 1, y and y 2 twice.

161 / 255

SPARSE: Cover the Squares

We can fix our overlap problem by subtracting the rule (0, 2).
Then we can move to the next column by adding (2, 1):

And again we have some overlap, or double counting (dark red),
for this rule Q = (0, 3) + (1, 2)− (0, 2) + (2, 1).

162 / 255

SPARSE: Cover the Squares

Subtracting the rule (1, 1) and move to the next column by
adding (3, 0):

And again we have some overlap, or double counting (dark red),
for this rule Q = (0, 3) + (1, 2)− (0, 2) + (2, 1)− (1, 1) + (3, 0).

163 / 255

SPARSE: Cover the Squares

Subtracting the rule (2, 0), we cover the black squares.

There is no overlap for this rule
Q = (0, 3) + (1, 2)− (0, 2) + (2, 1)− (1, 1) + (3, 0)− (2, 0).

164 / 255

SPARSE: Look at the Pattern

Rewrite this rule as:

+(0,3)

-(0,2) +(1,2)

-(1,1) +(2,1)

-(2,0) + (3,0)

and you see a geometric pattern, and the fact that, to get a rule of
total precision 3, we added all rules of component precision 3, and
subtracted all rules of component precision 2. In 2D, the usual
Smolyak rules are all made this way:

0: +(0,0)

1: +(1,0) + (0,1)

-(0,0)

2: +(2,0) + (1,1) + (0,2)

-(1,0) - (0,1)

3: +(3,0) + (2,1) + (1,2) + (0,3)

-(2,0) - (1,1) - (0,2)
165 / 255

SPARSE: What is the Cost?

So that’s great. We’ve shown that, (if you believe me) you can
combine low order 2D product rules in a way that gets exactly the
monomials you want in order to achieve a given total precision.

So it’s possible to do this. But it seems like this must be far more
costly than simply computing a single (3, 3) product rule, which
gets the job done in one blow.

After all, the “cost” of the (3, 3) rule might be 16 points. The cost
of the 3rd Smolyak rule looks like (4+6+6+4)+(3+4+3)=30
points, that is, I have to evaluate the function at every point
specified by every rule that is part of the Smolyak rule.

Here, I’m assuming that a (2, 1) rule, for instance, is the product
of a 3 point rule and a 2 point rule, with a total of 6 points.

166 / 255

SPARSE: Nesting Reduces the Cost

But now, suppose we arranged our 1D rules so that they are
perfectly nested. (We’ll come back and modify this claim, but for
now, let’s believe “a little bit of inaccuracy”!)

In that case, there would be only 10 unique points used in the 7
rules that we combined to build our Smolyak rule. In the very
unlikely event that our 1D rules used consecutive, evenly spaced
points, then here is the “stencil” that we would have:

3 | (0,3) ----- ----- -----

2 | (0,2) (1,2) ----- -----

1 | (0,1) (1,1) (2,1) -----

0 | (0,0) (1,0) (2,0) (3,0)

| 0 1 2 3

so our rule, involving the sum of 7 low order product rules, might
use fewer points than the single (3,3) product rule, if we have
nesting. 167 / 255

SPARSE: Number of Nodes = Number of Monomials

Moreover, you can see that if we were able to use this perfectly
nested sequence of rules, then the number of nodes (places where
we evaluate the integrand) will be exactly equal to the number of
monomials we want to integrate exactly...at least in this 2D
example.

For instance, there are 10 monomials of total degree 3 or less, and
our corresponding point pattern uses 10 abscissas or nodes or
evaluation points.

This would stay true for higher degree, and for higher dimension.

The plan we actually use is inspired by this idea, but modifies it for
practical reasons!

168 / 255

SPARSE: What happens in 3D?

In 3D, you have to play “cover the black cubes”. The pattern is
similar, but now will generally involve combining three groups of
product rules:

0: +(0,0,0)

1: +(1,0,0) + (0,1,0) + (0,0,1)

-2*(0,0,0)

2: +(2,0,0) + (1,1,0)+(1,0,1)+(0,2,0)+(0,1,1)+(0,0,2)

-2*(1,0,0) - 2*(0,1,0)-2(0,0,1)

+(0,0,0)

3: +1 * rules that sum to 3

-2 * rules that sum to 2

+1 * rules that sum to 1

You may assume that the coefficients (1,-2,1) come from the third
row of Pascal’s triangle (with sign).

169 / 255

SPARSE: Formal Definition

Believe it or not, the rule for creating the L-th Smolyak rule in
dimension M is as simple as that – but also as unfriendly-looking
as the following formula, where ~̀ is the vector describing a product
rule.

A(L,M) =
∑

L−M+1≤|~̀|≤L

(−1)L−|~̀|
(

M − 1

L− |~̀|

)
(Q`1 ⊗ · · · ⊗ Q`M)

The product rules that sum to L get multiplied by 1. The product
rules that sum to L− 1 get multiplied by −(M − 1), and so on.

170 / 255

SPARSE: Computational Comments

Implementing Smolyak’s formula given L and M requires:

a loop on |~̀| from L−M + 1 to L;

computing the value (−1)L−|~̀|;

the combinatorial coefficient

(
M − 1

L− |~̀|

)
the generation of every nonnegative integer M vector ~̀ whose
entries sum to |~̀|;

Each of these steps raises a computational issue; let’s take a few
moments to be sure that everyone here could compute the correct
list of product rules, with their signs and weights, for a given
A(L,M).

171 / 255

SPARSE: The loop index

The name of the loop index |~̀| is actually a symbol indicating
that it is meant to control the sum of the elements of vectors we’ll
call ~̀.

Computationally, we need to give it a name, so let’s call it lsum.

The formula, as quoted, allows lsum to run from L−M + 1 to L.
However, we know that lsum is the sum of the entries in ~̀, which
are nonnegative integers. So it will help to write, instead, that
lsum runs from max(0, L−M + 1) to L.

This is why, in 3D, we don’t begin combining three groups of rules
until we get to L = 2. In general M-dimensional space, the 0’th
rule is still just one group (0, 0, ..., 0), the first rule involves two
groups, and so on, until we reach L = M − 1.

172 / 255

SPARSE: The power of minus 1

We rewrite the factor (−1)L−|~̀| as (−1)L−lsum.

Typically, L is going to be a number less than 10, so we could be
careless and compute the power of −1 by repeated multiplication:

(−1)5 = (−1) · (−1) · (−1) · (−1) · (−1) = −1

But we could also note that the result is +1 or -1 depending on
whether the exponent is even or odd, so that we have

(−1)5 = (−1) mod (5,2)

While it won’t save us much time in this case, it’s good to realize
that correct mathematics is not always efficient computation.

We could think of this as a function value = mop (n);

173 / 255

SPARSE: The Combinatorial Coefficient

The formula for C (n, k), the combinatorial coefficient is:

C (n, k) =
n!

k!(n − k)!

For Smolyak’s formula, it’s possible we might have M = 10, 20, 30
or even 100. When n is large, there are many bad ways to compute
C (n, k). If k is a small number, we can rewrite C (n, k) as:

C (n, k) =
n · (n − 1) . . . · (n − k + 1)

k!

We can even guarantee an integer result:

C (n, k) = n/1 · (n − 1)/2 · (n − 2)/3 . . . · (n − k + 1)/k

where we evaluate from left to right, because the product of two
consecutive integers is divisible by 2!, the product of three
consecutive integers is divisible by 3!, and so on...

We could think of this as a function value = choose (n, k);
174 / 255

SPARSE: All possible vectors ~̀

To generate all vectors ~̀ whose entries sum up to lsum, for M =
3 and lsum=4, we have:

0,0,4 (start with everything on the right right)

0,1,3 rightmost nonzero increments left, rest go right.

0,2,2 rightmost nonzero increments left, rest go right.

0,3,1 rightmost nonzero increments left, rest go right.

0,4,0 rightmost nonzero increments left, rest go right.

1,0,3 rightmost nonzero increments left, rest go right.

1,1,2 rightmost nonzero increments left, rest go right.

1,2,1 rightmost nonzero increments left, rest go right.

1,3,0 rightmost nonzero increments left, rest go right.

2,0,2 rightmost nonzero increments left, rest go right.

2,1,1 rightmost nonzero increments left, rest go right.

2,2,0 rightmost nonzero increments left, rest go right.

3,0,1 rightmost nonzero increments left, rest go right.

3,1,0 rightmost nonzero increments left, rest go right.

4,0,0 (stop when you can’t move.) 175 / 255

SPARSE: Exercises

Exercise 30: Write three procedures to compute the
combinatorial function we called choose(n,k):

choose1() evaluates n!, k!, n − k!, then combines them;

choose2() evaluates n · (n− 1) . . . · (n− k + 1), divides by k!;

choose3() computes n/1, then multiplies by (n− 1) and then
divides by 2, and so on, as described earlier;

Use these functions to compute C (8, 3), C (10, 2), C (20, 4), and
C (30, 6). Comment on your results.

Exercise 31: Write a procedure which accepts as input an
M-vector of nonnegative integers ~̀ whose entries sum up to lsum,
and which returns the “next” vector. Test your function on the
example on the previous slide, by calling your function with input
vector (0, 0, 4). Use the output from that call to call again and
again until you receive as output the final vector (4, 0, 0).

176 / 255

SPARSE: Program Outline #1

Assume that q(i , j , k) indicates the result of carrying out a 3D
product rule constructed by q(i , j , k) = q(i)× q(j)× q(k). Then a
“simple” program to evaluate A(L,M), the Smolyak integral
estimate in dimension M = 3 of level L, might look like:

s = 0.0;

for lsum = max (0, L - M + 1) to L

c = mop (L - lsum) * choose (M - 1, L - lsum);

set (i,j,k)=(0,0,lsum); first composition of lsum.
begin loop

s = s + c * q(i,j,k); estimate integral with product rule.
if (i,j,k)=(lsum,0,0), break from loop;

generate next (i,j,k);

end

end

177 / 255

SPARSE: Program Outline #2

The previous program computes an integral, once, and does it
somewhat inefficiently, since the product rules defined may include
many common points.

We can try to be more efficient by working out all the points to be
used, and gathering their weights to make a single quadrature rule
in advance.

Here is how a user might go invoke the corresponding functions:

m = 3;

l = 4;

n = spgrid_size (m, l);

x = spgrid_points (m, l, n);

w = spgrid_weights (m, l, n, x);

q = w’ * f (x); <-- Weighted sum of integrand values.

178 / 255

SPARSE: Spinterp

.
SPINTERP, a MATLAB program, by Andreas Klimke, is a great
way to explore the power of sparse grids.

x = spgrid (l, m)

returns the points of a sparse grid of level L in dimension M.

To estimate an integral:

z = spvals (@fun, m) <-- fun.m is an M-file

q = spquad (z)

SPINTERP can also interpolate and optimize using sparse grids.

http://www.ians.uni-stuttgart.de/spinterp/

179 / 255

SPARSE: Spinterp

For example, to have SPINTERP estimate the integral of
f (x , y) = sin(x) + cos(y) over [0, π]2, we could write:

f = @(x,y) sin(x)+ cos(y); <-- a one-line function

m = 2;

r = [0.0, pi; 0.0, pi];

z = spvals (f, m, r); <-- sets up the sparse grid;

q = spquad (z); <-- estimates the integral.

The spvals() function accepts an additional options argument
that allows you to change from the default grid, the grid level,
error tolerances, and so on.

180 / 255

SPARSE: Spinterp Exercises

The following exercises introduce you to SPINTERP. For low
dimensions, other software will probably work better - but this
same program works in the same way for higher dimensions as well.

Exercise 32: Let f (x , y) = cos(π ∗ x ∗ sin(π ∗ y)). Use
SPINTERP to determine an interpolant to f over the unit square
[0, 1]2. Choose 100 random points in the unit square, and report
the average absolute difference between f and its interpolant.

Exercise 33: Let g(x , y) = 1
1−xy . Use SPINTERP to estimate

the integral of g over [0, 1]2 and compare your result to the exact
value 2π ln(2).

Exercise 34: Let h(x , y) = (x2 + y − 11)2 + (x + y 2 − 7)2. Use
SPINTERP to estimate the location in [−4,+4]2 of a point (x , y)
which minimizes h(x , y).

181 / 255

SPARSE: Other Software

.
SPARSE GRID HW, in C/C++/F90/MATLAB, by Heiss and
Winschel, computes efficient quadrature rules for both the unit
interval (Clenshaw-Curtis, Gauss-Legendre, Gauss-Patterson) and
(−∞,+∞) (Gauss-Hermite).

SPARSE GRID CC, in C/C++/F77/F90/MATLAB, includes
functions to compute Clenshaw-Curtis sparse grids.

SMOLPACK, in C, by Knut Petras, estimates the integral of a
function over a hypercube using sparse grids based on
Clenshaw-Curtis or “delayed” Clenshaw-Curtis rules.

SPARSE GRID, in Python, by Jochen Garcke, a basic library for
Clenshaw-Curtis sparse grid calculations.

http://people.sc.fsu.edu/ jburkardt/m src/sparse grid hw/sparse grid hw.html
http://people.sc.fsu.edu/ jburkardt/m src/sparse grid cc/sparse grid cc.html
http://people.sc.fsu.edu/ jburkardt/c src/smolpack/smolpack.html
http://people.sc.fsu.edu/ jburkardt/py src/sparse grid/sparse grid.html

182 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

183 / 255

CC: Implementation

Smolyak’s procedure is actually very flexible.

When I described it to you, I suggested that we took a family of
1D rules Q(0) using 1 point, Q(1) using 2 points, and so on, and
created product rules such that Q(i , j , k) = Q(i)× Q(j)× Q(k),
and combined these rules to make a Smolyak rule.

However, an important class of Smolyak rules is created using a 1D
family that is defined somewhat differently. We require that Q(0)
has (at least) precision 1, Q(1) has (at least) precision 3, Q(2)
precision 5, and in general, Q(i) has precision at least 2i + 1.

And as our main example of such behavior, we are going to build a
1D family of Clenshaw-Curtis rules that are nested.

184 / 255

CC: Implementation

Assume we have a sequence of 1D CC rules, of order o, index i
and precision p, and we must select a subsequence indexed by I,
that satisfy the precision requirement P ≥ 2 ∗ I + 1 and are nested:

o i p I P

1 0 1 0 1
2 1 1
3 2 3 1 3
4 3 3
5 4 5 2 5
6 5 5
7 6 7 (P ok, but not nested!)
8 7 7
9 8 9 3 7 (P ok, and nested)

10 9 9
...
17 16 17 4 9

185 / 255

CC: Nested CC Subsequence

Here is how the nested Clenshaw-Curtis sequence is arranged:

186 / 255

CC: Implementation

We have thus selected a subset of the Clenshaw Curtis rules that
are nested and whose precision increases at least fast enough.

1D index I 0 1 2 3 4 5 6 7 8

1D order O(I) 1 3 5 9 17 33 65 129 255

1D precision P(I) 1 3 5 9 17 33 65 129 255

needed precision 1 3 5 7 9 11 13 15 17

Now suppose we create a Smolyak rule using this CC sequence. In
particular, what does A(L = 4,M = 2) look like?

187 / 255

CC: A(L = 4,M = 2) Smolyak Grid

The 4th CC sparse grid in 2D uses 65 points.

188 / 255

CC: A(L = 4,M = 2) Smolyak Grid

We can think of this Smolyak grid as the sum of level 4 grids
minus level 3 grids where here I indicate the index of the
component rules

CC(0,4)

- CC(0,3) + CC(1,3)

- CC(1,2) + CC(2,2)

- CC(2,1) + CC(3,1)

- CC(3,0) + CC(4,0)

and here the order:

CC(1,17)

- CC(1, 9) + CC(3,9)

- CC(3,5) + CC(5,5)

- CC(5,3) + CC(9,3)

- CC(9,1) + CC(17,1)

189 / 255

CC: 2D Level4 17x1 component

190 / 255

CC: 2D Level4 9x3 component

191 / 255

CC: 2D Level4 5x5 component

192 / 255

CC: 2D Level4 3x9 component

193 / 255

CC: 2D Level4 1x17 component

194 / 255

CC: Remarks

This level 4 quadrature rule in 2D also subtracts values at 4
product rules of slightly lower precision, but because of nesting,
those points are already included in our plot.

Because we are using Clenshaw Curtis rules, and taking advantage
of nesting, the order of the 1D rules begins to grow rapidly. This is
not necessary, can be avoided, and ends up not hurting us much.

As long as the precision of the 1D rules satisfies p(`) ≥ 2`+ 1, the
precision of the Smolyak rule of level L will satisfy p(L) = 2L + 1.
In other words, the 2D level 4 Smolyak rule based on the CC
family we chose will have precision 9.

195 / 255

CC: Combining the Rules

To understand how Smolyak rules are actually used, let’s start
with the simplest Smolyak rule that is actually still interesting,
namely the 2D rule of level 1:

A(L = 1,M = 2) = Q(1)⊗Q(0) +Q(0)⊗Q(1)−Q(0)⊗Q(0)

and let’s imagine applying it to the problem of estimating the
integral of f (x , y) = e−(x−0.3)2−(y−0.4)2

over (x , y) ∈ [0, 1]× [0.1].

The 1D CC quadrature rules we need, shifted to [0, 1] are simply
the midpoint rule, and the 3 point NCC rule.

196 / 255

CC: Combining the Rules

y = 1.0 0.67032
y = 0.5 0.90483 0.95122 0.60653
y = 0.0 0.81873

x = 0.0 x = 0.5 x = 1.0

Writing Z , M and O for 0, 1/2 and 1, respectively, compute:

Q(1, 0) =1/6F (ZM) + 2/3F (MM) + 1/6F (OM) = 0.88604...

Q(0, 1) =1/6F (MZ) + 2/3F (MM) + 1/6F (MO) = 0.88232...

−Q(0, 0) =− 1F (MM) = −0.95122...

A(1, 0) =Q(1, 0) + Q(0, 1)− Q(0, 0) = 0.81714...

The exact answer is 0.815937...

197 / 255

CC: Combining the Rules

If you look at our calculation, we used F(MM) three times. In
higher dimensions or higher levels, this happens even more often,
because of nesting. So we can make our rule much more efficient
by noticing all the rules in which a given point occurs, and
combining the coefficients:

Writing Z , M and O for 0, 1/2 and 1, respectively, we had:

Q(1, 0) =1/6F (ZM) + 2/3F (MM) + 1/6F (OM)

Q(0, 1) =1/6F (MZ) + 2/3F (MM) + 1/6F (MO)

−Q(0, 0) =− 1F (MM)

and now we write

A(1, 2) = 1/3F (MM)+1/6F (ZM)+1/6F (OM)+1/6F (MZ)+1/6F (MO)

but now this is just a 2D quadrature rule, with 5 points and their
weights!

198 / 255

CC: An Efficient Quadrature Rule

So, as long as we understand that a Smolyak sparse grid is built
out of low level product rules, trying to match a single high level
product rule, and we rearrange the pieces of the rules, the result is
just a quadrature rule that tells us where to evaluate a function,
and how to weight the values to estimate the integral.

Thus, to use a sparse grid, we need to compute the points x and
weights w , shift and scale them, if necessary, from their definition
interval to the region Ω (which should be a product of intervals),
and then just compute:

I (f ,Ω) ≈ Q(f ,Ω) =
n∑

i=1

wi f (xi)

199 / 255

CC: Point Growth Table

Here is the size, in function evaluations, for sparse grids of
dimension M, level L, and precision P:

M: 5 10 15 20 25

L/P
0/1 1 1 1 1 1
1/3 11 21 31 41 51
2/5 61 221 481 841 1,301
3/7 241 1,581 5,021 11,561 22,201
4/9 801 8,801 40,001 120,401 286,001

5/11 2,433 41,265 261,497 1,018,129 2,976,161
6/13 6,993 171,425 1,471,297 7,314,609 26,139,361
7/15 19,313 652,065 7,367,867 46,106,289 199,876,961
8/17 51,713 2,320,385 33,647,617 261,163,009 1,361,884,161

200 / 255

CC: Point Growth Table

Compare dimension M = 5 sparse grids and product rules:

M=5: Sparse Product

P
1 1 1
3 11 243
5 61 3,125
7 241 16,807
9 801 59,049

11 2,433 161,051
13 6,993 371,293
15 19,313 759,375
17 51,713 1,419,857

201 / 255

CC: Point Growth Table

In dimension M = 10, the difference starts to become enormous:

M=10: Sparse Product

P
1 1 1
3 21 59,049
5 221 9,765,625
7 1,581 252,475,249
9 8,801 —

11 41,265 —
13 171,425 —
15 652,065 —
17 2,320,385 —

You can see that, while product rules quickly become useless, the
number of function evaluations needed for a sparse grid rule are
still reasonable for a precision of 17!

202 / 255

End Part 5, Begin Part 6

203 / 255

Approximating Integrals for Stochastic Problems

John Burkardt
Department of Scientific Computing

Florida State University
..........

ISC 5936-01:
Numerical Methods for Stochastic Differential Equations
https://people.sc.fsu.edu/∼jburkardt/presentations/...

stochastic integrals 2013 fsu.pdf
..........

Revised: 20 March 2013

26/28 February, 5/7/19/21 March 2013
204 / 255

CC: The Need for Smoothness

The simple product rule procedure that we have presented here
assumes that we get more accuracy as we increase the polynomial
precision. In turn, this assumes that the integrand function is
“sufficiently smooth”, or that is has bounded derivatives for as
high as we need to apply the Taylor series error estimate.

It’s easy to create integrands for which this is not true (the
absolute value function, any discontinuous function, a piecewise
function.) In such a case, we could still create a sparse grid, but
we would need to use 1D rules that can handle the rough spots -
for instance, a piecewise linear integration rule might work.

But if our integrand is not smooth, and we apply a simply sparse
grid approach using polynomial interpolation, the results will
generally go bad quickly!

205 / 255

CC: The Need for Smoothness!

Let f (x) be the characteristic function of the unit ball in 6D:

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : 0.00000 5.16771
13 64.000 58.832 : 0.00000 5.16771
85 -42.667 -47.834 : 3.01176 2.15595

389 -118.519 -123.686 : 4.77121 0.39650
1457 148.250 143.082 : 5.16771 0.01555
4865 -24.682 -29.850 : 5.41994 0.25226

Can you see why negative estimates are possible for the sparse grid,
even though the integrand is never negative?

Sparse grids need smooth integrands; and because sparse grids use
extrapolation, they are liable to unpleasant errors otherwise.

http://people.sc.fsu.edu/∼jburkardt/m src/quadrature test/quadrature test.html, problem #18
http://people.sc.fsu.edu/∼jburkardt/m src/ball volume monte carlo/ball volume monte carlo.html

206 / 255

CC: MC Quadrature Can be Slow

Monte Carlo doesn’t diverge, but look how hard we have to work
to get three places of accuracy for the characteristic function of
the unit ball in 6D.

N MC Estimate MC Error

1 0.00000 5.16771
32 6.00000 0.83228

1,024 4.81250 0.35521
32,768 5.39063 0.22291

1,048,576 5.18042 0.01271
33,554,432 5.16849 0.00077

∞ 5.16771 0.00000

Should we want one more digit of accuracy, we can expect to need
100 times as many points ≈ 3.3 billion points.

http://people.sc.fsu.edu/∼jburkardt/m src/ball volume monte carlo/ball volume monte carlo.html

207 / 255

CC: Genz Product Peak Test in 6D

Alan Genz provided six high dimensional test integrals;
The product peak function is defined on the unit hypercube,
with given C and Z vectors, and is smooth:

F (X) =
1∏m

i=1(C 2
i + (Xi − Zi)2)

http://people.sc.fsu.edu/∼jburkardt/f src/quadrature test genz/quadrature test genz.html 208 / 255

CC: Genz Product Peak Test in 6D

Red: Sparse grid estimate
Blue & Cyan: MC estimates
Black: Expected MC Rate of Decrease

209 / 255

CC: Genz Tests in 10D

Discontinuous, Continuous, Oscillatory
Corner Peak, Product Peak, Gaussian

(sparse grid estimate in red)

210 / 255

CC: The Poisson Equation

Let’s consider a Poisson equation with a stochastic diffusion
coefficient:

−∇ · (a(x , y ;ω)∇u(x , y ;ω)) = f (x , y)

Our integration problem seeks the expected value of u(x , y ;ω),
assuming we have a probabilistic model for the stochastic influence.

Monte Carlo: select a random set of parameters ω according to
pr(ω), solve the Poisson equation for u, and average.

Sparse grid: choose a level, defining a grid of ω values, solve the
Poisson equation for u, multiply by the probability, and take a
weighted average.

Clayton Webster, Sparse grid stochastic collocation techniques for the numerical solution of partial differential
equations with random input data, PhD Thesis, Florida State University, 2007.

211 / 255

CC: Four Monte Carlo Estimates

The black line is the Monte Carlo trend.

212 / 255

CC: Sparse Grid Versus Monte Carlo

The sparse grid estimates converge rapidly.

213 / 255

CC: Remarks

For the stochastic diffusion problem, u(x , y ;ω) has a very
smooth dependence on the perturbations in ω.

For this reason, a sparse grid can sample the solution for a small
set of perturbations ω and accurately estimate the expected value.

If we had a code to solve the original Poisson equation for a given
conductivity field, the sparse grid procedure simply needs to call
that unmodified code with different conductivities.

This is why sparse grids are called a nonintrusive method. Other
procedures for dealing with uncertain or stochastic influences may
require extensive changes, new variables, and a larger coupled
system to solve.

214 / 255

Stochastic Integrals

What Does an Integral Tell Us?

The Probability Density Function

Sampling from a Probability Density Function

Approximating an Integral

A Stochastic Fireball

The Multidimensional Problem

Approximating Multidimensional Integrals

Sparse Grids

Clenshaw Curtis Sparse Grids

A Stochastic Tidal Wave

215 / 255

TIDE: Burger’s Equation

The Burgers equation, occasionally called the poor man’s Navier
Stokes equation has some interesting features:

includes a nonlinear term that can generate shocks and
discontinuities;

includes a smoothing term multiplied by a viscosity;

definable as steady or time-dependent, viscid or inviscid.

The equation has the advantages that:

it can be formulated in one spatial dimension x ;

it has only a single state variable u(x) or u(x , t).

its simplicity makes it easy to define, solve, analyze, and plot.

216 / 255

TIDE: Shock Waves for Inviscid Case

Here is a computational (and nonphysical!) solution of an
inviscid Burgers problem, in which the peak velocity overtakes the
rest of the wave.

We’ll look at viscous problems, in which this tendency is
suppressed.

217 / 255

TIDE: Steady Viscous Burgers Equation

The steady viscous Burgers equation seeks a function u(x)
defined over an interval [a, b], satisfying

u
∂u

∂x
= ν

∂2u

∂x2

for which we might specify the Dirichlet boundary conditions

u(a) = α; u(b) = β.

218 / 255

TIDE: Conservation Form

For technical reasons, it is preferable to rewrite the equation
from its advection form to the conservation form:

1

2

∂u2

∂x
= ν

∂2u

∂x2

While this doesn’t change the mathematics at all, it does suggest a
different discretization scheme.

Here, 0 < ν is the viscosity. A high viscosity corresponds to a
sticky fluid, suppressing shocks and discontinuities. As ν decreases,
the fluid can support steep gradients. A discretized solution
technique will need greater resolution to capture the behavior.

219 / 255

TIDE: Problem Parameter Values

Typical problem data might be:

a = −1, α = +1, b = +1, β = −1, ν = 0.1

The specification of the values of these input parameters completes
the definition of the analytic problem, and allows us to regard the
solution u(x) as a function of the parameters.

We will be interested in the relative importance of the influence of
each parameter on the solution, and the effect of uncertainty in a
parameter on the solution or on derived quantities of interest.

We’ll use the values specified above as our “base data”, and
concentrate on solutions associated with relatively small
perturbations of this data.

220 / 255

TIDE: Solution Family For Varying Viscosity

For the given symmetric boundary conditions, the analytic
solution depends on the viscosity, and has the shape of scaled
tanh(x) function. Here is the kind of behavior we can expect from
solutions to the exact equation for a variety of viscosity values.

221 / 255

TIDE: Discretized Problem

A simple discretized version of the Burgers equation might use
m + 1 equally spaced nodes with spacing dx = b−a

m , with typical
coordinate xi , and discretized solution value ui .

Since this is a nonlinear problem, we can construct system of
equations ~f (~u) = 0 that must be satisfied by the discrete solution;
we can apply Newton’s method to seek a solution.

At the first and last nodes, we impose the boundary conditions. At
the interior nodes, we require the discrete solution to satisfy a
discretized version of the Burgers equation.

222 / 255

TIDE: Discretized Burgers Equation

Using m + 1 evenly spaced points xi , our discretized system is:

f1 =u1 − α

fi =
1

2

u2
i+1 − u2

i−1

2dx
− ν ui+1 − 2ui + ui−1

dx2
, i = 2, . . . ,m

fm+1 =um+1 − β

It is easy to write down the associated Jacobian matrix, and if we
use as a starting point the linear interpolant to the two known
boundary values, we can carry out the Newton procedure to obtain
a solution.

223 / 255

TIDE: Quantity of Interest

It’s natural to focus on the solution function u(x) as the most
important object in the computation, but for many computations,
one or more quantities of interest, derived from u(x), might be the
actual goal of the computation.

Such quantities can include the integral of the solution, the
maximum deviation from some prescribed value, the lift or drag of
an airfoil, the breaking point of a beam, or the total expenditure of
fuel.

For this study, suppose the quantity of interest is the point x0

where the solution changes sign. Since our solution is discretized,
we’ll use its linear interpolant to define x0.

224 / 255

TIDE: Base solution

Here is our computed “base” solution for the parameter values
a = −1, α = +1, b = +1, β = −1, ν = 0.1.
The value of the quantity of interest is x0 = 0.

225 / 255

TIDE: Initial Sensitivity Analysis

We have our solution, but it depends on the parameter values we
chose. If we imagine there are errors or uncertainties in this data,
our computed solution will differ from the actual one.

Can this effect be large for the types of errors we expect? Can we
describe the types of errors we expect? Are some parameter errors
more serious than others?

We can start with a crude sensitivity analysis, slightly modifying
one base parameter at a time, and recomputing the solution. This
suggests the strength of the dependence of u on each parameter,
and thus the relative importance of each parameter.

This will suggest where our uncertainty investigation should focus.

226 / 255

TIDE: Sensitivity to ν

Varying the viscosity ν affects the flow . . . but not x0!
The peculiar result for ν = 0.025 is because of nonconvergence.

227 / 255

TIDE: Sensitivity to α

α determines the solution at the left endpoint a. The computed
solution u is surprisingly sensitive to this quantity. Changing α
from 1 to 1.005 is enough to make a startling jump in x0.

228 / 255

TIDE: Sensitivity to a

Our solution does not seem very sensitive to the value of a, the
location of the left endpoint. For “reasonable” perturbations, u(x)
seems to change not at all!

229 / 255

TIDE: Computing X0(α)

Here is a plot suggesting the behavior of x0 as a function of α,
verifying the extreme sensitivity near the base value.

230 / 255

TIDE: Expected Value Estimate

If we suppose only α is uncertain, then the symmetry of our
results suggests that E(x0(α)) will be roughly 0, an uninteresting
result. If we generate Gaussian deviates of α with mean 1 and
standard deviation of 0.05, our estimates

M E(X0(ALPHA)) estimate

16 -0.0262784

32 0.00325575

64 -0.0115093

128 0.00144016

256 0.0255031

512 0.0222146

1024 -0.0142951

2048 0.00458531

4096 -0.000209035

231 / 255

TIDE: Variance Estimate

The variance estimate shows that uncertainty in α means we can
expect crossing perturbation magnitudes of about 0.5, that is,
halfway to the boundary.

M Var(X0(ALPHA)) estimate

16 0.351927

32 0.343577

64 0.348422

128 0.335153

256 0.341199

512 0.346304

1024 0.341493

2048 0.348165

4096 0.346826

For this problem, the strong variance in x0 persists even if we
reduce the variance of α, or if we model α by a uniform deviate.

232 / 255

TIDE: Discussion

The plot of x0(α), and the computations of E(x0(α)) and
σ2(x0(α)) were done by evaluating the full state solution at
hundreds or thousands of values of α.

The resulting information is useful, but we really only investigated
uncertainty with respect to a single parameter, on a simple 1D
problem.

In practical problems, we expect that each state solution will be
quite expensive. This alone might suggest using some kind of
interpolation scheme to build a polynomial model of x0(α) based
on a much reduced number of sample evaluations.

However, practical problems are also likely to have tens (or even
hundreds) of uncertainty parameters to investigate simultaneously,
meaning our workload has the potential to explode.

233 / 255

TIDE: Exercises

A MATLAB program for solving the time-independent viscous
Burger’s equation is available at
http://people.sc.fsu.edu/∼jburkardt/m src/burgers steady viscous/...
burgers steady viscous.html

Exercise 35: Figure out how the program accepts boundary
condition data from the user. Model the left hand boundary value
α by a Gaussian quantity with mean +1 and standard deviation
0.05. Carry out the Monte Carlo analysis that estimates E(x0(α))
and the variance of x0(α)

Exercise 36: Repeat the calculation, but now use a Gauss-Hermite
quadrature rule of 9 points to estimate the expected value and the
variance.

234 / 255

TIDE: The Time-Dependent Burgers Equation

The time dependent viscous Burgers equation is:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

Now we’ll take periodic boundary conditions:

u(a, t) = u(b, t) for t > 0;

and we specify an initial condition for t = 0:

u(x , 0) = u0(x).

and suppose that we will determine the solution up to time T .

235 / 255

TIDE: Discretized Version

Our discretized geometry involves an m + 1 by n + 1 grid spaced
equally in x and in t, with the solution stored as an array.

Column 0 holds our initial condition. Column j + 1 is computed
from column j ; entry (m, j + 1) is set by periodicity.

| u(0, 0) ? ? ... ? ?

S u(1, 0) ? ? ... ? ?

P u(2, 0) ? ? ... ? ?

A u(3, 0) ? ? ... ? ?

C

E u(m-1,0) ? ? ... ? ?

| u(m, 0) ? ? ... ? ?

|

-------TIME----->

236 / 255

TIDAL: Filling in an array

Geometrically, we imagine our problem with time as the y axis,
so we are given the solution at the “bottom”.

Each solution is more expensive than for our steady problem. If the
initial data is uncertain, we also have more parameters to consider.

237 / 255

TIDE: Data Defines the Initial Condition

We concentrate on the dependence of the solution on the initial
condition, which we imagine is specified by some discrete set of
data γ through which we pass a spline:

238 / 255

TIDE: U(X=0,T=3) is our Quantity of Interest

The solution profile at T = 3 looks like this. Suppose our
quantity of interest q(γ) is simply the profile value at x = 0.

239 / 255

TIDE: Quantifying the Uncertainty

We want to estimate the uncertainty that our input data γ
induces in our quantity of interest q(γ).

To do this requires:

asserting a model for the input data uncertainty;

reducing the size of the input data set, if possible;

sampling the space of input data intelligently;

solving the state system for each input data set;

combining the results to estimate E(q(γ)) and σ2(q(γ)).

240 / 255

TIDE: Modeling the Uncertainty

Assume uniform uncertainty in our initial condition parameters.
Perturb each value by 0.2. Parameters 2 and 4 are strong, 3
moderate, and the rest have little influence.

241 / 255

TIDE: Sampling Input Space with 3D Sparse Grid

Freeze all parameters but 2, 3 and 4. Let them vary uniformly
±0.1 from their base values. This is the space we shall sample.

242 / 255

TIDE: Sparse Grids

A sparse grid, like Monte Carlo or Quasi Monte Carlo, chooses
many sets of data for input to the state system solver. It does not
need to alter the internal features of the solver in any way.

Sparse grids differ from other sampling schemes because the
sampling pattern produces a highly accurate polynomial model of
the uncertainty influence if the state function depends smoothly on
the input.

The sparse grid information can be used to estimate an integral, or
to produce an interpolant function (that is, a “surrogate function”)
to the input/output data.

243 / 255

TIDE: Attempt to Quantify Uncertainty

We have already computed the quantity of interest Q, the
solution value U at x = 0 and time t = 3, for a “base” set of
parameters.

We’ll assume that parameters 2, 3, and 4 vary uniformly about
their base values by ±0.2, and we ask, assuming this uncertainty,
what is the expected value of Q, written E(Q)?

For this case, we’re essentially asking for the average value of Q
over the given range of possible parameter values.

We estimate E(Q) using Monte Carlo and Sparse Grid methods.

244 / 255

TIDE: Monte Carlo Program Outline

d = 3; uncertainty dimension
uk(1:9) = uk_base(1:9) initial condition parameters
nu = ? viscosity

mcn = ? Free to choose any size
mcx = 2 * rand (mcn, d) - 1.0; Sample [-1,+1]ˆ3 uniformly
mcw = 1.0 / mcn; The ”weight” for MC

q = 0.0

for i = 1 : mcn

uk(2:4) = uk_base(2:4) + sigma * mcx(i,1:3);

U = burgers_solver (uk, nu)

q = q + mcw * U(nt,(nx+1)/2);

end

245 / 255

TIDE: Sparse Grid Program Outline

d = 3; uncertainty dimension
uk(1:9) = uk_base(1:9) initial condition parameters
nu = ? viscosity

level = ? sparse grid level 0, 1, 2, ...
[sgx, sgw] = nwspgr (’ccu’, d, level);

sgn = length (sgw);

q = 0.0

for i = 1 : sgn

uk(2:4) = uk_base(2:4) + sigma * sgx(i,1:3);

U = burgers_solver (uk, nu)

q = q + sgw(i) * U(nt,(nx+1)/2);

end

246 / 255

TIDE: Convergence for Viscosity 0.0025 and 0.1

Q estimates in row 1, Q errors in row 2, SG (red), MC (blue).
Sparse grids perform better when viscosity smooths the data.

247 / 255

TIDE: Exercises

A MATLAB program for solving the time-dependent viscous
Burger’s equation is available at
http://people.sc.fsu.edu/∼jburkardt/m src/burgers time viscous/...
burgers time viscous.html

Exercise 37: Learn how the program works, and how the initial
condition can be specified by a spline curve that depends on
parameters. Then carry out the Monte Carlo analysis that
estimates the expected value of the Burgers solution at the
midpoint, at the final time, assuming that the three specified input
quantities can vary uniformly by 0.2 from their specified values.

Exercise 38: Try the same calculation, using a Gauss-Legendre
product rule to estimate the probability integral.

Exercise 39: Try the same calculation, using a Clenshaw-Curtis
sparse grid rule to estimate the probability integral.

248 / 255

TIDE: Uncertainty Quantification

We have looked at two simple computational problems, and
considered the influence of uncertainty in the input data upon an
output quantity of interest.

Since the typical input data set can be large, it is important to try
to identify those parameters that most strongly influence the
output. A rough guess can be done by perturbations of the input;
a more sophisticated approach computes a reduced order model.

A probability density function must be assigned to the input
parameter space, reflecting our model of the uncertainty.

The sampling approach solves the system many times, and
computes a quantity of interest Q by direct averaging (Monte
Carlo) or evaluating an input/output model (sparse grid).

249 / 255

TIDE: A Little More About Sparse Grids

A sparse grid approach may be more efficient that Monte Carlo
sampling if the dependence of Q is smooth.

In this example, we found that some input parameters had very
little influence. In our uncertainty model, we simply kept them
fixed. But sparse grids can be designed that give most, but not all,
attention to the dominant variables, while paying some attention
to those with known weaker influence.

We used a simple uniform probability density, and in fact, the same
one, for the three input parameters. Sparse grids can model normal
variation, exponential variation, and other forms, and different
densities can be used for different inputs.

250 / 255

TIDE: High Performance Computing

In our simple case study, parallelism is available twice:

1) The sampling procedure provides, in advance, the input data
sets at which the state system must be evaluated. Each of these
evaluations can be carried out independently, and has only to
return the final state solution, or some associated output data.

2) Because sampling procedures are non-intrusive, the state system
evaluation does not need to be rewritten or adjusted in any way.
Presumably, this pre-existing “deterministic” code has already been
highly optimized and parallelized.

A single state solver might run efficiently on 200 nodes. An MPI
approach could request 10,000 nodes, allowing us to compute 50
states simultaneously. If we have 5,000 sample inputs to process,
each state solver runs through 100 sets, and the results will be
collected and analyzed on a master process.

251 / 255

TIDE: High Performance Computing

Another approach to parallelism divides the problem into
independent tasks, to be executed in any order, and at any time. A
master task divides up the problem, submits the tasks to a queue,
collects results as they (unpredictably) are completed, and reports
the final result.

Such a system is available even in MATLAB, as “task computing”.

Such an approach takes advantage of a heavily scheduled
computing cluster; instead of waiting for enough processors to load
the entire set of tasks, tasks opportunistically seize processors as
they become available.

Sampling approaches such as Monte Carlo and Sparse Grid can
readily be implemented with such an approach.

252 / 255

TIDE: Analyzing a Stochastic Problem

Recipe for a UQ collocation on HPC:

lay out the mathematical model;

specify input parameters;

for given inputs, develop solver (already available?);

compute the basic solution u;

identify influential parameters;

reduce model (simply cut some parameters?);

model input uncertainty;

choose sampling approach (MC? Sparse grid?);

implement on HPC;

extract quantity of interest q(u).

253 / 255

RECAP: One Page Summary

We need integrals to formulate the stochastic partial differential
equations in a way that allows us to determine the solution
functions, or (more typically) the statistical quantities that
characterize them.

We need high dimensional integrals because the stochastic
influence on the PDE typically involves a potentially unlimited
number of factors or coefficients.

We need to approximate high dimensional integrals because
closed-form solutions are unavailable.

We may need sparse grids to approximate high dimensional
integrals because the standard approximation methods for high
dimensional integrals quickly become overloaded with excessive
(and unnecessary!) work.

254 / 255

END!

255 / 255

