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Meshing: Rectangular Meshing
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Meshing: Nested and Unstructured Grids
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Meshing: Points and Delaunay Triangles
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Meshing: Points and Voronoi Polygons
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Meshing: Centroidal Voronoi Iteration
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Meshing: Problems with Surfaces
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Models: Physics and Geometry of the Earth
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Models: Physical Processes to Model
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Models: A Successful Prediction
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Models: Millions of Nodes

We are working with a climate modeling group at Los Alamos
National Laboratory, whose MPAS software simulates the
interactions of the atmosphere, ocean, and land over the entire
globe.

They currently use meshes whose elements are about 15 kilometers
on a side, or roughly 200 square kilometers in size. The surface
area of the earth is about 510 million square kilometers; we need
about 2 million elements, defined by nodes for which we can
confidently say that they are about 15 kilometers apart.

http://mpas-dev.github.io/
11 / 34



Models: Transport becomes Local Trading
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First Draft: Sphere Meshes
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First Draft: Bisection of Icosahedral Grid

The 12 vertices of the icosahedron are perfectly separated on the
sphere. If we triangulate these vertices, we get 20 faces. If we
bisect each edge, we can replace each face with four smaller ones,
which are no longer congruent, and no longer “perfectly” placed.
As we repeatedly refine this grid by bisection, the mesh degrades,
but is still very acceptable as a starting point.
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First Draft: STRIPACK-based Algorithm

Choose n initial points g using the bisection grid;

while ( true )

v := Voronoi diagram ( g );

Compute c(i) = centroid of Voronoi polygon for g(i);

test = norm ( g - c );

g <== c;

if ( test <= tolerance ) break;

t = Delaunay triangulation ( g )

construct final mesh from g, v, t
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First Draft: STRIPACK processes a 42 node grid
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First Draft: Timing for One Iteration

For a 15 kilometer element width on the Earth, using uniform
elements, we need about 2,000,000 elements. Starting nodes are
created by “bisecting” an icosahedral set of nodes. Times
increasing like N2.

BISECT Nodes Name Time (seconds)

0 12 5.E-5
1 42 1.E-4
2 162 4.E-4
3 642 6.E-3
4 2,562 0.066
5 10,242 0.660
6 40,962 coarse 10.161
7 163,842 medium 170.798
8 655,362 3,207.510
9 2,621,442 fine 51,954.900

10 10,485,762 17 / 34



TRIANGLE: Sequential Delaunay in Plane
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TRIANGLE: Same Problem Sizes as STRIPACK

BISECT Nodes Name STRIPACK TRIANGLE
Seconds Seconds

0 12 5.E-5 0.025
1 42 1.E-4 0.023
2 162 4.E-4 0.023
3 642 6.E-3 0.026
4 2,562 0.066 0.033
5 10,242 0.660 0.057
6 40,962 coarse 10.161 0.178
7 163,842 medium 170.798 0.707
8 655,362 3,207.510 2.649
9 2,621,442 fine 51,954.900 11.108

10 10,485,762 ? 76.304
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TRIANGLE: Opportunities for Parallelism?

20 / 34



TRIANGLE: Opportunities for Parallelism?
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TRIANGLE: Opportunities for Parallelism?
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SPHERE: Empty Circumcircle Condition
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SPHERE: Mapping between Plane and Sphere
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SPHERE: Mapping Preserves Circles
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SPHERE: Proposed CVT Algorithm

Choose n initial points g using the bisection grid;

Processor p* gets nodes g* + nodes g** of neighbors;

while ( tolerance < test )

Stereograph g* + g** to plane;

Compute local planar Delaunay triangulation ( g*+g** );

Construct all spherical triangles that include any g* node;

Accumulate c* = centroids of Voronoi polygons for g*;

Compute local test = local norm ( g* - c* );

Replace g* <== c*;

Update node information with 6 neighbors;

Gather local tests into global test;

Merge local Delaunay triangulations;

Compute Voronoi diagram;

Construct mesh (nodes, polygons, connections). 26 / 34



SPHERE: Speedups for local triangulation and merge

Computations for a “medium” grid of 163,842 nodes.

Algorithm Procs Regions Speedup Comment

STRIPACK 1 1 1 Used for local and merge.

MPI-SCVT L 1 2 57 Smallest code uses
MPI-SCVT L+M 1 2 21 2 processes.

MPI-SCVT L 42 42 4092 Called thousands of times.
MPI-SCVT L+M 42 42 37 Called once, at end.
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EXAMPLES: Uniform Mesh Near Florida Coast
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EXAMPLES: Uniform Mesh Near California Coast
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EXAMPLES: South America Land/Ocean Interface
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MPI Issues

The sphere surface naturally subdivides into 12, 42, 162,
subregions;

We can use any number of subregions (but at least 2!), but
icosahedral bisection has advantages;

For 2 million nodes, the 42 subregions leaves enough work for
each MPI process;

The regularity of the subregion connectivity means just 6 MPI
Sends and Receives per process on each step;

Only at the end of the iteration is a global MPI gather needed
in order to assemble the mesh;

If a nonuniform density is applied, the assignment of nodes to
processors must be adjusted;
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Credits

The work described here represents in part the PhD dissertation
of Doug Jacobsen, while he was a student in the FSU
Department of Scientific Computing.

Max Gunzburger and Janet Peterson were his advisors, leading
a research group that included me.

The motivation for a smooth polygonal mesh of the earth came
from Todd Ringler of Los Alamos National Laboratory.

Doug used to arrive at school even earlier than I did, and always
had a question or mathematical issue or programming problem to
discuss with me. Doug was in my introductory workshop on MPI; I
showed him stereographic mapping, spherical geometry, the
STRIPACK and TRIANGLE packages and how to use Delaunay
information for Voronoi calculations.

The ideas for doing the Delaunay triangulation in parallel, for
exploiting the icosahedral grid, and the computer implementation
came entirely from him.
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Conclusions

Stereographic mapping allows us to transfer hard work on the
sphere to simple work in the plane

Mapping TRIANGLE results onto the sphere is faster than
working directly on the sphere with STRIPACK;

The planar Delaunay triangulation can be parallelized,
including the merge step;

Therefore, the sphere triangulation can be parallelized;

This procedure provides an efficient parallel solution to a
costly calculation;

Nonuniform density? Constraints? Subregion meshing? (All
can be handled)
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