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Let the Exploration Begin!
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Introduction: Physical Laws and Regions

Computational science begins with the simulation of physical laws.

These laws often involve an integral operator applied to a function
f (x) over some integration region Ω.

Physical spaces are low dimensional (1D, 2D or 3D), so we don’t
worry about the effects of dimensionality.

If the space is low dimensional, we worry about:

shape (polyhedral or curved boundaries)

embedding (on the surface of a sphere, say).

nonsmoothness of the integrand
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Introduction: Physical Laws and Regions
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Introduction: Nonphysical Laws and Regions

Mathematics has created nonphysical spaces where important
problems can be posed.

Many problems arise from a probabilistic or stochastic setting.

A point p in a 10-dimensional space might represent the values of
10 physical parameters that affect an output quantity g(p).

Perhaps the p come from a probabilistic space Ω, with a weighting
function w(ω).

To compute the expected value of g, we can write:

g(p) =

∫
Ω g(p(ω)) w(ω) dω∫

Ω w(ω) dω
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Introduction: Very High Dimensional Problems

Computational science explores problems in high dimensions:

Financial mathematics: 30D or 360D

ANOVA decompositions: 10D or 20D

Queue simulation (expected average wait)

Stochastic differential equations: 10D, 20D, 50D

Particle transport (repeated emission/absorption)

Light transport (scattering)

Path integrals over a Wiener measure (Brownian motion)

Quantum properties (Feynman path integral)
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Introduction: Nonphysical Laws and Regions

Mathematically physical and nonphysical problems are the same.

But computationally, integration problems in high dimensional
spaces often are quite different:

smoothness of f (x) is more likely;

geometry of the integration region is simpler;

high dimensionality becomes the greatest problem!
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Introduction: The High Dimensional Challenge

Even the simplest regions Ω and integrand functions f(x) may be
almost impossible to integrate approximately if the dimension is
too high!

We will discuss how computational approaches to multidimensional
quadrature either break down, or are unable to produce accurate
results, when the dimension becomes too high.

We will show that, for a particular kind of integrand and
integration region, sparse grids can reach far into high
dimensional space and extract the information we want.

We will discuss some software that is publicly available.
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Sampling Quadrature: Approximating an 1D Integral

Quadrature allows us to estimate integrals.

In 1D, we can look at this picture as either sampling the
integration region, or as interpolating the integration function.
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Sampling Quadrature: 1D Monte Carlo

The Monte Carlo method (MC) views the integral as the average
of sampled values.

Sample N random points xi ;

Evaluate each f (xi );

Average the values.
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Sampling Quadrature: 1D Monte Carlo

To improve an MC estimate, increase N, the size of your sample.

The Law of Large Numbers says that convergence will be like
√
N.

To reduce the error by a factor of 10 (one more decimal place)
requires 100 times the data.

If more accuracy needed, current values can be included;

Accuracy hampered because of large “gaps” in sampling.

Accuracy improvement rate is independent of spatial
dimension.
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Sampling Quadrature: 1D Monte Carlo

Notice the ”gaps” and ”clusters”.
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Sampling Quadrature: 2D Monte Carlo

Notice the ”gaps” and ”clusters”.
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Sampling Quadrature: 6D Monte Carlo Error

N Estimate Error

1 0.796541 0.160759
16 0.652621 0.016838

256 0.637351 0.001569
65536 0.635926 0.000144

4194304 0.635856 0.000074

∞ 0.635782 0.0000
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Sampling Quadrature: 6D Monte Carlo Error

If we try five times, we get five different sets of results.
This data suggests that error decreases like 1/

√
N.

17 / 1



Sampling Quadrature: 2D Quasi Monte Carlo

Quasi-Monte Carlo methods produce well spaced sampling.
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Sampling Quadrature: 2D Latin Hypercube

Latin Hypercube Sampling ensures good spacing in each 1D
component (but allows gaps and clusters in multidimensions.)
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Sampling Quadrature: Ignore Properties of F(X)

Quadrature using sampling concentrates attention on sampling the
geometry of the integration region.

The basic sampling method makes almost no assumptions about
the smoothness of f(x); the function values could be arbitrarily
shuffled without affecting the result.

Sampling is robust - not easily affected by singularities or
discontinuities.

While sampling error decreases slowly, the rate of decrease is
independent of spatial dimension.

But if the function f(x) is smooth, a model of the function could
be used to make a much more accurate integral estimate.
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Interpolatory Quadrature: 1D Example

If the function f (x) is “well-behaved”, the sample values F(X)
contain strong clues about f (x) and its integral.

Is f (x) approximately a sum of monomials (powers of x)?

f (x) ≈ 4.5 + 6.3x + 0.8x2 + 2.1x3 + 0.7x4 + ...

If so, the beginning of the formula can be determined and
integrated exactly.

This assumption is not true for step functions, piecewise
functions, functions with poles or singularities or great oscillation.
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Interpolatory Quadrature: 1D Example

To find the initial part of the representation, sample the function.

Evaluating at one point can give us the constant.

f(x) ≈ 4.5... + 6 .3x + 0 .8x2 + 2 .1x3 + 0 .7x4 + ...

A second evaluation gives us the coefficient of x :

f(x) ≈ 4.5 + 6.3x...+0 .8x2 + 2 .1x3 + 0 .7x4 + ...

Evaluating at N points gives the first N coefficients.

23 / 1



Interpolatory Quadrature: Integrating Monomials

An approximate formula can be integrated exactly.

With N samples, we can integrate the first N monomials,

1, x , x2, ..., xN−1,

and all functions made up of them.

The error behaves like hN , where h is the spacing between sample
points.

Increasing N increases the monomials we can “capture”.
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Interpolatory Quadrature: A Function to Integrate

A function f(x) is given.
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Interpolatory Quadrature: Selected Function Values

We evaluate it at N points.
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Interpolatory Quadrature: The interpolant

We determine the approximating polynomial.
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Interpolatory Quadrature: The integrated interpolant

We integrate the approximating polynomial exactly.
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Interpolatory Quadrature: Features

uses a regular grid of N points;

interpolates up to the Pth derivative (in 1D, P = N-1);

Evaluates each f (x);

Computes a weighted average of the function values.

The error can drop with an exponent of P+1.

Of course, the function f(x) must be sufficiently smooth for the
interpolation to be effective.
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Product Rules

A 2D product rule can be made by taking two 1D rules and
combining pairs of values.

The number of points N in a product grid is the product
N = N1 ∗ N2 of the orders of the 1D rules.

The resulting rule captures monomials up to xP1yP2 where P1 and
P2 are the individual precisions. So the precision is
P = min(P1,P2).
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Product Rules: a 9x5 rule

A product of 9 point and 5 point rules.
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Product Rules: Point Growth with Dimension

Suppose we take products of a modest 4 point rule:

1D: 4 points;

2D: 42 = 16 points;

3D: 43 = 64 points;

4D: 44 = 256 points;

5D: 45 = 1024 points;

10D:410 = a million points;

20D: 420 = a trillion points.

100D: not representable on a computer!

Conclusion: Product rules can’t go very far!
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Product Rules: Component Degree and Total Degree

In multi-dimensions, what is the DEGREE of a monomial?

If we consider the component degree, (the maximum of the
degrees of the component variables) then monomials of component
degree 4 include x4 and x3y2 and even x4y4.

If we consider the total degree, we sum all the exponents. Then
monomials of total degree 4 are exactly

x4, x3y , x2y2, xy3, y4.

The asymptotic accuracy of a quadrature rule is determined by the
highest total degree N for which we can guarantee that all
monomials will be integrated exactly.

As soon as we miss one monomial of a given total degree,
our rule will have “run out of accuracy”.
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Product Rules: Only Complete Rows Help!

0 1
1 x y
2 x2 xy y2

3 x3 x2y xy2 y3

4 x4 x3y x2y2 xy3 y4

5 x4y x3y2 x2y3 xy4

6 x4y2 x3y3 x2y4

7 x4y3 x3y4

8 x4y4

Because a product rule misses x5 and y5, the other monomials
below the line don’t help asymptotically.
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Product Rules

As the dimension increases, the useless monomials predominate.

Suppose we take products of a modest rule of accuracy 10, and
limit the exponent total to 10. How many “good” and “useless”
monomials do we capture?

Dim Good Useless

1D 10 0
2D 55 45
3D 120 880
4D 210 9790
5D 252 99748

Conclusion: A ”cut down” product rule might work!
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Smolyak Quadrature

Sergey Smolyak (1963) added low order grids together.

Each of his combined “sparse grids”:

had the same asymptotic accuracy as a product grid.

was a subset of the points of the product grid.

used far fewer points.
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Smolyak Quadrature: Construction

We have an indexed family of 1D quadrature rules U i .
We form dimension d rules, indexed by “level” q starting at d.
Here i = i1 + · · ·+ id .

A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d − 1
q − |i|

)
(U i1 ⊗ · · · ⊗ U id )

Thus, the rule A(q, d) is a weighted sum of product rules.
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Smolyak Quadrature: Point Growth and Precision

The 10D point count is an example of how N grows.

Level 1D count 10D count Precision
L N P

0 1 1 1
1 3 21 3
2 5 221 5
3 9 1581 7
4 17 8801 9
5 33 41265 11
6 65 171425 13

Precision P = 2 * L + 1 for any dimension above 1.

40 / 1



Smolyak Quadrature: 2D Order 17 Product Rule

A 17x17 product grid (289 points).
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Smolyak Quadrature: 2D Level4 Smolyak Grid

A sparse grid of Level 4 (65 points).
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Smolyak Quadrature

To capture only “desirable” monomials, we essentially add product
grids which are sparse in one direction if dense in the other.

Because of nesting, the grids reuse many points.

The big savings comes from entirely eliminating most of the points
of the full product grid.

The improvement is greater as the dimension or level increases.
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Smolyak Quadrature: 2D Level4 17x1 component
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Smolyak Quadrature: 2D Level4 9x3 component
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Smolyak Quadrature: 2D Level4 5x5 component
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Smolyak Quadrature: 2D Level4 3x9 component
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Smolyak Quadrature: 2D Level4 1x17 component
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Smolyak Quadrature:6D Smolyak
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Smolyak Quadrature: 6D Smolyak/GL/MC
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Smolyak Quadrature: 10D Smolyak/GL/MC
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Numerical Software

Smolyak’s definition of sparse grids is almost magical; but it can
take the novice a while to master the tricks. So it’s important to
bottle some of that magic in accessible tools!
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Numerical Software: L, N, and D

The family of sparse grid rules is indexed by L, the level.

L starts at 0 which corresponds to the N = 1 point rule.

As L increases, the growth in the number of points N depends on
L, the spatial dimension D, and the nesting of the underlying rule.
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Numerical Software: How N Grows

For a Clenshaw Curtis rule, here is how N increases with L and D.

D 1 2 3 4 5 10
L

0 1 1 1 1 1 1
1 3 5 7 9 11 21
2 5 13 25 41 61 221
3 9 29 69 137 241 1581
4 17 65 177 401 801 8801
5 33 145 441 1105 2433 41265
6 65 321 1073 2929 6993 171425
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Numerical Software: Packages Using a Single Rule

When the same rule is used for each dimension, there are sparse
grid packages available for several families:

The routines of interest to a user are:

sparse grid cc the Clenshaw Curtis rule for [-1,+1]

sparse grid gl the Gauss-Legendre Rule for [-1,+1]

sparse grid laguerre the Gauss-Laguerre Rule for [0,∞)

sparse grid hermite the Gauss-Hermite Rule for (-∞,∞)
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Numerical Software: SPARSE GRID LAGUERRE

For example, if you are interested in sparse grid rules based on the
1D laguerre rule, then the package sparse grid laguerre is
available, in C++, FORTRAN90 and MATLAB.

The routines of interest to a user are:

sparse grid laguerre size returns the number of points

sparse grid laguerre returns the weights and abscissas

monomial quadrature tests a quadrature rule on a monomial
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Numerical Software: SPARSE GRID LAGUERRE

To set up a MATLAB program using sparse grid laguerre to
integrate function f(x), you need to

write a function that evaluates f(x) ;

define the spatial dimension D

choose a sparse grid level L

give D and L to sparse grid laguerre size to get N

give D, L and N to sparse grid laguerre to get W and X

evaluate F at the points X, and weight the sum by W to form
the estimate
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Numerical Software: Use a Sparse Laguerre Rule

D = 6;

for L = 0 : 5

N = sparse_grid_laguerre_size ( D, L );

[ W, X ] = sparse_grid_laguerre ( D, L, N );

quad = W * F(X)’: % quad = W(1:N) * F ( X(1:D,1:N) )’;

fprintf ( 1, ’ L = %d, N = %d, quad = %f\n’,

L, N, quad );

end
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Numerical Software: Choices for Rules

A sparse grid rule is the sum of product rules. In the simplest case,
the product rules are products of a single 1D quadrature rule.

Common choices for the 1D quadrature rule include:

CC, Clenshaw Curtis

F2, Fejer Type 2 rule

GL, Gauss-Legendre rule

GJ, Gauss-Jacobi rule

LG, Gauss-Laguerre rule

GLG, Generalized Gauss-Laguerre rule

GH, Gauss-Hermite rule

GGH, Generalized Gauss-Hermite rule
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Numerical Software: Relation with Stochastic Variables

Some of the rules are especially useful for stochastic problems.

When solving stochastic problems using polynomial chaos, the
distribution of the variables is related to the kind of quadrature
rule needed.

Random variable Domain Quadrature rule

uniform [−1,+1] Gauss-Legendre
gaussian (−∞,+∞) Gauss-Hermite
gamma [0,+∞) Gauss-Laguerre
beta [−1,+1] Gauss-Jacobi
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Numerical Software: A Package Using Multiple Rules

A complicated problem may required different quadrature rules in
different dimensions. In that case, you may use the package
sparse grid mixed.

This package allows the user to request any combination of the
rules mentioned earlier (including Fejer 2, Generalized Laguerre
and Hermite, Jacobi).

The interface to this software is more complicated, since the rule
for each dimension must be specified, and some of those rules
require extra information.
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File Format

A file format for quadrature rules means that software programs
can communicate;

Results can be precomputed.

Files can easily be checked, corrected, plotted, emailed.

The basic format uses 3 files:

R file, 2 lines, D columns, the “corners” of the region

W file, N lines, 1 column, the weight for each abscissa

X file, N lines, D columns, the abscissas
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File Format

The ”columns” are simply numbers separated by blanks.

A single file could have been used, but it would have internal
structure.

To determine D and N, a program reads the X file and counts the
number of “words” on a line, and the number of lines.

No particular ordering for the abscissas is assumed, but each line of
the W and X files must correspond.

I have used this format for a 3x3 Clenshaw Curtis product rule
and a sparse grid rule for integration in 100D!
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File Format

R file

---------

-1.0 -1.0

+1.0 +1.0

W file X file

------ -----------

0.111 -1.0 -1.0

0.444 -1.0 0.0

0.111 -1.0 +1.0

0.444 0.0 -1.0

1.777 0.0 0.0

0.444 0.0 +1.0

0.111 +1.0 -1.0

0.444 +1.0 0.0

0.111 +1.0 +1.0 66 / 1



File Format

Another advantage of exporting quadrature rules to a file is that it
is possible to precompute a desired family of rules and store them.

These files can be read in by a program written in another
computer language; they can be mailed to a researcher who does
not want to deal with the initial rule generation step.
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File Format: Precision Testing

Once we have quadrature rules stored in files, we can easily run
degree of precision tests.

An executable program asks the user for the quadrature file names,
and M, the maximum polynomial degree to check.

The program determines the spatial dimension D implicitly from
the files, as well as N, the number of points.

It then generates every appropriate monomial, applies the
quadrature rule, and reports the error.
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File Format: Precision Checking

23 October 2008 8:04:55.816 AM

NINT_EXACTNESS

C++ version

Investigate the polynomial exactness of a quadrature

rule by integrating all monomials of a given degree

over the [0,1] hypercube.

NINT_EXACTNESS: User input:

Quadrature rule X file = "ccgl_d2_o006_x.txt".

Quadrature rule W file = "ccgl_d2_o006_w.txt".

Quadrature rule R file = "ccgl_d2_o006_r.txt".

Maximum total degree to check = 4

Spatial dimension = 2

Number of points = 6 69 / 1



File Format: Precision Checking

Error Degree Exponents

0.0000000000000001 0 0 0

0.0000000000000002 1 1 0

0.0000000000000002 1 0 1

0.0000000000000002 2 2 0

0.0000000000000002 2 1 1

0.0000000000000002 2 0 2

0.0000000000000002 3 3 0

0.0000000000000002 3 2 1

0.0000000000000000 3 1 2

0.0000000000000001 3 0 3

0.0416666666666665 4 4 0

0.0000000000000001 4 3 1

0.0000000000000000 4 2 2

0.0000000000000001 4 1 3

0.0277777777777779 4 0 4 70 / 1
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Conclusion: Future Work

Precompute quadrature rules, for parallel application

Careful use of “partial” composite rules.

Detect anisotropy in the data (some dimensions more
important).

Respond to anisotropy (use higher degrees in some
dimensions).

Estimate quadrature error.

Work with Laguerre, Hermite and other rules of interest in
stochastic problems
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Conclusion: The End

High dimensional integration is a feature of modern algorithms

Accurate Monte Carlo results take a long time

Product rules quickly become useless

“Smooth” data can be well integrated by Smolyak grids

Abstract probability spaces may generate suitably smooth data

73 / 1



Conclusion: Software

SMOLPACK, a C library by Knut Petras for sparse integration.

SPINTERP, ACM TOMS Algorithm 847, a MATLAB library by
Andreas Klimke for sparse grid interpolation.
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Conclusion: Software

On my web page, look at
http://people.sc.fsu.edu/∼jburkardt/f src/sparse grid cc
/sparse grid cc.html

f src for FORTRAN90 code

cpp src for C++ code

m src for MATLAB code.

There are packages for sparse grids based on Gauss-Legendre,
Laguerre, and Hermite rules, and arbitrary mixtures of rules.

The file sandia rules gathers many 1D quadrature rules together,
and sparse grid mixed allows the user to specify mixed rules.

The programs nint exactness and nint exactness mixed
test polynomial accuracy of a product rule or sparse grid rule.

75 / 1



Conclusion: References

Volker Barthelmann, Erich Novak, Klaus Ritter,
High Dimensional Polynomial Interpolation on Sparse Grids,
Advances in Computational Mathematics, 12(4) 2000, p273-288.

John Burkardt, Max Gunzburger, Clayton Webster,
Reduced Order Modeling of Some Nonlinear Stochastic PDE’s,
IJNAM, 4(3-4) 2007, p368-391.

Thomas Gerstner, Michael Griebel,
Numerical Integration Using Sparse Grids,
Numerical Algorithms, 18(3-4), 1998, p209-232.

Sergey Smolyak,
Quadrature and Interpolation Formulas for Tensor Products of
Certain Classes of Functions,
Doklady Akademii Nauk SSSR, 4, 1963, p240-243.

76 / 1


