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STOCHASTIC: Background

Stochastic problems are mathematical models that attempt to
include an aspect that is nondeterministic or uncertain.

In a mathematical model, even uncertainty has to be described
precisely.

So when an uncertain process produces a new state or result, we
imagine this as coming about because that state was selected from
an ensemble of possible states, with each state having a particular
probability of being selected.

If our stochastic problem involved only a single such choice, then it
should be clear that we can “understand” our problem by
considering every possible outcome, and that we can compute an
expected value by multiplying every possible outcome by its
probability.
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STOCHASTIC: Background

Partial differential equations allow us to describe the behavior of of
a quantity u(~x) and often to solve for or approximate its value.

A classic example is the diffusion equation:

−∇ · (a(~x)∇u(~x)) = f (~x)

a(~x) is a spatially varying diffusion coefficient;
f(~x) represents a source term.

4 / 1



STOCHASTIC: Background

A finite element approach would produce an approximate solution
by integrating the equation against various test functions vi(~x):∫

D
a(~x)∇u(~x) · ∇vi (~x) d~x =

∫
D

f (~x)vi (~x) d~x

By assuming u(~x) =
∑N

j=1 cjvj(~x), this becomes a set of N linear
algebraic equations A ∗ c = f .

Evaluating A and f requires approximate integration over D.
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STOCHASTIC: Background

A stochastic version of this equation might allow uncertainties in
the diffusion coefficient:

−∇ · (a(~x ;ω)∇u(~x ;ω)) = f (~x)

Here, ω represents the stochastic component, and we must even
write u with an implicit dependence on ω, through a.

We could, if we liked, also consider uncertainties in the source
term f, or the initial or boundary conditions.
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STOCHASTIC: Background

Since ω is an unknown and undetermined quantity, it might seem
that the solution process is hopeless.

Actually, if we could specify a particular set of values for the
stochastic component ω, then presumably we could solve for u, so
our problem is really that our classical solution has now become a
family of solutions with parameter ω.

Moreoever, if, with each value of ω we can associate a probability
density function ρ(ω), then we can now reformulate our problem to
solve for the finite element coefficients of the expected value
function ū(~x).
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STOCHASTIC: Background

We want to know how stochasticity will affect the classical solution
u(~x); comparing u(~x) to ū(~x) will indicate the expected magnitude
of the deviations caused by the stochastic component.

To compute ū(~x) or other statistical moments, we add
stochasticity, weight it, and then integrate it out. The integration
processes collapses the infinite family of perturbed solutions into
one object which represents a bulk average perturbed solution, and
which can be compared to a classical solution.

You can plot ū(~x) for instance, or evaluate it, or find its maximum.
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STOCHASTIC: Background

If we simply integrate over the whole probability space, we get:∫
Ω

∫
D

a(~x ;ω)∇u(~x ;ω) · ∇vi (~x) d~x ρ(ω) dω =∫
Ω

∫
D

f (~x)vi (~x ;ω) d~x ρ(ω) dω

This is an algebraic system A ∗ c = f for the finite element
coefficients of ū(~x), but evaluating A and f requires approximate
integration over D AND over the probability space ΩM.

We must approximate this integral, where Ω is a product region
whose dimension M may be high, and in which the integrands are
probably smooth.
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QUADRATURE: A 1D Rule

A 1D quadrature rule is a set of N points X and weights W
intended to approximate integrals over a particular interval [a,b],
perhaps including a weight function:∫ b

a
f (x) ρ(x) dx ≈

N∑
i=1

wi f (xi )

For the integrals we are interested in, the interval is either [-1,+1],
[0,+∞) or (−∞,+∞) and ρ(x) will be a smooth function.
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QUADRATURE: Precision, Order

If a 1D quadrature rule can compute the exact integral when f(x)
is a polynomial of degree P or less, the rule has precision P.

The precision of common quadrature families can be given in terms
of the order (number of points) N:

Interpolatory rules: P = N-1 or N

Gauss rules P = 2 * N - 1 ;

Monte Carlo and Quasi-Monte Carlo rules, P = 0;

“transform rules”: tanh, tanh-sinh, erf rules P = 1.
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QUADRATURE: Accuracy

Using a rule with P = N on a function with N derivatives, the low

degree terms get integrated exactly, leaving error ∼ O( 1
N

N+1
).

(Taking the typical spacing between abscissas to be h = 1
N .)

The integrands encountered in high dimensional problems are
typically smooth, and suitable for high precision rules.

An interpolation rule with order N will typically have precision
P = N− 1; we’ll assume the rule and interval are symmetric, and
that N is odd, in which case we get P = N.
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QUADRATURE: Family of 1D Rules

A family of 1D quadrature rules are an indexed set of rules of
increasing order.

The level of a rule, L, is its index in a family. This is simply a way
to select a subset of the rules for our iterative scheme.

A family typically starts at level 0 with an order 1 rule.

The growth rule for a family relates level L and order N:

Linear growth allows a limited amount of nesting:

N = 2L + 1 : 1, 3, 5, 7, ...

Exponential growth has perfect nesting, but rapid order growth:

N = 2L + 1 : 1, 3, 5, 9, 17, 33 :
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QUADRATURE: Product Rules

Let QL be the L-th member of a family of 1D quadrature rules,
with order NL and precision PL.

We can construct a corresponding family of 2D product rules as
QL ⊗QL, with order N2

L and precision PL.

This rule is based on interpolating data on the product grid; the
analysis of precision and accuracy is similar to the 1D case.

Similarly, we can construct an M-dimensional product rule. Notice
that the order of such a rule is NM

L , but the precision stays at PL.
Thus, even for a relatively low precision requirement, the order of a
product rule will grow very rapidly if M increases.

How many points would you use in a product rule for M=100?
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QUADRATURE: Do We Get Our Money’s Worth?

Suppose we form a 2D quadrature rule by “squaring” a 1D rule
which is precise for monomials 1 through x4.

Our 2D product rule will be precise for any monomial in x and y
with individual degrees no greater than 4.

The number of monomials we will be able to integrate exactly
matches the number of abscissas the rule requires.

Our expense, function evaluations at the abscissa, seems to buy us
a corresponding great deal of monomial exactness.

But for interpolatory quadrature, many of the monomial
results we “buy” are actually nearly worthless in the sense that
they don’t improve our asymptotic accuracy.
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QUADRATURE: Pascal’s Precision Triangle

Here are the monomials of total degree exactly 5. A rule has
precision 5 if it can integrate these and all monomials below that
diagonal.

7 ! y 7 xy 7 x2y 7 x3y 7 x4y 7 x5y 7 x6y 7 x7y 7

6 ! y 6 xy 6 x2y 6 x3y 6 x4y 6 x5y 6 x6y 6 x7y 6

5 ! y 5 xy 5 x2y 5 x3y 5 x4y 5 x5y 5 x6y 5 x7y 5

4 ! y 4 xy 4 x2y 4 x3y 4 x4y 4 x5y 4 x6y 4 x7y 4

3 ! y 3 xy 3 x2y 3 x3y 3 x4y 3 x5y 3 x6y 3 x7y 3

2 ! y 2 xy 2 x2y 2 x3y 2 x4y 2 x5y 2 x6y 2 x7y 2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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QUADRATURE: Pascal’s Precision Triangle

A product rule results in a rectangle of precision, not a triangle.
The monomials above the diagonal of that rectangle represent a
cost that does not correspond to increased overall asymptotic
accuracy.

7 ! y 7 xy 7 x2y 7 x3y 7 x4y 7 x5y 7 x6y 7 x7y 7

6 ! y 6 xy 6 x2y 6 x3y 6 x4y 6 x5y 6 x6y 6 x7y 6

5 ! y 5 xy 5 x2y 5 x3y 5 x4y 5 x5y 5 x6y 5 x7y 5

4 ! y 4 xy 4 x2y 4 x3y 4 x4y 4 x5y 4 x6y 4 x7y 4

3 ! y 3 xy 3 x2y 3 x3y 3 x4y 3 x5y 3 x6y 3 x7y 3

2 ! y 2 xy 2 x2y 2 x3y 2 x4y 2 x5y 2 x6y 2 x7y 2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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QUADRATURE: It Gets Worse in Higher Dimensions

Consider products of a 10 point rule with precision up to x9.

We only need to get to diagonal 9 of Pascal’s precision triangle.
The monomials up to that row can be computed as a multinomial
coefficient. Compare the number of abscissas to monomials!

Dim Abscissas Monomials Wasted Percentage

1D 10 10 0 0%
2D 100 55 45 45%
3D 1,000 220 780 78%
4D 10,000 715 9,285 92%
5D 100,000 2,002 97,998 97%
6D 1,000,000 5,005 994,995 99%

In 5D, there are only 2,002 items to search for.
Can’t we find a quadrature rule of roughly that order?
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SMOLYAK

Sergey Smolyak (1963) suggested sparse grids:

an algebraic combination of low order product grids;

Pascal’s precision diagonals achieved with far fewer points;

Smooth f (x) + rule precision ⇒ accuracy + efficiency.
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SMOLYAK: Construction

Starting from an indexed family of 1D quadrature rules QL,
we form rules for dimension M, indexed by level L.
Here i = i1 + · · ·+ iM , where ij is the “level” of the j-th 1D rule.

A(L,M) =
∑

L−M+1≤|i|≤L

(−1)L+M−|i|
(

L + M
L + M − |i|

)
(Qi1⊗· · ·⊗QiM )

The rule A(L,M) is a weighted sum of product rules, indexed by
L, with an M-dimensional point count of N.

As L (and N) increase, we expect the precision P to increase.

Theorem

The Clenshaw-Curtis Smolyak formula of level L is precise for all
polynomials of degree P = 2 ∗ L + 1 or less.
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SMOLYAK: Precision Table for Clenshaw Curtis

Level L Precision P N(1D) N(5D) N(10D)

0 1 1 1 1
1 3 3 11 21
2 5 5 61 221
3 7 9 241 1581
4 9 17 801 8801
5 11 33 2433 41265
6 13 65 6993 171425

Compare a 5D product rule, which would require N = 100,000
abscissas to integrate 2,002 entries in Pascal’s precision triangle
(precision P = 9).
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SMOLYAK: Asymptotic Accuracy

Let N be the order in the rule A(L,M).

and let I be the integral of f (x) where:

f (x) : [−1, 1]M → R|Dα continuous if αi ≤ r for all i ;

Then the accuracy of a Smolyak rule based on a nested 1D
quadrature family satisfies:

||I − A(L,M)|| = O(N
−r

log(2M) )

This behavior is near optimal; no family of rules could do better
than O(N−r ) for this general class of integrands.
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SMOLYAK: Efficiency

The space of M-dimensional polynomials of degree P or less has

dimension

(
P + M

M

)
≈ MP

P! .

For large M, a Clenshaw-Curtis Smolyak rule that achieves

precision P uses N ≈ (2M)P

P! points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points
(to within a factor 2P that is independent of M).

Notice there is no exponent of M in the point growth.
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QUADRATURE EXAMPLE: A Test Case of Genz

Let’s take a problem that’s reasonable but not trivial.

We’ll work in a space with dimension M = 6.

We’ll try to integrate the Genz Product Peak:

f (X ) =
1∏M

i=1(C 2
i + (Xi − Zi )2)

where Ci and Zi are given M-dimensional points.
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QUADRATURE EXAMPLE: 6D Smolyak

Quadrature estimates using a Smolyak sparse grid based on
Clenshaw-Curtis points.

Level Order Estimate Error

0 1 0.062500 0.573282
1 13 0.600000 0.0357818
2 85 0.631111 0.00467073
3 389 0.636364 0.000582152
4 1457 0.635831 0.0000492033
5 4865 0.635778 0.00000375410

∞ ∞ 0.635782 0.0000
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QUADRATURE EXAMPLE:6D Smolyak
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QUADRATURE EXAMPLE: 6D Gauss-Legendre

Quadrature estimates using a product grid based on
Gauss-Legendre rule.

1D Order 6D Order Estimate Error

1 1 1.00000 0.364218
2 64 0.618625 0.0171570
3 729 0.636774 0.000992123
4 4096 0.635726 0.0000560162
5 15625 0.635785 0.00000314963

∞ ∞ 0.635782 0.0000
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QUADRATURE EXAMPLE: 6D Monte Carlo

Quadrature estimates using a Monte Carlo approximation with N
samples.

log2 (N) N Estimate Error

0 1 0.641468 0.00568631
4 16 0.640218 0.00443594
8 256 0.650114 0.0143321

16 4096 0.636000 0.000218054
24 65536 0.636105 0.000323117
32 1048576 0.635843 0.0000612090

∞ ∞ 0.635782 0.0
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QUADRATURE EXAMPLE: 6D Smolyak/GL/MC
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STOCHASTIC EXAMPLE: A Deterministic PDE

−∇ · (a(~x)∇u(~x)) = f (~x)

u(~x) is an unknown quantity, like temperature;

a(~x) is a known physical property, the conductivity, which controls
how quickly hot or cold spots average out.

heat conduction;

slow subsurface flow of water;

particle diffusion;

Black-Scholes equation (flow of money!).
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STOCHASTIC EXAMPLE: Modeling Uncertain
Conductivity

Using a fixed value for a(~x) might be unrealistic.

Without variations in a(~x), we might never see the bumps and
swirls typical of real physical problems.

We might think of a(~x) as a random field a(~x ;ω).

The ω represents the unknown variation from the average.
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STOCHASTIC EXAMPLE: Uncertain Solution

If a(~x ;ω) has an “unknown” component, then so does our
solution, which we write u(~x ;ω).

−∇ · (a(~x ;ω)∇u(~x ;ω)) = f (~x)

Now if we don’t know what the equation is, we can’t solve it!

Can we still extract information from the equation?
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STOCHASTIC EXAMPLE: Expected Values

Each variation ω determines a solution u.

If we added up every variation, we’d get an average or expected
value for the solution.

The expected value is an important first piece of information about
a problem with a random component.

E (u(~x)) =

∫
Ω

u(~x ;ω) ρ(ω) dω

It’s like using weather records to estimate the climate.
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STOCHASTIC EXAMPLE: Approximate Integral

We approximate the function space Ω by an M-dimensional space
ΩM , of linear sums of perturbations ω.

We now estimate the integral of u(~x ;ω) in ΩM .

Monte Carlo: select random sets of parameters ω, (weighted by
ρ(ω), solve for u(~x ;ω) and average.

Sparse grid: choose a level, defining a grid of ω values in ΩM . For
each ω grid value, evaluate the spatial integrals to get a
contribution to A and f ; sum to get A and f , solve A ∗ x = f for
the finite element coefficients for E (u(~x);ω)).
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STOCHASTIC EXAMPLE: Monte Carlo Approximation
Error
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STOCHASTIC EXAMPLE: Smolyak Approximation Error
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CONCLUSION: Software

Sparse grid software available online:

SPINTERP (in MATLAB, by Andreas Klimke) does
interpolation, quadrature, optimization, based on data values
on a sparse grid; ACM TOMS Algorithm 847.

SMOLPACK (in C, by Knut Petras) quadrature using sparse
grids.

SPARSE GRID HW (in MATLAB, by Florian Heiss and
Viktor Winschel) sparse grid quadrature rules based on
Gauss-Legendre, Gauss-Hermite, Gauss-Patterson, or a nested
variation of Gauss-Hermite rules.
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CONCLUSION: Software

I have written C++, F90 and MATLAB versions of libraries and
programs for sparse grid integration using specific 1D rules:

sparse grid cc Clenshaw Curtis;

sparse grid gl Gauss-Legendre;

sparse grid hermite Hermite;

sparse grid laguerre Laguerre;

sparse grid mixed Mixture of 1D rules;

sparse grid mixed growth Mixture + growth;

sgmga mixture + growth + anisotropic;

For example, look at
http://people.sc.fsu.edu/∼jburkardt/m src/sparse grid cc/
sparse grid cc.html
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CONCLUSION: A few observations

Sparse grids are based on combinations of product rules.

The combinations seek specific precision levels.

For integrands with bounded derivatives, precision produces
accuracy.

By discarding some of the unneeded precision of product rules,
sparse grids have a higher efficiency.

Abstract probability integrals, stochastic collocation and
polynomial chaos expansions are examples of settings in which
sparse grids may be useful.
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CONCLUSION: A few observations

The underlying 1D quadrature rules could just as well be Jacobi,
Laguerre, Hermite or their generalizations.

We can choose different quadrature rules for each dimension.

The rule family for a particular dimension could be a piecewise
polynomial or some kind of composite rule. This makes it possible
to handle functions with limited differentiability.
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CONCLUSION: A few observations

The approach we have outline here is isotropic. It treats each
spatial dimension with the same degree of importance.

But many very high dimensional problems that people work on are
solvable in part because most of the dimensions have very little
variation.

An anisotropic sparse grid rule can be developed which chooses
the maximum order in each dimension based on weights.

These weights can be supplied in advance by the user, or
determined adaptively.
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CONCLUSION: Thanks to my Host!
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