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The Whole Talk in One Page

Sparse grids are a tool for producing integrals or interpolants when
the underlying function lies in a high dimensional space.

Sparse grids avoid the exponentially rising cost associated with
simple product grids, and can produce more accurate results than a
Monte Carlo approach if the function has bounded derivatives of
sufficient order.

I am involved in a project that is developing a library of sparse grid
codes which allow the user to choose, for any spatial component,
the quadrature family, rate of growth, and anisotropy weight.
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Nested Families of Quadrature Rules

A quadrature rule Q is a procedure for estimating the integral of a
function f(x) over a domain script D.

If f(x) is known to be smooth, a good strategy employs a nested
family of interpolatory quadrature rules of increasing precision.

Q0
Q0+(Q1-Q0)
Q0+(Q1-Q0)+(Q2-Q1)
Q0+(Q1-Q0)+(Q2-Q1)+(Q3-Q2)
...

allows the reuse of computed data;

adaptively reaches the appropriate level of precision;

provides an estimate of the error.

3 / 1



Product Rules Are Expensive

For the 1D problem, there is a rich selection of families of
quadrature rules, allowing bounded or unbounded domains, a
variety of weight functions, the use of derivative information, and
composite rules for functions which are not smooth.

For problems in M dimensions, 1D rules can be factors in a
product rule Q = Q1 ⊗ Q2 ⊗ ...⊗ QN if the domain is a product
region and the weight functions are separable.

Product rules can achieve desired precision levels, but they do so
inefficiently. To integrate all monomials up to total degree L in M
space, a product rule uses about LM points.

This cost is unaffordable, but worse, unnecessary!
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Monomials of Total Degree 5 or Less

A reasonable goal for a family of quadrature rules is that each
member exactly integrate all monomials up to a given total order.
In 2D, a rule that could integrate up to 5th order would need to
capture the monomials shown in blue:

7 ! y7 xy7 x2y7 x3y7 x4y7 x5y7 x6y7 x7y7

6 ! y6 xy6 x2y6 x3y6 x4y6 x5y6 x6y6 x7y6

5 ! y5 xy5 x2y5 x3y5 x4y5 x5y5 x6y5 x7y5

4 ! y4 xy4 x2y4 x3y4 x4y4 x5y4 x6y4 x7y4

3 ! y3 xy3 x2y3 x3y3 x4y3 x5y3 x6y3 x7y3

2 ! y2 xy2 x2y2 x3y2 x4y2 x5y2 x6y2 x7y2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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A Product Rule Overshoots the Goal

A product rule results in a square of precision, not a triangle. Red
monomials on “incomplete” diagonals include error terms of the
same order, so it is precision that doesn’t result in accuracy.

As the dimension M increases, red exponentially dominates blue.

7 ! y7 xy7 x2y7 x3y7 x4y7 x5y7 x6y7 x7y7

6 ! y6 xy6 x2y6 x3y6 x4y6 x5y6 x6y6 x7y6

5 ! y5 xy5 x2y5 x3y5 x4y5 x5y5 x6y5 x7y5

4 ! y4 xy4 x2y4 x3y4 x4y4 x5y4 x6y4 x7y4

3 ! y3 xy3 x2y3 x3y3 x4y3 x5y3 x6y3 x7y3

2 ! y2 xy2 x2y2 x3y2 x4y2 x5y2 x6y2 x7y2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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The Smolyak Approach

The Smolyak formula indicates a way to combine several lower
order product rules in such a way that the resulting precision more
carefully fills in entire diagonals, with much less “wasted” precision.

This makes it possible to estimate integrals in high dimension while
avoiding the explosion of work associated with a single full product
rule.
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Compare Product and Smolyak Precisions

Consider isotropic product and Smolyak rules.

If we can afford 1,000,000 function evaluations in M-space, what
level of precision P can we expect in our integral approximation?

Suppose we use a non-Gaussian 1D rule in each case. The product
rule precision is roughly 1, 000, 000(1/M).

M P(Product Rule) P(Sparse Grid)

10 4.0 15

20 2.0 9 or 11

30 1.6 9 or 11

50 1.3 7 or 9

100 1.1 7
After dimension 20, you can’t afford a 2-point product rule!
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Construction of a Sparse Grid

Smolyak’s recipe for a sparse grid involves a weighted combination
of low order anisotropic product rules.

We have an indexed family of 1D quadrature rules QL.
We form rules for dimension M, indexed by level L.
Here i = i1 + · · ·+ iM , where ij is the “level” of the j-th 1D rule.

A(L,M) =
∑

L−M<|i|≤L

(−1)L−|i|
(

M − 1
L− |i|

)
(Qi1 ⊗ · · · ⊗ QiM )

A(L,M) is a weighted sum of product rules for M values of i.

We are free to choose the domains, weights, families and growth
rates of the 1D factors of these product rules.
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A Menu of Product Rules

Rules of the same color capture monomials of same total degree.
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Sparse Grid = Sum of Selected Product Rules

Combination Precision Grid
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Add 5x1 Rule:

Combination Precision Grid
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Add 3x3 Rule:

Combination Precision Grid
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Add 1x5 Rule:

Combination Precision Grid
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The Results

To complete this 2D sparse grid, we include contributions from
the two lower order rules, 3x1 and 1x3. Here, we are using a
nested family of rules, so the resulting grid does not change,
although these lower order rules do affect the computed weights
applied to the grid points.

From the precision plot, we can see that the sparse grid claims to
be precise for all monomials of total degree 5. It has achieved this
precision goal using fewer points than a simple 5x5 product rule.
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Product Grid:

Combination Precision Grid
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SGMGA

The software library embodying the sparse grid rules is called
SGMGA. This name is meant to record the fact that it is a library
that can handle:

1 Sparse Grids

2 Mixed families

3 Growth rules

4 Anisotropic weighting
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#1: Sparse Grid

The 1D quadrature families may be chosen from:

1 Clenshaw-Curtis

2 Fejer Type 2

3 Gauss-Patterson

4 Gauss-Legendre

5 Gauss-Hermite

6 generalized Gauss-Hermite

7 Gauss-Laguerre

8 generalized Gauss-Laguerre

9 Gauss-Jacobi

10 user-defined Golub Welsch rules
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#2: Mixed Families

For each dimension, the user may choose a particular 1D
quadrature family.

If a family is parameterized, the associated parameters may be
specified for each dimension.

(generalized Laguerre and Hermite rules, and the Jacobi rules.)

This makes it possible to correctly treat cases involving a mixture
of uniform and normally distributed quantities, for instance, or
cases in which a single distribution is used, but the parameters
defining that distribution vary from one dimension to the next.
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Gauss-Hermite X Clenshaw Curtis, Level 4
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#3: Growth-Rules

For each problem dimension, the chosen quadrature family
comprises an indexed sequence of rules of increasing order.

The growth rule relates the index L to the order O.

For the nested Gauss Patterson family, for instance, this is typically:

O = 2L+1 − 1

The user may override the default growth rule.
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Growth Rules: Slow Growth for Nested Grids

Using a nested family of 1D rules reduces the number of abscissas
in the resulting sparse grid.

The classical construction doubles the point count at each level.

We have implemented a slow growth version of such rules; at
each level, we use the lowest order nested rule that will achieve the
necessary precision.

The advantages of the slow growth approach are most apparent in
low dimensions, or for high order.
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Growth Rules: Level 7 CC, Default versus Slow Growth
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Default vs Slow Clenshaw Curtis, Level 0
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Default vs Slow Clenshaw Curtis, Level 1
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Default vs Slow Clenshaw Curtis, Level 2
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Default vs Slow Clenshaw Curtis, Level 3
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Default vs Slow Clenshaw Curtis, Level 4
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Default vs Slow Clenshaw Curtis, Level 5
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Default vs Slow Clenshaw Curtis, Level 6
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#4: Anisotropic Rules

Many problems in which stochastic factors have been included will
have tens or even hundreds of dimensions.

Most physically meaningful problems will exhibit anisotropy, that
is, certain dimensions will dominate the behavior of the system,
while many dimensions will have relatively little influence.

If this anisotropy is anticipated, it can be built into the sparse grid
construction process in advance.

If unexpected anisotropy is encountered, the sparse grid
construction could be modified to adapt to this discovery.
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The Anisotropic Smolyak Formula

We form isotropic sparse grids from product grids whose level
vectors satisfy the linear constraints:

L−M <
∑

j

ij ≤ L

We introduce anisotropy using a weight vector α. The new
constraint is

L ·min(α)−
∑

j

αj <
∑

j

αj · ij ≤ L ·min(α)

with the combining cofficient defined by

cα(i) =
∑

j∈{0,1}d

i+j satisfies constraint

(−1)|j|
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[2,1] Hermite, Level 0
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[2,1] Hermite, Level 1
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[2,1] Hermite, Level 2

35 / 1



[2,1] Hermite, Level 3
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[2,1] Hermite, Level 4
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[2,1] Hermite, Level 5
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CONCLUSION: Adaptive Anisotropy

The anisotropy allowed by the SGMGA program must be
prescribed beforehand, in terms of relative weights for each
dimension, which define a linear constraint on level vectors.

The sparse grid is then formed from product grids whose level
vectors lie between corresponding sets of parallel lines (in 2D) or
hyperplanes.

The anisotropic formula can be applied to more general groupings
of level vectors.

An approach that would make sense would be to adaptively seek
level vectors that could be added to the current rule.
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CONCLUSION: Adaptive Anisotropy

Consider adding product rules at “corners” of the diagram.

40 / 1



CONCLUSION: Adaptive Anisotropy

The formula for the combining coefficient in the anisotropic case is
remarkably similar: the coefficient of a level vector is the signed
count of all level vectors which still satisfy the anisotropic level
constraint after some entries have been increased by 1.

Unfortunately, in M dimensions, a naive approach to checking this
simple linear condition would require 2M checks.

We are investigating efficient ways to count the perturbed level
vectors that avoid the recurrence of the dimensionality explosion.
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CONCLUSION: Remarks

It would be useful to have analogues of the Gauss-Patterson family
for problems involving Hermite or Laguerre weight functions.

The sparse grid approach can also be used for interpolation
(Klimke/Wohlmuth SPINTERP)

For irregular functions, there is an approach using hierarchical set
of piecewise linear interpolants.
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CONCLUSION: References

Some technical notes at
http://people.sc.fsu.edu/∼burkardt/presentations:

icms 2010.pdf, these slides

sgmga 1d rules.pdf, 1D quadrature rules for sparse grids;

sgmga ccs.pdf, Slow exponential growth for Clenshaw Curtis
sparse grids;

sgmga coefficient.pdf, The combining coefficient for
anisotropic sparse grids;

sgmga counting.pdf, Counting the abscissas in sparse grids;

sgmga gps.pdf, Slow exponential growth for Gauss Patterson
sparse grids;

sgmga precision.pdf, On the precision of certain
multidimensional quadrature schemes.
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