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Stochastic Integrals: Background

Stochastic problems are mathematical models that attempt to
include an aspect that is nondeterministic or uncertain.

In a mathematical model, even uncertainty has to be described
precisely.

So when an uncertain process produces a new state or result, we
imagine this as coming about because that state was selected from
an ensemble of possible states, with each state having a particular
probability of being selected.

If our stochastic problem involved only a single such choice, then it
should be clear that we can “understand” our problem by
considering every possible outcome, and that we can compute an
expected value by multiplying every possible outcome by its
probability.
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Stochastic Integrals: Background

Stochastic problems typically involve far more than a single
discrete uncertain choice.

If a very sensitive weathervane points north at sunrise, then we can
imagine that at each moment its current direction is affected by
the wind, which has a stochastic component. The final direction of
the weathervane can be determined only by summing up the
continuous influence of the wind.
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Stochastic Integrals: Background

An initially uniform pipeline endures corrosion both inside and
outside. If we wish to consider the likely state of the pipeline after
twenty years, and we only know the general features of the soil and
weather conditions over that time, then the state of the pipeline
can be modeled as a spatially stochastic function.
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Stochastic Integrals: Background

Actually, the final location of the weathervane, under stochastic
influence, is likely to be the same as the deterministic location, if
the noise has an equal tendency to turn the wind clockwise or
counterclockwise.

A more interesting question is to measure the absolute angular
distance that the weathervane travels, so we can estimate the wear
on the bearing.

For the pipeline problem, in order to generate answers, we need to
have some rough intuition in the variation of the cement mix that
was used, the average and variation in corrosion under given rain
and temperature conditions, and so on. Even uncertainty has to be
partially parameterized by values we guess at.
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Stochastic Integrals: Background

Partial differential equations allow us to describe the behavior of of
a quantity u(~x) and often to solve for or approximate its value.

A classic example is the diffusion equation:

−∇ · (a(~x)∇u(~x)) = f (~x)

a(~x) is a spatially varying diffusion coefficient;
f(~x) represents a source term.

7 / 1



Stochastic Integrals: Background

A finite element approach would produce an approximate solution
by integrating the equation against various test functions vi(~x):∫

D
a(~x)∇u(~x) · ∇vi (~x) d~x =

∫
D

f (~x)vi (~x) d~x

By assuming u(~x) =
∑N

j=1 cjvj(~x), this becomes a set of N linear
algebraic equations A ∗ c = f .

Evaluating A and f requires approximate integration over D.
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Stochastic Integrals: Background

A stochastic version of this equation might allow uncertainties in
the diffusion coefficient:

−∇ · (a(~x ;ω)∇u(~x ;ω)) = f (~x)

Here, ω represents the stochastic component, and we must even
write u with an implicit dependence on ω, through a.

We could, if we liked, also consider uncertainties in the source
term f.
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Stochastic Integrals: Background

Now since ω is an unknown and undetermined quantity, it might
seem that the solution process is hopeless.

Actually, if we could specify a particular set of values for the
stochastic component ω, then presumably we could solve for u, so
our problem is really that our classical solution has now become a
family of solutions with parameter ω.

Or, if we are willing to integrate over all possible values of ω,
multiplied by the corresponding weight function ρ(ω), we can get
the finite element coefficients of the expected value function ū(~x).

10 / 1



Stochastic Integrals: Background

We want to know how stochasticity will affect the classical solution
u(~x); comparing u(~x) to ū(~x) will indicate the expected magnitude
of the deviations caused by the stochastic component.

To compute ū(~x) or other statistical moments, we add
stochasticity, weight it, and then integrate it out. The integration
processes collapses the infinite family of perturbed solutions into
one object which represents a bulk average perturbed solution, and
which can be compared to a classical solution.

You can plot ū(~x) for instance, or evaluate it, or find its maximum.
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Stochastic Integrals: Background

If we simply integrate over the whole probability space, we get:∫
Ω

∫
D

a(~x ;ω)∇u(~x ;ω) · ∇vi (~x) d~x ρ(ω) dω =∫
Ω

∫
D

f (~x)vi (~x ;ω) d~x ρ(ω) dω

Computationally, we will work in some M dimensional space ΩM;
depending on our approach, we may have some basis functions for
the noise, or other factors included in the integral.

We can still regard this as, essentially, an algebraic system
A ∗ c = f for the finite element coefficients of ū(~x), but now
evaluating A and f requires approximate integration over D AND
over the very different space ΩM.
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Stochastic Integrals: Background

In summary, we want to add a stochastic component to a standard
PDE, and then use integration to average over all possible
perturbed states, applying a weight associated with the probability
of each perturbation.

We seek the expected value function ū(~x) = E(u(~x ;ω)) for our
stochastically perturbed system.

Our approximation procedure will involve integration over the fixed
and low-dimensional spatial domain D, (which we know how to do)
and over a probability space ΩM whose shape is simple, but whose
dimension M depends on how we approximate the stochastic
component.
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Stochastic Integrals: Background

We approximate integrals over a weighted M-dimensional space:∫
ΩM

f (~x ;ω) ρ(ω) dω

This integral is very different from a finite element spatial integral.

Here, ω is a vector whose dimension may be increased as we seek
greater accuracy. This means we may easily find ourself integrating
over a space of dimension M = 20, 50 or 100.

While the dimension is a problem, the function ρ(ω) is usually
smooth, and the “geometry” of ΩM is a simple product region.
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Stochastic Integrals: Background

In order to complete the process of solving stochastic equations,
we need a way to approximate the integral of smooth functions
over simple regions in an unusually high dimensional space that is
a product region.

There are a variety of 1D quadratures rules for integrating over the
regions and weight functions associated with many probability
distributions.

We can use a mixture of such rules to form a multidimensional
product rule.

When the product rules become too expensive, we can turn to
sparse grids.
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Quadrature Rules

A 1D quadrature rule is a set of N points X and weights W
intended to approximate integrals over a particular interval [a,b],
perhaps including a weight function:∫ b

a
f (x) ρ(x) dx ≈

N∑
i=1

wi f (xi )

Note that ρ(x) is a weight function and wi is a quadrature weight.
They are both kinds of weights, but only indirectly related.

For the integrals we are interested in, the interval is either [-1,+1],
[0,+∞) or (−∞,+∞) and ρ(x) will be a smooth function.
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Quadrature Rules

If a 1D quadrature rule can compute the exact integral when f(x)
is a polynomial of degree P or less, the rule has precision P.

The precision of common quadrature families can be given in terms
of the order (number of points) N:

Interpolatory rules: P = N-1 or N

Gauss rules P = 2 * N - 1 ;

Monte Carlo and Quasi-Monte Carlo rules, P = 0;

“transform rules”: tanh, tanh-sinh, erf rules P = 1.

For a product rule, precision requires exact results for all
polynomials whose total degree is P or less.
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Quadrature Rules: Precision Can Mean Accuracy

Using a rule with P = N on a function with N derivatives, the low

order terms get integrated exactly, leaving error ∼ O( 1
N

N+1
).

(Taking the typical spacing between abscissas to be h = 1
N .)

The integrands encountered in high dimensional problems are
typically smooth, and suitable for high precision rules.

An interpolation rule with order N will typically have precision
N− 1, but if the rule is symmetric and N is odd, then the precision
bumps up to N. This is the case we will concentrate on, so we’ll
assume that the order is equal to the precision.
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Quadrature Rules: Work, Results and Efficiency

In 1D, an interpolatory rule uses N quadrature points and picks up
N monomials exactly. We will take this one-for-one ratio between
work (function evaluations) and results (monomials exactly
integrated) as close to maximally efficient.

It is common to carry out a sequence of approximations to an
integral. If the sequence is constructed in such a way that the
points are nested, then the function values can be saved and
reused as part of the next approximation. This is a second possible
efficiency.
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Quadrature Rules: Families of Rules

Most quadrature rules are available in any order N.

Generally, increasing N produces a more accurate estimate, and
the difference between estimates of order N and N+K can be used
as a rough approximation to the error in the lower order estimate.

Thus, a procedure seeking an integral estimate with a certain
accuracy will need to generate and apply elements of a family of
quadrature rules of increasing order.

An efficient calculation seeks a family of rules and a growth pattern
for N so that old abscissas are reused. This is called nesting.
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Quadrature Rules: Order, Level, Growth Rule

The order of a rule, N, is the number of points or abscissas.

The level of a rule, L, is its index in a family. This is simply a way
to select a subset of the rules for our iterative scheme.

A family typically starts at level 0 with an order 1 rule.

The growth rule for a family relates level L and order N:

Linear growth is the simplest. It may allow a limited amount of
nesting:

N = 2L + 1 : 1, 3, 5, 7, ...
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Quadrature Rules: Newton Cotes Open,Linear Growth
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Quadrature Rules: Order, Level, Growth Rule

Exponential growth is rapid. Its exact form depends on whether
the rule is closed (includes both endpoints of the interval) or open.
Exponential growth is typical when nesting is exploited.

N =2L + 1 : 1, 3, 5, 9, 17, 33 : closed rules, Clenshaw-Curtis

N =2L+1 − 1 : 1, 3, 7, 15, 31 : open rules, Gauss-Legendre
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Quadrature Rules: Gauss Legendre, Exponential Growth
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Quadrature Rules: Clenshaw Curtis, Exponential Growth
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PRODUCT RULES: Formed from 1D Rules

Let QL be the L-th member of a family of 1D quadrature rules,
with order NL and precision PL.

We can construct a corresponding family of 2D product rules as
QL ⊗QL, with order N2

L and precision PL.

This rule is based on interpolating data on the product grid; the
analysis of precision and accuracy is similar to the 1D case.

Similarly, we can construct an M-dimensional product rule. Notice
that the order of such a rule is NM

L , but the precision stays at PL.
Thus, even for a relatively low precision requirement, the order of a
product rule will grow very rapidly if M increases.

How many points would you use in a product rule for M=100?
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PRODUCT RULES: Formed from 1D Rules

For example, we can “square” the order 3 Legendre rule on [-1,1]:∫ +1

−1
f (x) dx ≈ 0.55 ∗ f (−0.77) + 0.88 ∗ f (0.0) + 0.55 ∗ f (0.77)

to get a 2D product rule:

0.30 f(-0.77,+0.77) +0.48 f(0,+0.77) +0.30 f(0.77,+0.77)

+0.48 f(-0.77, 0.00) +0.77 f(0, 0.00) +0.48 f(0.77, 0.00)

+0.30 f(-0.77,-0.77) +0.48 f(0,-0.77) +0.30 f(0.77,-0.77)

where point (xi, yj) has weight wi ∗ wj.
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PRODUCT RULES: 17x17 Clenshaw-Curtis
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PRODUCT RULES: Do We Get Our Money’s Worth?

Suppose we form a 2D quadrature rule by “squaring” a 1D rule
which is precise for monomials 1 through x4.

Our 2D product rule will be precise for any monomial in x and y
with individual degrees no greater than 4.

The number of monomials we will be able to integrate exactly
matches the number of abscissas the rule requires.

Our expense, function evaluations at the abscissa, seems to buy us
a corresponding great deal of monomial exactness.

But for interpolatory quadrature, many of the monomial
results we “buy” are actually nearly worthless!.
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PRODUCT RULES: Pascal’s Precision Triangle

We can seek accuracy by requiring that our quadrature rule have a
given precision. To say our quadrature rule has precision 5 is to say
that it can correctly integrate every polynomial of degree 5 or less.
This corresponds to integrating all the monomials below the 5-th
diagonal in a sort of Pascal’s triangle.

A given rule may integrate some monomials above its highest
diagonal; but these extra monomials don’t improve the overall
asymptotic accuracy of the rule.
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PRODUCT RULES: Pascal’s Precision Triangle

Here are the monomials of total degree exactly 5. A rule has
precision 5 if it can integrate these and all monomials below that
diagonal.

7 ! y 7 xy 7 x2y 7 x3y 7 x4y 7 x5y 7 x6y 7 x7y 7

6 ! y 6 xy 6 x2y 6 x3y 6 x4y 6 x5y 6 x6y 6 x7y 6

5 ! y 5 xy 5 x2y 5 x3y 5 x4y 5 x5y 5 x6y 5 x7y 5

4 ! y 4 xy 4 x2y 4 x3y 4 x4y 4 x5y 4 x6y 4 x7y 4

3 ! y 3 xy 3 x2y 3 x3y 3 x4y 3 x5y 3 x6y 3 x7y 3

2 ! y 2 xy 2 x2y 2 x3y 2 x4y 2 x5y 2 x6y 2 x7y 2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7

33 / 1



PRODUCT RULES: Pascal’s Precision Triangle

A product rule results in a rectangle of precision, not a triangle.
The monomials above the diagonal of that rectangle represent a
cost that does not correspond to increased overall asymptotic
accuracy.

7 ! y 7 xy 7 x2y 7 x3y 7 x4y 7 x5y 7 x6y 7 x7y 7

6 ! y 6 xy 6 x2y 6 x3y 6 x4y 6 x5y 6 x6y 6 x7y 6

5 ! y 5 xy 5 x2y 5 x3y 5 x4y 5 x5y 5 x6y 5 x7y 5

4 ! y 4 xy 4 x2y 4 x3y 4 x4y 4 x5y 4 x6y 4 x7y 4

3 ! y 3 xy 3 x2y 3 x3y 3 x4y 3 x5y 3 x6y 3 x7y 3

2 ! y 2 xy 2 x2y 2 x3y 2 x4y 2 x5y 2 x6y 2 x7y 2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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PRODUCT RULES: It Gets Worse in Higher Dimensions

Consider products of a 10 point rule with precision up to x9.

We only need to get to diagonal 9 of Pascal’s precision triangle.
The monomials up to that row can be computed as a multinomial
coefficient. Compare the number of abscissas to monomials!

Dim Abscissas Monomials Wasted Percentage

1D 10 10 0 0%
2D 100 55 45 45%
3D 1,000 220 780 78%
4D 10,000 715 9,285 92%
5D 100,000 2,002 97,998 97%
6D 1,000,000 5,005 994,995 99%

In 5D, there are only 2,002 items to search for.
Can’t we find a quadrature rule of roughly that order?
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SMOLYAK QUADRATURE

Sergey Smolyak (1963) suggested sparse grids:

an algebraic combination of low order product grids;

Pascal’s precision diagonals achieved with far fewer points;

Smooth f (x) + precision ⇒ accuracy + efficiency.
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SMOLYAK QUADRATURE

Very simply, the idea of Smolyak quadrature is to try to keep the
order low for a given precision request. To do this, you need to use
product rules that only “catch” the monomials you’re interested in.

Say we want to catch all monomials with total degree 5 or less.
When we want to catch x5, we don’t want to pick up x5y and
x5y 2 on up to x5y 5. So we use a product rule of precision 5 in x ,
and 0 in y .

To catch all the monomials we want, and no more, we combine
product rules with the “appropriate” coefficients.
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SMOLYAK QUADRATURE: Construction

We have an indexed family of 1D quadrature rules QL.
We form rules for dimension M, indexed by level L.
Here i = i1 + · · ·+ iM , where ij is the “level” of the j-th 1D rule.

A(L,M) =
∑

L−M+1≤|i|≤L

(−1)L+M−|i|
(

L + M
L + M − |i|

)
(Qi1⊗· · ·⊗QiM )

Thus, the rule A(L,M) is a weighted sum of product rules.
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SMOLYAK QUADRATURE: A sum of rules/a rule of sums

The Smolyak construction rule can be interpreted to say:

Compute the integral estimate for each rule,
then compute the algebraic sum of these estimates.

but it can also be interpreted as:

Combine the component rules into a single quadrature rule,
the new abscissas are the set of the component abscissas;
the new weights are the component weights multiplied by the
sparse grid coefficient.
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SMOLYAK QUADRATURE: Efficiency from Nesting

Under the second interpretation, we can see that in cases where an
abscissa is duplicated in the component rules, the combined rule
can use a single copy of the abscissa, with the sum of the weights
associated with the duplicates.

Duplication is a property inherited from the 1D rules.

Duplication is useful when computing a single sparse grid rule, but
also when computing a sequence of sparse grids of increasing level.
In some cases, all the values from the previous level can be reused.
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SMOLYAK QUADRATURE: Using Clenshaw-Curtis

A common choice is 1D Clenshaw-Curtis rules.

We can make a nested family by choosing successive orders of 1, 3,
5, 9, 17, ...

We wrote Qi to indicate the 1D quadrature rules indexed by a
level running 0, 1, 2, 3, and so on.

We will use a plain Qn to mean the 1D quadrature rules of order
1, 3, 5, 9 and so on.

We will find it helpful to count abscissas.
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SMOLYAK QUADRATURE: Using Clenshaw-Curtis

Theorem

The Clenshaw-Curtis Smolyak formula of level L is precise for all
polynomials of degree 2 ∗ L + 1 or less.

Thus, although our construction of sparse grids seems complicated,
we still know the level of precision we can expect at each level.
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SMOLYAK QUADRATURE: Precision

Level 1D abscissas 5D abscissas 10D abscissas Precision

0 1 1 1 1
1 3 11 21 3
2 5 61 221 5
3 9 241 1581 7
4 17 801 8801 9
5 33 2433 41265 11
6 65 6993 171425 13

Recall 5D product rule required 100,000 abscissas to integrate
2,002 entries in Pascal’s precision triangle (precision 9).
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SMOLYAK QUADRATURE: Asymptotic Accuracy

Let N be the order (number of abscissas) in the rule A(L,M).

let I be the integral of f (x),
f (x) : [−1, 1]M → R|Dα continuous if αi ≤ r for all i ;

The accuracy for a Smolyak rule based on a nested family satisfies:

||I − A(L,M)|| = O(N
−r

log(2M) )

This behavior is near optimal; no family of rules could do better
than O(N−r ) for this general class of integrands.
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SMOLYAK QUADRATURE: Efficiency

The space of M-dimensional polynomials of degree P or less has

dimension

(
P + M

M

)
≈ MP

P! .

For large M, a Clenshaw-Curtis Smolyak rule that achieves

precision P uses N ≈ (2M)P

P! points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points
(to within a factor 2P that is independent of M).

Notice there is no exponent of M in the point growth.
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COVERING PASCAL’S TRIANGLE

A family of precise interpolatory rules must cover successive rows
of Pascal’s precision triangle in a regular way.

In higher dimensions, the triangle is a tetrahedron or a simplex.

The product rule does this by “overkill”.

Smolyak’s construction covers the rows, but does so much more
economically, using lower order product rules.
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COVERING PASCAL’S TRIANGLE

Let’s watch how this works for a family of 2D rules.

I’ve had to turn Pascal’s triangle sideways, to an XY grid. If we
count from 0, then box (I,J) represents x iy j .

Thus a row of Pascal’s triangle is now a diagonal of this plot.

The important thing to notice is the maximum diagonal that is
completely covered. This indicates the precision of the rule.

We will see levels 0 through 4 and precisions 1, 3, 5, 7 and 9.
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COVERING PASCAL’S TRIANGLE: 2D Level 0

Q1 ⊗ Q1
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COVERING PASCAL’S TRIANGLE: 2D Level 1

Q3 ⊗ Q1 + Q1 ⊗ Q3 - old
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COVERING PASCAL’S TRIANGLE: 2D Level 2

Q5 ⊗ Q1 + Q3 ⊗ Q3 + Q1 ⊗ Q5 - old.
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COVERING PASCAL’S TRIANGLE: 2D Level 3

Q9 ⊗ Q1 + Q5 ⊗ Q3 + Q3 ⊗ Q5 + Q1 ⊗ Q9 - old;
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COVERING PASCAL’S TRIANGLE: 2D Level 4

Q17 ⊗ Q1 + Q9 ⊗ Q3 + Q5 ⊗ Q5 + Q3 ⊗ Q9 + Q1 ⊗ Q17 - old;
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COVERING PASCAL’S TRIANGLE: Comments

When based on an exponential growth rule like N = 2L + 1, each
new level of a Smolyak family:

covers 2 more diagonals, increasing precision by 2;

avoids filling in the heavy “half” of the hypercube that the
product rule fills;

adds long but thin regions of excess levels along the axes;

The excess levels come about because we are trying to exploit
nesting as much as possible. As the spatial dimension increases,
the relative cost of the excess levels decreases.
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COVERING PASCAL’S TRIANGLE: Comments

When based on a linear growth rule like N = 2 ∗ L + 1, each new
level of a Smolyak family:

covers 2 more diagonals, increasing precision by 2;

avoids filling in the heavy “half” of the hypercube that the
product rule fills;

has no wasted level coverage at all;

So for linear growth, every level is “useful” (no excess levels at all)
but because linear growth interferes with nesting, we probably
increase the number of quadrature points needed. (So we buy only
what we need, but each item costs a bit more.) As the spatial
dimension increases, the relative cost of not using nesting increases.
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HOW GRIDS COMBINE

We said that the Smolyak construction combines low order product
rules, and that the result can be regarded as a single rule.

Let’s look at the construction of the Smolyak grid of level L=4 and
hence precision P=9 in 2D.

Our construction will involve 1D rules of orders 1, 3, 5, 9 and 17,
and product rules formed of these factors.

Because of nesting, every product rule we form will be a subset of
the 17x17 full product grid.
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HOW GRIDS COMBINE: 2D Order 17 Product Rule

A 17x17 Clenshaw-Curtis product grid (289 points).
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HOW GRIDS COMBINE: 2D Level4 Smolyak Grid

The sparse grid is a subset of the 17x17 product grid (65 points).
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HOW GRIDS COMBINE: 2D Level4 Smolyak Grid

It’s easy to get the impression that the 65-point sparse grid can
replace the 289 point product grid - that is, that it has the same
precision. That’s not true!

A 17x17 product grid has precision 16 (actually 17, by symmetry).
The Clenshaw Curtis sparse grid of level 4, with 65 points, has
precision 9.

We should compare it to the product grid of 9x9=81 points which
also has precision 9. We see that there’s not much difference in
order!

Sparse grids in low dimensions (2 or 3) are not competitive with
product grids. We use them as examples because they are possible
to plot!
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HOW GRIDS COMBINE

A(4, 2) =
∑

3≤|i|≤4

(−1)4−|i|
(
−1

4− |i|

)
(Qi1 ⊗Qi2)

= +Q0 ⊗Q4 (Q1 ⊗ Q17)

+Q1 ⊗Q3 (Q3 ⊗ Q9)

+Q2 ⊗Q2 (Q5 ⊗ Q5)

+Q3 ⊗Q1 (Q9 ⊗ Q3)

+Q4 ⊗Q0 (Q17 ⊗ Q1)

−Q0 ⊗Q3 (Q1 ⊗ Q9)

−Q1 ⊗Q2 (Q3 ⊗ Q5)

−Q2 ⊗Q1 (Q5 ⊗ Q3)

−Q3 ⊗Q0 (Q9 ⊗ Q1)
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HOW GRIDS COMBINE: Red Rules - Blue Rules
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HOW GRIDS COMBINE: 2D Level4 1x17 component
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HOW GRIDS COMBINE: 2D Level4 3x9 component
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HOW GRIDS COMBINE: 2D Level4 5x5 component
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HOW GRIDS COMBINE: 2D Level4 9x3 component
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HOW GRIDS COMBINE: 2D Level4 17x1 component
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HOW GRIDS COMBINE: Red Rules - Blue Rules

We’ve shown the component “red” rules, which show up in the
sum with a positive sign.

The ‘blue” rules are similar, though at a lower level:

The first of the 5 red rules has order 1x17;

The first of the 4 blue rules has order 1x9.

Notice that this rule is “symmetric” in all dimensions. If we have a
65x3 rule, we are also guaranteed a 3x65 rule. The Smolyak
formula is isotropic.
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HOW GRIDS COMBINE: 3D Level5 Smolyak Grid

3D sparse grid, level 5, precision 11 uses 441 abscissas;

3D product grid of precision 11 uses 1,331 abscissas.
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SPARSE GRIDS IN ACTION

Let’s take a problem that’s reasonable but not trivial.

We’ll work in a space with dimension M = 6.

We’ll try to integrate the Genz Product Peak:

f (X ) =
1∏M

i=1(C 2
i + (Xi − Zi )2)

where Ci and Zi are prescribed.
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SPARSE GRIDS IN ACTION: 6D Smolyak

Level Order Estimate Error

0 1 0.062500 0.573282
1 13 0.600000 0.0357818
2 85 0.631111 0.00467073
3 389 0.636364 0.000582152
4 1457 0.635831 0.0000492033
5 4865 0.635778 0.00000375410

∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION:6D Smolyak
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SPARSE GRIDS IN ACTION: 6D Gauss-Legendre

1D Order 6D Order Estimate Error

1 1 1.00000 0.364218
2 64 0.618625 0.0171570
3 729 0.636774 0.000992123
4 4096 0.635726 0.0000560162
5 15625 0.635785 0.00000314963

∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION: 6D Monte Carlo

log2 (N) N Estimate Error

0 1 0.641468 0.00568631
4 16 0.640218 0.00443594
8 256 0.650114 0.0143321

16 4096 0.636000 0.000218054
24 65536 0.636105 0.000323117
32 1048576 0.635843 0.0000612090

∞ ∞ 0.635782 0.0
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SPARSE GRIDS IN ACTION: 6D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: 10D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: Thoughts

The graphs suggests that the accuracy behavior of the sparse grid
rule is similar to the Gauss-Legendre rule, at least for this kind of
integrand.

For 6 dimensions, the sparse grid rule is roughly 3 times as efficient
as Gauss-Legendre, ( 4,865 abscissas versus 15,625 abscissas ).

Moving from 6 to 10 dimensions, the efficiency advantage is 60:
(170,000 abscissas versus 9,700,000 abscissas).

The Gauss-Legendre product rule is beginning the explosive growth
in abscissa count.
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Smoothness: A Few Words of Wisdom

A sparse grid approach is the right choice when the function to be
integrated is known to be smooth or to have bounded derivatives
up to the order of the rule we are applying.

In those cases, the precision of a sparse grid extracts extra
information from the function values, to provide accurate answers
with efficiency.

But if the smoothness assumption is not true, the sparse grid
approach will fail.
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Smoothness: Characteristic Function of 6D Sphere

In the region [−1,+1]6, define

f (x) =

{
1, if ‖x‖ ≤ 1;

0, if ‖x‖ > 1.

This function is not even continuous, let alone differentiable. We
will try to apply a series of Clenshaw Curtis sparse grids to this
integrand.

The hypercube volume is 64;
the hypersphere volume is π3

6 ≈ 5.16771.
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Smoothness: Sparse Grid Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : ... ...
13 64.000 58.832 : ... ...
85 -42.667 -47.834 : ... ...

389 -118.519 -123.686 : ... ...
1457 148.250 143.082 : ... ...
4865 -24.682 -29.850 : ... ...

Can you see why negative estimates are possible
even though the integrand is never negative?
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Smoothness: MC Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : 0.00000 5.16771
13 64.000 58.832 : 0.00000 5.16771
85 -42.667 -47.834 : 3.01176 2.15595

389 -118.519 -123.686 : 4.77121 0.39650
1457 148.250 143.082 : 5.16771 0.01555
4865 -24.682 -29.850 : 5.41994 0.25226

Here, we make the Monte Carlo method look like a quadrature rule
with equal weights.

84 / 1



Smoothness: MC Quadrature

So how far do we have to go to get 3 digits correct?

N MC Estimate MC Error

1 0.00000 5.16771
32 6.00000 0.83228

1,024 4.81250 0.35521
32,768 5.39063 0.22291

1,048,576 5.18042 0.01271
33,554,432 5.16849 0.00077

∞ 5.16771 0.00000

The function values are only 0 or 1
the spatial dimension is “only” 6D...

...but 3 digit accuracy requires 33 million evaluations!
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Smoothness: Adaptivity in Interpolation Order

A sparse grid can be used for this problem, if it uses rules that
don’t expect much more smoothness than the integrand has.

Here, we would want the underlying product grids to construct and
integrate piecewise linear or piecewise constant interpolants.

This would be an example of adaptivity, that is, the ability of an
algorithm to use its best method (high order polynomials) if it can,
but to watch for danger signs and “gear down” to a slower but
safer method when indicated.
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Stochastic Diffusion

−∇ · (a(~x)∇u(~x)) = f (~x)

u(~x) is an unknown quantity, like temperature;

a(~x) is a known physical property, the conductivity, which controls
how quickly hot or cold spots average out.

heat conduction;

slow subsurface flow of water;

particle diffusion;

Black-Scholes equation (flow of money!).
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Stochastic Diffusion: Uncertain Conductivity

Using a fixed value for a(~x) might be unrealistic.

Without variations in a(~x), we might never see the bumps and
swirls typical of real physical problems.

We might think of a(~x) as a random field a(~x ;ω).

The ω represents the unknown variation from the average.
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Stochastic Diffusion: Uncertain Solution

If a(~x ;ω) has an “unknown” component, then so does our
solution, which we write u(~x ;ω).

−∇ · (a(~x ;ω)∇u(~x ;ω)) = f (~x)

Now if we don’t know what the equation is, we can’t solve it!

Can we still extract information from the equation?
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Stochastic Diffusion: Expected Values

Each variation ω determines a solution u.

If we added up every variation, we’d get an average or expected
value for the solution.

The expected value is an important first piece of information about
a problem with a random component.

E (u(~x)) =

∫
Ω

u(~x ;ω) ρ(ω) dω

It’s like using weather records to estimate the climate.
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Stochastic Diffusion: Approximate Integral

We approximate the function space Ω by an M-dimensional space
ΩM , of linear sums of perturbations ω.

We now estimate the integral of u(~x ;ω) in ΩM .

Monte Carlo: select random sets of parameters ω, (weighted by
ρ(ω), solve for u(~x ;ω) and average.

Sparse grid: choose a level, defining a grid of ω values in ΩM . For
each ω grid value, evaluate the spatial integrals to get a
contribution to A and f ; sum to get A and f , solve A ∗ x = f for
the finite element coefficients for E (u(~x);ω)).
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Stochastic Diffusion: Monte Carlo
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Stochastic Diffusion: Smolyak
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Software:

I have found a limited amount of software online for doing sparse
grids.

SPINTERP (in MATLAB, by Andreas Klimke) does
interpolation based on data values on a sparse grid; ACM
TOMS Algorithm 847.

SMOLPACK (in C, by Knut Petras) estimates integrals using
sparse grids.
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Software: SPINTERP

Downloadable from NETLIB, or from
http://www.ians.uni-stuttgart.de/spinterp/

Constructs an interpolant function which is the sum of piecewise
linear interpolants on each product grid that is part of the sparse
grid. The interpolant is the sum of these interpolant functions.

The latest versions of the software can

interpolate using higher order polynomials;

evaluate the derivatives of the interpolant at any point;

search for minimizers of the interpolant;

use anisotropic grids, ignoring dimensions with little
information.
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Software: SPINTERP

The use of the program is very simple. Here we define a function
f(x, y), indicate the spatial dimension is 2, and ask for a sparse grid
interpolant over a specific rectangle. By default, the program will
use enough points so that the interpolation error is judged to be
reasonably small.

f = @(x,y) sin(x) + cos(y);

sp = spvals ( f, 2, [0 pi; 0 pi] ) <-- Set interpolant

x = pi*rand(1,5);

y = pi*rand(1,5);

spxy = spinterp ( sp, x, y ) <-- Evaluate interpolant
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Software:

I have written C++, F90 and MATLAB versions of libraries and
programs for sparse grid integration using specific 1D rules:

sparse grid cc Clenshaw Curtis;

sparse grid gl Gauss-Legendre;

sparse grid hermite Hermite;

sparse grid laguerre Laguerre;

sparse grid mixed Mixture of 1D rules;

sparse grid mixed growth Mixture + growth;

sgmga mixture + growth + anisotropic;

For example, look at
http://people.sc.fsu.edu/∼jburkardt/m src/sparse grid cc/
sparse grid cc.html
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Software: Sparse Grid Mixed Weight

Here is essentially the verbatim MATLAB code for computing the
weights of a sparse grid rule that uses a mixed set of 1D factors.

Many operations are handled by function calls.

The important thing is to try to see that Smolyak’s formula for
A(q, d) is being implemented here.

An additional concern is that we are trying to take advantage of
nesting. Thus, we have an array sparse unique index that helps
us with the bookkeeping to deal with duplicate points.
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Software: Sparse Grid Mixed Weight

f u n c t i o n s p a r s e w e i g h t = s p a r s e g r i d m i x e d w e i g h t ( dim num , l e v e l m a x , . . .
r u l e , a lpha , beta , po int num )

p o i n t t o t a l n u m = s p a r s e g r i d m i x e d s i z e t o t a l ( dim num , l e v e l m a x , r u l e ) ;

s p a r s e u n i q u e i n d e x = s p a r s e g r i d m i x e d u n i q u e i n d e x ( dim num , l e v e l m a x , . . .
r u l e , a lpha , beta , p o i n t t o t a l n u m ) ;

s p a r s e w e i g h t ( 1 : po int num ) = 0 . 0 ;

p o i n t t o t a l = 0 ;

l e v e l m i n = max ( 0 , l e v e l m a x + 1 − dim num ) ;

f o r l e v e l = l e v e l m i n : l e v e l m a x

l e v e l 1 d = [ ] ;
m o r e g r i d s = 0 ;
h = 0 ;
t = 0 ;
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Software: Sparse Grid Mixed Weight

w h i l e ( 1 )

[ l e v e l 1 d , m o r e g r i d s , h , t ] = comp next ( l e v e l , dim num , l e v e l 1 d , . . .
m o r e g r i d s , h , t ) ;

o r d e r 1 d = l e v e l t o o r d e r ( dim num , l e v e l 1 d , r u l e ) ;

o r d e r n d = prod ( o r d e r 1 d ( 1 : dim num ) ) ;

g r i d w e i g h t = p r o d u c t m i x e d w e i g h t ( dim num , o r d e r 1 d , o r d e r n d , . . .
r u l e , a lpha , beta ) ;

c o e f f = r8 mop ( l e v e l m a x − l e v e l ) . . .
* r 8 c h o o s e ( dim num − 1 , l e v e l m a x − l e v e l ) ;

f o r o r d e r = 1 : o r d e r n d

p o i n t t o t a l = p o i n t t o t a l + 1 ;

p o i n t u n i q u e = s p a r s e u n i q u e i n d e x ( p o i n t t o t a l ) ;

s p a r s e w e i g h t ( p o i n t u n i q u e ) = s p a r s e w e i g h t ( p o i n t u n i q u e ) . . .
+ c o e f f * g r i d w e i g h t ( o r d e r ) ;

end
i f ( ˜ m o r e g r i d s )

break
end

end
end
r e t u r n

end
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Software: Rule Generation

The simplest family of sparse quadrature rules is based on a single
1D rule, and each spatial dimension is treated the same.

The family of rules is indexed by L, the level, which starts at 0
with the 1 point rule.

The number of points N depends on L, the spatial dimension D,
and the nesting of the underlying rule.

For a given 1D rule (say laguerre), the routines available are:

sparse grid laguerre size returns the number of points

sparse grid laguerre index shows which 1D rule each
abscissa component comes from

sparse grid laguerre returns the weights and abscissas
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Software: Rule Generation

N = sparse_grid_laguerre_size ( D, L );

W = new double[N];

X = new double[D*N];

sparse_grid_laguerre ( D, L, N, W, X );

sum = 0;

for ( p = 0; p < N; p++ )

{

sum = sum + W[p] * f ( X+p*D );

}

104 / 1



Software: File Format

A file format for quadrature rules means that software programs
can communicate;

Results can be precomputed.

File data can easily be checked, corrected, emailed, or otherwise
exploited.

The basic format uses 3 files:

R file, 2 lines, D columns, the “corners” of the region

W file, N lines, 1 column, the weight for each abscissa

X file, N lines, D columns, the abscissas
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Software: File Format

The ”columns” are simply numbers separated by blanks.

A single file could have been used, but it would have internal
structure.

To determine D and N, a program reads the X file and counts the
number of “words” on a line, and the number of lines.

No particular ordering for the abscissas is assumed, but each line of
the W and X files must correspond.

I have used this format for a 3x3 Clenshaw Curtis product rule
and a sparse grid rule for integration in 100D!

For directories of these kinds of files, look at
http://people.sc.fsu.edu/∼jburkardt/datasets/sparse grid cc
and so on.
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Software: File Format

R file

---------

-1.0 -1.0

+1.0 +1.0

W file X file

------ -----------

0.111 -1.0 -1.0

0.444 -1.0 0.0

0.111 -1.0 +1.0

0.444 0.0 -1.0

1.777 0.0 0.0

0.444 0.0 +1.0

0.111 +1.0 -1.0

0.444 +1.0 0.0

0.111 +1.0 +1.0

107 / 1



Software: File Format

Another advantage of exporting quadrature rules to a file is that it
is possible to precompute a desired family of rules and store them.

These files can be read in by a program written in another
computer language; they can be mailed to a researcher who does
not want to deal with the initial rule generation step.
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Software: Precision Testing

Once we have quadrature rules stored in files, we can easily run
degree of precision tests.

An executable program asks the user for the quadrature file names,
and M, the maximum polynomial degree to check.

The program determines the spatial dimension D implicitly from
the files, as well as N, the number of points.

It then generates every appropriate monomial, applies the
quadrature rule, and reports the error.
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Software: Precision Checking

23 October 2008 8:04:55.816 AM

NINT_EXACTNESS

C++ version

Investigate the polynomial exactness of a quadrature

rule by integrating all monomials of a given degree

over the [0,1] hypercube.

NINT_EXACTNESS: User input:

Quadrature rule X file = "ccgl_d2_o006_x.txt".

Quadrature rule W file = "ccgl_d2_o006_w.txt".

Quadrature rule R file = "ccgl_d2_o006_r.txt".

Maximum total degree to check = 4

Spatial dimension = 2

Number of points = 6
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Sotware: Precision Checking

Error Degree Exponents

0.0000000000000001 0 0 0

0.0000000000000002 1 1 0

0.0000000000000002 1 0 1

0.0000000000000002 2 2 0

0.0000000000000002 2 1 1

0.0000000000000002 2 0 2

0.0000000000000002 3 3 0

0.0000000000000002 3 2 1

0.0000000000000000 3 1 2

0.0000000000000001 3 0 3

0.0416666666666665 4 4 0

0.0000000000000001 4 3 1

0.0000000000000000 4 2 2

0.0000000000000001 4 1 3

0.0277777777777779 4 0 4
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CONCLUSION: A few observations

Sparse grids are based on combinations of product rules.

The combinations seek specific precision levels.

For integrands with bounded derivatives, precision produces
accuracy.

By discarding some of the unneeded precision of product rules,
sparse grids have a higher efficiency.

Abstract probability integrals, stochastic collocation and
polynomial chaos expansions are examples of settings in which
sparse grids may be useful.
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CONCLUSION: A few observations

The underlying 1D quadrature rules could just as well be Jacobi,
Laguerre, Hermite or their generalizations.

We can choose different quadrature rules for each dimension.

The rule family for a particular dimension could be a piecewise
polynomial or some kind of composite rule. This makes it possible
to handle functions with limited differentiability.
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CONCLUSION: A few observations

The approach we have outline here is isotropic. It treats each
spatial dimension with the same degree of importance.

But many very high dimensional problems that people work on are
solvable in part because most of the dimensions have very little
variation.

An anisotropic sparse grid rule can be developed which chooses
the maximum order in each dimension based on weights.

These weights can be supplied in advance by the user, or
determined adaptively.
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