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INTRODUCTION - Modern Computations

Modern computations require high dimensional integration:

Financial mathematics: 30D or 360D;

Evolutionary biology (integration over evolutionary trees);

Stochastic differential equations: 10D, 20D, 50D;

Integrals derived from physics (Ising, quantum field theory).

Atomic properties by integration over electron configurations
weighted by probabilities
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INTRODUCTION - High Dimensional Integration is Hard

These integrals are too complex to evaluate symbolically.

But even numerical approximation of high dimensional integrals can be
intractable:

The region may have very high dimension;

The integrand may have endpoint singularities;

The integrand may be very expensive to evaluate;

There may be a need for extreme accuracy.
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INTRODUCTION - Accuracy, Precision, Efficiency

In this talk, we consider the problem of constructing interpolatory
quadrature rules for high dimensional regions.

For smooth integrands, rule precision implies accuracy.

But the natural method of creating precise rules, using products, incurs a
cost that is exponential in the spatial dimension.

We show that this explosion is not a necessary feature of interpolation,
and we investigate efficient methods of achieving precision, and hence
accuracy, for smooth integrands in high dimensional spaces.
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QUADRATURE: Approximation of Integrals

Integrals are numerically approximated by quadrature rules.

In 1D, this is a “mature” (dead?) area.

∫
Ω

f (x) dx ≈
N∑
i=1

wi f (xi )

Interpolatory rules: Newton-Cotes, Chebyshev points;

Semi-interpolatory rules: Gauss rules;

Sampling rules: Monte Carlo and Quasi-Monte Carlo;

Transform rules: tanh, tanh-sinh, erf rules.
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QUADRATURE: Families of Rules

Most quadrature rules are available in any order N.

Generally, increasing N produces a more accurate result
(more about this in a minute!)

Under that assumption, a cautious calculation uses a sequence of
increasing values of N.

An efficient calculation chooses the sequence of N in such a way that
previous function values can be reused. This is called nesting.
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1D Quadrature: Interpolatory
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QUADRATURE: Precision

If a quadrature rule is exact when applied to any polynomials of degree P
or less, the rule has precision P.

The precision of common quadrature families can be given in terms of
the order N:

Interpolatory rules: P = N. (assuming symmetry);

Gauss rules P = 2 * N - 1 ;

Monte Carlo and Quasi-Monte Carlo rules, P = 0 ;

“transform rules”: tanh, tanh-sinh, erf rules P = 1 .

High precision is a property of interpolatory and Gauss rules.
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QUADRATURE: Precision Can Mean Accuracy

Using a rule with P = N on a smooth function, low order terms get

integrated, leaving an error that is O( 1
N

N+1
),

(Take the typical spacing between abscissas to be h = 1
N .)

However, the integrands encountered in high dimensional problems are
typically smooth, and suitable for precision rules.

Keep in mind that precision:

is not necessary - after all, Monte Carlo rules work.

is not a guarantee - Newton Cotes rules are unstable;

can be harmful - f(x) = step or piecewise or singular!
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QUADRATURE: Accuracy is the Goal

Accuracy simply measures the error in the result.

A rule is accurate for a given class of integrands if we can show that the
error (or expectation of the error) goes to zero as h→ 0 or N →∞.

A rule can be accurate without being precise.

The 1√
N

accuracy of the Monte Carlo rule depends on the Law of Large

Numbers.

The (exponential) accuracy of tanh, tanh-sinh and erf rules is essentially
anecdotal.

12 / 1



QUADRATURE: Efficiency is the Number of Abscissas

Efficiency measures the amount of work expended for the result.

For quadrature, we measure our work in terms of the number of function
evaluations, which in turn is the number of abscissas.

Since it is common to use a sequence of rules, it is important, for
efficiency, to take advantage of nestedness, that is, to choose a family of
rule for which the function values at one level can be reused on the next.
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PRODUCT RULES: Formed from 1D Rules

Let Qi be the i-th member of a family of nested quadrature rules, with
order Ni and precision Pi .

We can construct a corresponding family of 2D product rules as Qi ⊗ Qi ,
with order N2

i and precision Pi .

This rule is based on interpolating data on the product grid; the analysis
of precision and accuracy is similar to the 1D case.

Everything extends to the general M-dimensional case... except that the
order growth NM

i is unacceptable!
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PRODUCT RULES: 17x17 Clenshaw-Curtis
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PRODUCT RULES: Do We Get Our Money’s Worth?

Suppose we “square” a rule which is precise for monomials 1 through x4.

We get a product rule precise for any monomial in x and y with
individual degrees no greater than 4.

The number of monomials we will be able to integrate exactly matches
the number of abscissas the rule requires.

Our expense, function evaluations at the abscissa, seems to buy us a
corresponding great deal of monomial exactness.

But for interpolatory quadrature, many of the monomial
results we “buy” are actually nearly worthless!.
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PRODUCT RULES: Pascal’s Precision Triangle

Precision for only part of a row of Pascal’s triangle is not useful!. If we
can’t integrate x5 or y 5 exactly, errors in those monomials determine our
accuracy.

0 1
1 x y
2 x2 xy y 2

3 x3 x2y xy 2 y 3

4 x4 x3y x2y 2 xy 3 y 4

5 x4y x3y 2 x2y 3 xy 4

6 x4y 2 x3y 3 x2y 4

7 x4y 3 x3y 4

8 x4y 4
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PRODUCT RULES: It Gets Worse in Higher Dimensions

Consider products of a 10 point rule with precision up to x9.

We only need to get to row 9 of Pascal’s precision triangle. The
monomials up to that row can be computed as a multinomial coefficient.
Compare the number of abscissas to monomials!

Dim Abscissas Monomials Wasted Percentage
1D 10 10 0 0%
2D 100 55 45 45%
3D 1,000 220 780 78%
4D 10,000 715 9,285 92%
5D 100,000 2,002 97,998 97%
6D 1,000,000 5,005 994,995 99%

In 5D, there are only 2,002 items to search for.
Can’t we find a quadrature rule of roughly that order?
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PRODUCT RULES: What Do We Want?

Product rules can’t take us where we want to go.

But where is that, exactly?

We want rules with faster convergence than Monte Carlo rules.

We are hoping to buy faster convergence using polynomial precision
(smooth integrand f(x))

We’d like a family of rules, of increasing precision, so we can control our
work and estimate our accuracy.

But we can’t afford rules for which, at a fixed precision P,
the number of abscissas N grows exponentially with spatial dimension M.
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SMOLYAK QUADRATURE

Sergey Smolyak (1963) suggested sparse grids:

an algebraic combination of low order product grids;

Pascal’s precision rows achieved with far fewer points;

Smooth f (x) + precision ⇒ accuracy + efficiency.

22 / 1



SMOLYAK QUADRATURE: Construction

We have an indexed family of 1D quadrature rules Qi .
We form rules for dimension M, indexed by “level” q starting at M.
Here i = i1 + · · ·+ iM .

A(q,M) =
∑

q−M+1≤|i|≤q

(−1)q−|i|
(

M − 1
q − |i|

)
(Qi1 ⊗ · · · ⊗ QiM )

Thus, the rule A(q,M) is a weighted sum of product rules.

23 / 1



SMOLYAK QUADRATURE: A sum of rules/a rule of sums

The Smolyak construction rule can be interpreted to say:

Compute the integral estimate for each rule,
then compute the algebraic sum of these estimates.

but it can also be interpreted as:

Combine the component rules into a single quadrature rule,
the new abscissas are the set of the component abscissas;
the new weights are the component weights multiplied by the sparse grid
coefficient.
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SMOLYAK QUADRATURE: Efficiency from Nesting

Under the second interpretation, we can see that in cases where an
abscissa is duplicated in the component rules, the combined rule can use
a single copy of the abscissa, with the sum of the weights associated with
the duplicates.

Duplication is a property inherited from the 1D rules.

Duplication is useful when computing a single sparse grid rule, but also
when computing a sequence of sparse grids of increasing level. In some
cases, all the values from the previous level can be reused.
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SMOLYAK QUADRATURE: Using Clenshaw-Curtis

A common choice is 1D Clenshaw-Curtis rules.

We can make a nested family by choosing successive orders of 1, 3, 5, 9,
17, ...

We wrote Qi to indicate the 1D quadrature rules indexed by a level
running 0, 1, 2, 3, and so on.

We will use a plain Qi to mean the 1D quadrature rules of order 1, 3, 5,
9 and so on.

We will find it helpful to count abscissas.
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SMOLYAK QUADRATURE: Using Clenshaw-Curtis

Theorem

The Clenshaw-Curtis Smolyak formula of level L is precise for all
polynomials of degree 2 ∗ L + 1 or less.

Thus, although our construction of sparse grids seems complicated, we
still know the level of precision we can expect at each level.
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SMOLYAK QUADRATURE: Precision

Level 1D abscissas 5D abscissas 10D abscissas Precision
0 1 1 1 1
1 3 11 21 3
2 5 61 221 5
3 9 241 1581 7
4 17 801 8801 9
5 33 2433 41265 11
6 65 6993 171425 13

Recall 5D product rule required 100,000 abscissas to integrate 2,002
entries in Pascal’s precision triangle (precision 9).
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SMOLYAK QUADRATURE: Asymptotic Accuracy

Let N be the number of points used in the rule A(q,M).

let I be the integral of f (x),
f (x) : [−1, 1]M → R|Dα continuous if αi ≤ r for all i ;

Then the error satisfies:

||I − A(q,M)|| = O(N−r · (log N)(M−1)(r+1))

This behavior is near optimal; no family of rules could do better than
O(N−r ) for this general class of integrands.
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SMOLYAK QUADRATURE: Efficiency

The space of M-dimensional polynomials of degree P or less has

dimension

(
P + M

M

)
≈ MP

P! .

For large M, Clenshaw-Curtis Smolyak uses N ≈ (2M)P

P! points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points (to
within a factor 2P that is independent of M).
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COVERING PASCAL’S TRIANGLE

A family of precise interpolatory rules must cover successive rows of
Pascal’s precision triangle in a regular way.

In higher dimensions, the triangle is a tetrahedron or a simplex.

The product rule does this by “overkill”.

Smolyak’s construction covers the rows, but does so much more
economically, using lower order product rules.
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COVERING PASCAL’S TRIANGLE

Let’s watch how this works for a family of 2D rules.

I’ve had to turn Pascal’s triangle sideways, to an XY grid. If we count
from 0, then box (I,J) represents x iy j .

Thus a row of Pascal’s triangle is now a diagonal of this plot.

The important thing to notice is the maximum diagonal that is
completely covered. This is the precision of the rule.

We will see levels 0 through 4 and expect precisions 1 through 11 by 2’s.

33 / 1



COVERING PASCAL’S TRIANGLE: 2D Level 0

Q1 ⊗ Q1
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COVERING PASCAL’S TRIANGLE: 2D Level 1

Q3 ⊗ Q1 + Q1 ⊗ Q3 - old
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COVERING PASCAL’S TRIANGLE: 2D Level 2

Q5 ⊗ Q1 + Q3 ⊗ Q3 + Q1 ⊗ Q5 - old.
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COVERING PASCAL’S TRIANGLE: 2D Level 3

Q9 ⊗ Q1 + Q5 ⊗ Q3 + Q3 ⊗ Q5 + Q1 ⊗ Q9 - old;
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COVERING PASCAL’S TRIANGLE: 2D Level 4

Q17 ⊗ Q1 + Q9 ⊗ Q3 + Q5 ⊗ Q5 + Q3 ⊗ Q9 + Q1 ⊗ Q17 - old;
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HOW GRIDS COMBINE

We said that the Smolyak construction combines low order product rules,
and that the result can be regarded as a single rule.

Let’s look at the construction of the Smolyak grid of level 4 in 2D.

Our construction will involve 1D rules of orders 1, 3, 5, 9 and 17, and
product rules formed of these factors.

Because of nesting, every product rule we form will be a subset of the
17x17 full product grid.
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HOW GRIDS COMBINE: 2D Order 17 Product Rule

A 17x17 product grid (289 points).
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HOW GRIDS COMBINE: 2D Level4 Smolyak Grid

An“equivalent” sparse grid (65 points).
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HOW GRIDS COMBINE

A(6, 2) =
∑

6−2+1≤|i|≤6

(−1)6−|i|
(

2− 1
6− |i|

)
(Qi1 ⊗Qi2 )

=−Q1 ⊗Q4 (Q1 ⊗ Q9)

−Q2 ⊗Q3 (Q3 ⊗ Q5)

−Q3 ⊗Q2 (Q5 ⊗ Q3)

−Q4 ⊗Q1 (Q9 ⊗ Q1)

+Q1 ⊗Q5 (Q1 ⊗ Q17)

+Q2 ⊗Q4 (Q3 ⊗ Q9)

+Q3 ⊗Q3 (Q5 ⊗ Q5)

+Q4 ⊗Q2 (Q9 ⊗ Q3)

+Q5 ⊗Q1 (Q17 ⊗ Q1)
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HOW GRIDS COMBINE: 2D Level4 17x1 component
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HOW GRIDS COMBINE: 2D Level4 9x3 component
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HOW GRIDS COMBINE: 2D Level4 5x5 component
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HOW GRIDS COMBINE: 2D Level4 3x9 component
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HOW GRIDS COMBINE: 2D Level4 1x17 component
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HOW GRIDS COMBINE

It’s easy to get confused, and think that our Smolyak grid might have the
same precision P=17 as the 17x17 product rule.

But the level 4 rule has precision P = 2*4+1 = 9.

So in terms of efficiency, we should count the 65 points in the Smolyak
grid against the 81 points in a product rule of precision 9.

This is not a huge savings; however, the advantage improves with
increasing precision P or spatial dimension M.
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HOW GRIDS COMBINE: 3D Level5 Smolyak Grid

3D sparse grid, level 5, precision 11 uses 441 abscissas;

3D product grid of precision 11 uses 1,331 abscissas.
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SPARSE GRIDS IN ACTION

Let’s take a problem that’s reasonable but not trivial.

We’ll work in a space with dimension M = 6.

We’ll try to integrate the Genz Product Peak:

f (X ) =
1∏M

i=1(C 2
i + (Xi − Zi )2)

where Ci and Zi are prescribed.

52 / 1



SPARSE GRIDS IN ACTION: 6D Smolyak

Level Order Estimate Error
0 1 0.062500 0.573282
1 13 0.600000 0.0357818
2 85 0.631111 0.00467073
3 389 0.636364 0.000582152
4 1457 0.635831 0.0000492033
5 4865 0.635778 0.00000375410
∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION:6D Smolyak
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SPARSE GRIDS IN ACTION: 6D Gauss-Legendre

1D Order 6D Order Estimate Error
1 1 1.00000 0.364218
2 64 0.618625 0.0171570
3 729 0.636774 0.000992123
4 4096 0.635726 0.0000560162
5 15625 0.635785 0.00000314963
∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION: 6D Monte Carlo

log2 (N) N Estimate Error
0 1 0.641468 0.00568631
4 16 0.640218 0.00443594
8 256 0.650114 0.0143321

16 4096 0.636000 0.000218054
24 65536 0.636105 0.000323117
32 1048576 0.635843 0.0000612090
∞ ∞ 0.635782 0.0
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SPARSE GRIDS IN ACTION: 6D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: 10D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: Thoughts

The graphs suggests that the accuracy behavior of the sparse grid rule is
similar to the Gauss-Legendre rule, at least for this kind of integrand.

For 6 dimensions, the sparse grid rule is roughly 3 times as efficient as
Gauss-Legendre, ( 4,865 abscissas versus 15,625 abscissas ).

Moving from 6 to 10 dimensions, the efficiency advantage is 60: (170,000
abscissas versus 9,700,000 abscissas).

The Gauss-Legendre product rule is beginning the explosive growth in
abscissa count.

59 / 1



Accuracy, Precision and Efficiency in Sparse Grids

1 Introduction

2 Quadrature Rules in 1D

3 Product Rules for Higher Dimensions

4 Smolyak Quadrature

5 Covering Pascal’s Triangle

6 How Grids Combine

7 Sparse Grids in Action

8 A Few Words of Wisdom

9 Software Products

10 Conclusion

60 / 1



A Few Words of Wisdom

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has been
found.

”A secondary conclusion is that we might have made a very
good choice in selecting an integration method to exploit
whatever features of f made it tractable.”

Art Owen, Stanford University.
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A Few Words of Wisdom

Art Owen’s words apply here. A sparse grid approach is the right choice
when the function to be integrated is known to be polynomial, or to have
bounded derivatives up to the order of the rule we are applying.

In those cases, a sparse grid can extract extra information from the
function values, to provide an answer that is exact for polynomials, and
highly accurate for other smooth functions.

In order to ruin everything, however, we can simply suppose that f(x) is a
step function!
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SOFTWARE PRODUCTS

Smolyak’s definition of sparse grids is almost magical; but it can take the
novice a while to master the tricks. So it’s important to bottle some of
that magic in accessible tools!
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SOFTWARE PRODUCTS: Rule Generation

The simplest family of sparse quadrature rules is based on a single 1D
rule, and each spatial dimension is treated the same.

The family of rules is indexed by L, the level, which starts at 0 with the 1
point rule.

The number of points N depends on L, the spatial dimension D, and the
nesting of the underlying rule.

For a given 1D rule (say laguerre), the routines available are:

sparse grid laguerre size returns the number of points

sparse grid laguerre index shows which 1D rule each abscissa
component comes from

sparse grid laguerre returns the weights and abscissas
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SOFTWARE PRODUCTS: Rule Generation

N = sparse_grid_laguerre_size ( D, L );

W = new double[N];

X = new double[D*N];

sparse_grid_laguerre ( D, L, N, W, X );

sum = 0;

for ( p = 0; p < N; p++ )

{

sum = sum + W[p] * f ( X+p*D );

}
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SOFTWARE PRODUCTS: File Format

A file format for quadrature rules means that software programs can
communicate;

Results can be precomputed.

File data can easily be checked, corrected, emailed, or otherwise
exploited.

The basic format uses 3 files:

R file, 2 lines, D columns, the “corners” of the region

W file, N lines, 1 column, the weight for each abscissa

X file, N lines, D columns, the abscissas
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SOFTWARE PRODUCTS: File Format

The ”columns” are simply numbers separated by blanks.

A single file could have been used, but it would have internal structure.

To determine D and N, a program reads the X file and counts the
number of “words” on a line, and the number of lines.

No particular ordering for the abscissas is assumed, but each line of the
W and X files must correspond.

I have used this format for a 3x3 Clenshaw Curtis product rule
and a sparse grid rule for integration in 100D!
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SOFTWARE PRODUCTS: File Format

R file

---------

-1.0 -1.0

+1.0 +1.0

W file X file

------ -----------

0.111 -1.0 -1.0

0.444 -1.0 0.0

0.111 -1.0 +1.0

0.444 0.0 -1.0

1.777 0.0 0.0

0.444 0.0 +1.0

0.111 +1.0 -1.0

0.444 +1.0 0.0

0.111 +1.0 +1.0
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SOFTWARE PRODUCTS: File Format

Another advantage of exporting quadrature rules to a file is that it is
possible to precompute a desired family of rules and store them.

These files can be read in by a program written in another computer
language; they can be mailed to a researcher who does not want to deal
with the initial rule generation step.
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SOFTWARE PRODUCTS: Precision Testing

Once we have quadrature rules stored in files, we can easily run degree of
precision tests.

An executable program asks the user for the quadrature file names, and
M, the maximum polynomial degree to check.

The program determines the spatial dimension D implicitly from the files,
as well as N, the number of points.

It then generates every appropriate monomial, applies the quadrature
rule, and reports the error.
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SOFTWARE PRODUCTS: Precision Checking

23 October 2008 8:04:55.816 AM

NINT_EXACTNESS

C++ version

Investigate the polynomial exactness of a quadrature

rule by integrating all monomials of a given degree

over the [0,1] hypercube.

NINT_EXACTNESS: User input:

Quadrature rule X file = "ccgl_d2_o006_x.txt".

Quadrature rule W file = "ccgl_d2_o006_w.txt".

Quadrature rule R file = "ccgl_d2_o006_r.txt".

Maximum total degree to check = 4

Spatial dimension = 2

Number of points = 6
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SOFTWARE PRODUCTS: Precision Checking

Error Degree Exponents

0.0000000000000001 0 0 0

0.0000000000000002 1 1 0

0.0000000000000002 1 0 1

0.0000000000000002 2 2 0

0.0000000000000002 2 1 1

0.0000000000000002 2 0 2

0.0000000000000002 3 3 0

0.0000000000000002 3 2 1

0.0000000000000000 3 1 2

0.0000000000000001 3 0 3

0.0416666666666665 4 4 0

0.0000000000000001 4 3 1

0.0000000000000000 4 2 2

0.0000000000000001 4 1 3

0.0277777777777779 4 0 4
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CONCLUSION: A few observations

Sparse grids are based on combinations of product rules.

The combinations seek specific precision levels.

For integrands with bounded derivatives, precision produces accuracy.

By discarding some of the unneeded precision of product rules, sparse
grids have a higher efficiency.

Abstract probability integrals, stochastic collocation and polynomial
chaos expansions are examples of settings in which sparse grids may be
useful.
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