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INTRODUCTION: Accuracy, Precision, Efficiency

In this talk, we consider the problem of constructing interpolatory
quadrature rules for high dimensional regions.

For smooth integrands, rule precision implies accuracy.

But the natural method of creating precise rules, using products,
incurs a cost that is exponential in the spatial dimension.

We show that this explosion is not a necessary feature of
interpolation, and we investigate efficient methods of achieving
precision, and hence accuracy, for smooth integrands in high
dimensional spaces.
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QUADRATURE: Approximation of Integrals

Integrals are numerically approximated by quadrature rules.

In 1D, this is a “mature” (dead?) area.

∫
Ω

f (x) dx ≈
N∑
i=1

wi f (xi )

Interpolatory rules: Newton-Cotes, Chebyshev points;

Semi-interpolatory rules: Gauss rules;

Sampling rules: Monte Carlo and Quasi-Monte Carlo;

Transform rules: tanh, tanh-sinh, erf rules.
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QUADRATURE: Families of Rules

Most quadrature rules are available in any order N.

Generally, increasing N produces a more accurate result
(more about this in a minute!)

Under that assumption, a cautious calculation uses a sequence of
increasing values of N.

An efficient calculation chooses the sequence of N in such a way
that previous function values can be reused. This is called nesting.
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QUADRATURE: A Nested Family of Rules
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QUADRATURE: Precision

If a quadrature rule is exact when applied to any polynomials of
degree P or less, the rule has precision P.

The precision of common quadrature families can be given in terms
of the order N:

Interpolatory rules: P = N-1.

Gauss rules P = 2 * N - 1 ;

Monte Carlo and Quasi-Monte Carlo rules, P = 0 ;

“transform rules”: tanh, tanh-sinh, erf rules P = 1 .

High precision is a property of interpolatory and Gauss rules.
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QUADRATURE: Precision Can Mean Accuracy

Using a rule with P = N on a smooth function, low order terms

get integrated, leaving an error that is O( 1
N

N+1
),

(Take the typical spacing between abscissas to be h = 1
N .)

The integrands encountered in high dimensional problems are
typically smooth, and suitable for precision rules.

However, keep in mind that precision:

is not necessary - after all, Monte Carlo rules work.

is not a guarantee - Newton Cotes rules are unstable;

can be harmful - f(x) = step or piecewise or singular!
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QUADRATURE: Accuracy is the Goal

Accuracy simply measures the error in the result.

A rule is accurate for a given class of integrands if we can show
that the error (or expectation of the error) goes to zero as h→ 0
or N →∞.

A rule can be accurate without being precise.

The 1√
N

accuracy of the Monte Carlo rule depends on the Law of

Large Numbers.
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QUADRATURE: Efficiency is the Number of Abscissas

Efficiency measures the amount of work expended for the result.

For quadrature, we measure our work in terms of the number of
function evaluations, which in turn is the number of abscissas.

Since it is common to use a sequence of rules, it is important, for
efficiency, to take advantage of nestedness, that is, to choose a
family of rule for which the function values at one level can be
reused on the next.
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PRODUCT RULES: Formed from 1D Rules

Let Qi be the i-th member of a family of nested quadrature rules,
with order Ni and precision Pi .

We can construct a corresponding family of 2D product rules as
Qi ⊗Qi , with order N2

i and precision Pi .

This rule is based on interpolating data on the product grid; the
analysis of precision and accuracy is similar to the 1D case.

Everything extends to the general M-dimensional case... except
that the order growth NM

i is unacceptable!
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PRODUCT RULES: 17x17 Clenshaw-Curtis
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PRODUCT RULES: Do We Get Our Money’s Worth?

Suppose we form a 2D quadrature rule by “squaring” a 1D rule
which is precise for monomials 1 through x4.

Our 2D product rule will be precise for any monomial in x and y
with individual degrees no greater than 4.

The number of monomials we will be able to integrate exactly
matches the number of abscissas the rule requires.

Our expense, function evaluations at the abscissa, seems to buy us
a corresponding great deal of monomial exactness.

But for interpolatory quadrature, many of the monomial
results we “buy” are actually nearly worthless!.
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PRODUCT RULES: Pascal’s Precision Triangle

Precision for only part of a row of Pascal’s triangle is not useful!.
If we can’t integrate x5 or y 5 exactly, errors in those monomials
determine our accuracy.

0 1
1 x y
2 x2 xy y 2

3 x3 x2y xy 2 y 3

4 x4 x3y x2y 2 xy 3 y 4

5 x4y x3y 2 x2y 3 xy 4

6 x4y 2 x3y 3 x2y 4

7 x4y 3 x3y 4

8 x4y 4
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PRODUCT RULES: It Gets Worse in Higher Dimensions

Consider products of a 10 point rule with precision up to x9.

We only need to get to row 9 of Pascal’s precision triangle. The
monomials up to that row can be computed as a multinomial
coefficient. Compare the number of abscissas to monomials!

Dim Abscissas Monomials Wasted Percentage

1D 10 10 0 0%
2D 100 55 45 45%
3D 1,000 220 780 78%
4D 10,000 715 9,285 92%
5D 100,000 2,002 97,998 97%
6D 1,000,000 5,005 994,995 99%

In 5D, there are only 2,002 items to search for.
Can’t we find a quadrature rule of roughly that order?
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SMOLYAK QUADRATURE

Sergey Smolyak (1963) suggested sparse grids:

an algebraic combination of low order product grids;

Pascal’s precision rows achieved with far fewer points;

Smooth f (x) + precision ⇒ accuracy + efficiency.
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SMOLYAK QUADRATURE: Construction

We have an indexed family of 1D quadrature rules Qi .
We form rules for dimension M, indexed by “level” q starting at M.
Here i = i1 + · · ·+ iM .

A(q,M) =
∑

q−M+1≤|i|≤q

(−1)q−|i|
(

M − 1
q − |i|

)
(Qi1 ⊗ · · · ⊗ QiM )

Thus, the rule A(q,M) is a weighted sum of product rules.

20 / 1



SMOLYAK QUADRATURE: A sum of rules/a rule of sums

The Smolyak construction rule can be interpreted to say:

Compute the integral estimate for each rule,
then compute the algebraic sum of these estimates.

but it can also be interpreted as:

Combine the component rules into a single quadrature rule,
the new abscissas are the set of the component abscissas;
the new weights are the component weights multiplied by the
sparse grid coefficient.
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SMOLYAK QUADRATURE: Efficiency from Nesting

Under the second interpretation, we can see that in cases where an
abscissa is duplicated in the component rules, the combined rule
can use a single copy of the abscissa, with the sum of the weights
associated with the duplicates.

Duplication is a property inherited from the 1D rules.

Duplication is useful when computing a single sparse grid rule, but
also when computing a sequence of sparse grids of increasing level.
In some cases, all the values from the previous level can be reused.

22 / 1



SMOLYAK QUADRATURE: Using Clenshaw-Curtis

A common choice is 1D Clenshaw-Curtis rules.

We can make a nested family by choosing successive orders of 1, 3,
5, 9, 17, ...

We wrote Qi to indicate the 1D quadrature rules indexed by a
level running 0, 1, 2, 3, and so on.

We will use a plain Qi to mean the 1D quadrature rules of order 1,
3, 5, 9 and so on.

We will find it helpful to count abscissas.
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SMOLYAK QUADRATURE: Using Clenshaw-Curtis

Theorem

The Clenshaw-Curtis Smolyak formula of level L is precise for all
polynomials of degree 2 ∗ L + 1 or less.

Thus, although our construction of sparse grids seems complicated,
we still know the level of precision we can expect at each level.
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SMOLYAK QUADRATURE: Precision

Level 1D abscissas 5D abscissas 10D abscissas Precision

0 1 1 1 1
1 3 11 21 3
2 5 61 221 5
3 9 241 1581 7
4 17 801 8801 9
5 33 2433 41265 11
6 65 6993 171425 13

Recall 5D product rule required 100,000 abscissas to integrate
2,002 entries in Pascal’s precision triangle (precision 9).
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SMOLYAK QUADRATURE: Asymptotic Accuracy

Let N be the number of points used in the rule A(q,M).

let I be the integral of f (x),
f (x) : [−1, 1]M → R|Dα continuous if αi ≤ r for all i ;

Then the error satisfies:

||I − A(q,M)|| = O(N−r · (log N)(M−1)(r+1))

This behavior is near optimal; no family of rules could do better
than O(N−r ) for this general class of integrands.
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SMOLYAK QUADRATURE: Efficiency

The space of M-dimensional polynomials of degree P or less has

dimension

(
P + M

M

)
≈ MP

P! .

For large M, Clenshaw-Curtis Smolyak uses N ≈ (2M)P

P! points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points
(to within a factor 2P that is independent of M).

And, of course, notice there is no exponent of M in the point
growth.
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COVERING PASCAL’S TRIANGLE

A family of precise interpolatory rules must cover successive rows
of Pascal’s precision triangle in a regular way.

In higher dimensions, the triangle is a tetrahedron or a simplex.

The product rule does this by “overkill”.

Smolyak’s construction covers the rows, but does so much more
economically, using lower order product rules.
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COVERING PASCAL’S TRIANGLE

Let’s watch how this works for a family of 2D rules.

I’ve had to turn Pascal’s triangle sideways, to an XY grid. If we
count from 0, then box (I,J) represents x iy j .

Thus a row of Pascal’s triangle is now a diagonal of this plot.

The important thing to notice is the maximum diagonal that is
completely covered. This is the precision of the rule.

We will see levels 0 through 4 and expect precisions 1 through 11
by 2’s.
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COVERING PASCAL’S TRIANGLE: 2D Level 0

Q1 ⊗ Q1
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COVERING PASCAL’S TRIANGLE: 2D Level 1

Q3 ⊗ Q1 + Q1 ⊗ Q3 - old

32 / 1



COVERING PASCAL’S TRIANGLE: 2D Level 2

Q5 ⊗ Q1 + Q3 ⊗ Q3 + Q1 ⊗ Q5 - old.
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COVERING PASCAL’S TRIANGLE: 2D Level 3

Q9 ⊗ Q1 + Q5 ⊗ Q3 + Q3 ⊗ Q5 + Q1 ⊗ Q9 - old;
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COVERING PASCAL’S TRIANGLE: 2D Level 4

Q17 ⊗ Q1 + Q9 ⊗ Q3 + Q5 ⊗ Q5 + Q3 ⊗ Q9 + Q1 ⊗ Q17 - old;
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HOW GRIDS COMBINE

We said that the Smolyak construction combines low order product
rules, and that the result can be regarded as a single rule.

Let’s look at the construction of the Smolyak grid of level 4 in 2D.

Our construction will involve 1D rules of orders 1, 3, 5, 9 and 17,
and product rules formed of these factors.

Because of nesting, every product rule we form will be a subset of
the 17x17 full product grid.

37 / 1



HOW GRIDS COMBINE: 2D Order 17 Product Rule

A 17x17 product grid (289 points).
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HOW GRIDS COMBINE: 2D Level4 Smolyak Grid

An“equivalent” sparse grid (65 points).
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HOW GRIDS COMBINE

A(6, 2) =
∑

6−2+1≤|i|≤6

(−1)6−|i|
(

2− 1
6− |i|

)
(Qi1 ⊗Qi2)

=−Q1 ⊗Q4 (Q1 ⊗ Q9)

−Q2 ⊗Q3 (Q3 ⊗ Q5)

−Q3 ⊗Q2 (Q5 ⊗ Q3)

−Q4 ⊗Q1 (Q9 ⊗ Q1)

+Q1 ⊗Q5 (Q1 ⊗ Q17)

+Q2 ⊗Q4 (Q3 ⊗ Q9)

+Q3 ⊗Q3 (Q5 ⊗ Q5)

+Q4 ⊗Q2 (Q9 ⊗ Q3)

+Q5 ⊗Q1 (Q17 ⊗ Q1)
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HOW GRIDS COMBINE: 2D Level4 17x1 component
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HOW GRIDS COMBINE: 2D Level4 9x3 component
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HOW GRIDS COMBINE: 2D Level4 5x5 component

43 / 1



HOW GRIDS COMBINE: 2D Level4 3x9 component
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HOW GRIDS COMBINE: 2D Level4 1x17 component
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HOW GRIDS COMBINE: 3D Level5 Smolyak Grid

3D sparse grid, level 5, precision 11 uses 441 abscissas;

3D product grid of precision 11 uses 1,331 abscissas.
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SPARSE GRIDS IN ACTION

Let’s take a problem that’s reasonable but not trivial.

We’ll work in a space with dimension M = 6.

We’ll try to integrate the Genz Product Peak:

f (X ) =
1∏M

i=1(C 2
i + (Xi − Zi )2)

where Ci and Zi are prescribed.
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SPARSE GRIDS IN ACTION: 6D Smolyak

Level Order Estimate Error

0 1 0.062500 0.573282
1 13 0.600000 0.0357818
2 85 0.631111 0.00467073
3 389 0.636364 0.000582152
4 1457 0.635831 0.0000492033
5 4865 0.635778 0.00000375410

∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION:6D Smolyak
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SPARSE GRIDS IN ACTION: 6D Gauss-Legendre

1D Order 6D Order Estimate Error

1 1 1.00000 0.364218
2 64 0.618625 0.0171570
3 729 0.636774 0.000992123
4 4096 0.635726 0.0000560162
5 15625 0.635785 0.00000314963

∞ ∞ 0.635782 0.0000
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SPARSE GRIDS IN ACTION: 6D Monte Carlo

log2 (N) N Estimate Error

0 1 0.641468 0.00568631
4 16 0.640218 0.00443594
8 256 0.650114 0.0143321

16 4096 0.636000 0.000218054
24 65536 0.636105 0.000323117
32 1048576 0.635843 0.0000612090

∞ ∞ 0.635782 0.0
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SPARSE GRIDS IN ACTION: 6D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: 10D Smolyak/GL/MC
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SPARSE GRIDS IN ACTION: Thoughts

The graphs suggests that the accuracy behavior of the sparse grid
rule is similar to the Gauss-Legendre rule, at least for this kind of
integrand.

For 6 dimensions, the sparse grid rule is roughly 3 times as efficient
as Gauss-Legendre, ( 4,865 abscissas versus 15,625 abscissas ).

Moving from 6 to 10 dimensions, the efficiency advantage is 60:
(170,000 abscissas versus 9,700,000 abscissas).

The Gauss-Legendre product rule is beginning the explosive growth
in abscissa count.
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Smoothness: A Few Words of Wisdom

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has
been found.

”A secondary conclusion is that we might have made a very
good choice in selecting an integration method to exploit
whatever features of f made it tractable.”

Art Owen, Stanford University.
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Smoothness: A Few Words of Wisdom

Art Owen’s words apply here. A sparse grid approach is the right
choice when the function to be integrated is known to be smooth
or to have bounded derivatives up to the order of the rule we are
applying.

In those cases, the precision of a sparse grid extracts extra
information from the function values, to provide an accurate
answer with efficiency.

But if the smoothness assumption is not true, the sparse grid
approach will fail.
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Smoothness: Characteristic Function of 6D Sphere

In the region [−1,+1]6, define

f (x) =

{
1, if ‖x‖ ≤ 1;

0, if ‖x‖ > 1.

Apply (foolishly) Clenshaw Curtis sparse grids to this integrand.

The hypercube volume is 64;
the hypersphere volume is π3

6 ≈ 5.16771.
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Smoothness: Sparse Grid Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : ... ...
13 64.000 58.832 : ... ...
85 -42.667 -47.834 : ... ...

389 -118.519 -123.686 : ... ...
1457 148.250 143.082 : ... ...
4865 -24.682 -29.850 : ... ...

Can you see why negative estimates are possible
even though the integrand is never negative?
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Smoothness: MC Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : 0.00000 5.16771
13 64.000 58.832 : 0.00000 5.16771
85 -42.667 -47.834 : 3.01176 2.15595

389 -118.519 -123.686 : 4.77121 0.39650
1457 148.250 143.082 : 5.16771 0.01555
4865 -24.682 -29.850 : 5.41994 0.25226

Here, we make the Monte Carlo method look like a quadrature rule
with equal weights.
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Smoothness: MC Quadrature

So how far do we have to go to get 3 digits correct?

N MC Estimate MC Error

1 0.00000 5.16771
32 6.00000 0.83228

1,024 4.81250 0.35521
32,768 5.39063 0.22291

1,048,576 5.18042 0.01271
33,554,432 5.16849 0.00077

∞ 5.16771 0.00000

The function values are only 0 or 1
the spatial dimension is “only” 6D...

...but 3 digit accuracy requires 33 million evaluations!
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Stochastic Diffusion

−∇ · (a(x , y)∇u(x , y)) = f (x , y)

u is an unknown quantity, like temperature;

a is a known physical property, the conductivity, which controls
how quickly hot or cold spots average out.

heat conduction;

slow subsurface flow of water;

particle diffusion;

Black-Scholes equation (flow of money!).
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Stochastic Diffusion: Uncertain Conductivity

Using a fixed value for a(x , y) might be unrealistic.

Without variations in a(x , y), we might never see the bumps and
swirls typical of real physical problems.

We might think of a(x , y) as a random field a(ω; x , y).

The ω represents the unknown variation from the average.
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Stochastic Diffusion: Uncertain Solution

If a(ω; x , y) has an “unknown” component, then so does our
solution, which we write u(ω; x , y).

−∇ · (a(ω; x , y)∇u(ω; x , y)) = f (x , y)

Now if we don’t know what the equation is, we can’t solve it!

Can we still extract information from the equation?
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Stochastic Diffusion: Expected Values

Each variation ω determines a solution u.

If we added up every variation, we’d get an average or expected
value for the solution.

The expected value is an important first piece of information about
a problem with a random component.

E (u(x , y)) =

∫
Ω

u(ω; x , y) pr(ω) dω

It’s like using weather records to estimate the climate.
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Stochastic Diffusion: Approximate Integral

We approximate the function space Ω by an M-dimensional space
ΩM , of linear sums of perturbations ωM .

We now estimate the integral of u(ωM ; x , y) in ΩM .

Monte Carlo: select a random set of parameters ωM , solve for u,
multiply by the probability, and average.

Sparse grid: choose a level, defining a grid of ωM values in ΩM ,
solve for each u, multiply by the probability, and take a weighted
average.
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Stochastic Diffusion: Monte Carlo
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Stochastic Diffusion: Smolyak
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CONCLUSION: A few observations

Sparse grids are based on combinations of product rules.

The combinations seek specific precision levels.

For integrands with bounded derivatives, precision produces
accuracy.

By discarding some of the unneeded precision of product rules,
sparse grids have a higher efficiency.

Abstract probability integrals, stochastic collocation and
polynomial chaos expansions are examples of settings in which
sparse grids may be useful.
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