
High Dimensional Sparse Grids
(stalking the wild integral)

John Burkardt
School of Computational Science

Florida State University
..........

Science for Lunch Bunch
Pittsburgh Supercomputing Center

27 June 2007
..........

https://people.sc.fsu.edu/∼jburkardt/presentations/...
sparse 2007 psc.pdf

February 10, 2024
1 / 1

Let the Exploration Begin!

2 / 1

Integration

Integration is a natural expression of physical laws.

A complicated thing is understood by adding tiny components.

Integration computes the area under a curve.

G [a, b] =

∫ b

a

f (x) dx

It can also be seen as an averaging process.

f (x) =

∫ b

a
f (x) dx

(b − a)

3 / 1

Integration: Multiple Dimensions

Volume[pool] =

∫ d

c

∫ b

a

depth(x , y) dx dy

4 / 1

Integration: Multiple Dimensions: More than 3!

Mathematicians left 3D space long ago!

Financial mathematics: 30D or 360D

ANOVA decompositions: 10D or 20D

Queue simulation (expected average wait)

Stochastic differential equations: 10D, 20D, 50D

Particle transport (repeated emission/absorption)

Light transport (scattering)

Path integrals over a Wiener measure (Brownian motion)

Quantum properties (Feynman path integral)

5 / 1

Integration: No Formulas for Interesting Problems!

Freshman memorize “antiderivatives” of formulas f (x).∫
x3 dx =

x4

4
+ C

But most formulas have no antiderivative!

And most things we want to integrate are not formulas!∫
Ω

∇vh · ∇ψi +∇ph ψi dΩ = ?

6 / 1

1D Quadrature: Approximating an Integral

Quadrature allows us to estimate integrals.

This integration region is 1D. Similar methods apply in 2D (the
swimming pool) and higher dimensions.

7 / 1

1D Quadrature: Monte Carlo

The Monte Carlo algorithm views the integral as an average.

“Choose” N random points N points xi ;

Evaluate each f (xi);

Average the values.

8 / 1

1D Quadrature: Monte Carlo

To improve an MC estimate, increase N, the size of your sample.

The Law of Large Numbers says that convergence will be like
√

N. To
reduce the error by a factor of 10 (one more decimal place) requires 100
times the data.

If more accuracy needed, current values can be included;

Accuracy hampered because of large “gaps” in sampling.

Accuracy improvement rate is independent of spatial dimension.

9 / 1

1D Quadrature: Monte Carlo

Notice the clustering and gaps.

10 / 1

2D Quadrature: Monte Carlo

Notice the ”gaps”

11 / 1

6D Quadrature: Monte Carlo Error

N Estimate Error
1 0.796541 0.160759

16 0.652621 0.016838
256 0.637351 0.001569

65536 0.635926 0.000144
4194304 0.635856 0.000074

∞ 0.635782 0.0000

12 / 1

6D Quadrature: Monte Carlo Error

If we try five times, we get five different sets of results.

13 / 1

Alternatives to Sampling?

Sampling methods treat “misbehaving” functions the same as
well-behaved ones.

The fact that it works “the same” for all functions can be a strength or
a weakness

Sampling ignores the extra information in a well-behaved function.

If f (x) is well-behaved, we can get more accuracy faster.

14 / 1

1D Quadrature: Interpolatory

Is f (x) approximately a sum of monomials (powers of x)?

f (x) ≈ 4.5 + 6.3x + 0.8x2 + 2.1x3 + 0.7x4 + ...

If so, the beginning of the formula can be determined and integrated
exactly.

This assumption is not true for step functions, piecewise functions,
functions with poles or singularities or great oscillation.

15 / 1

1D Quadrature: Interpolatory

To find the initial part of the representation, sample the function.

Evaluating at one point can give us the constant.

f(x) ≈ 4.5...+ 6 .3x + 0 .8x2 + 2 .1x3 + 0 .7x4 + ...

A second evaluation gives us the coefficient of x :

f(x) ≈ 4.5 + 6.3x...+0 .8x2 + 2 .1x3 + 0 .7x4 + ...

Evaluating at N points gives the first N coefficients.

16 / 1

1D Quadrature: Interpolatory

An approximate formula can be integrated exactly.

With N samples, we can integrate the first N monomials,

1, x , x2, ..., xN−1,

and all functions made up of them.

The error behaves like hN , where h is the spacing between sample points.

Increasing N increases the monomials we can “capture”.

17 / 1

1D Quadrature: Interpolatory

A function f(x) is given.

18 / 1

1D Quadrature: Interpolatory

We evaluate it at N points.

19 / 1

1D Quadrature: Interpolatory

We determine the approximating polynomial.

20 / 1

1D Quadrature: Interpolatory

We integrate the approximating polynomial exactly.

21 / 1

1D Quadrature: Interpolatory

uses a regular grid of N points;

Evaluates each f (x);

Computes a weighted average of the function values.

To reuse data, the grids must be “nested”.

The error can drop with an exponent of N

22 / 1

1D Quadrature: Interpolatory

Our nested rules roughly double in size at each step.

23 / 1

Monomials and Accuracy

Interpolatory quadrature works well if f (x) can be well approximated by a
sum of monomials.

A 1D rule has accuracy N if it “captures” all monomials from 1, x , x2, up
to xN .

The lowest monomial we can’t capture determines the error. A rule of
accuracy N can’t capture xN and so its error behaves like hN+1.

These monomials are the creatures we are “stalking”.

24 / 1

Product Rules

A 2D product rule can be made by taking two 1D rules and combining
pairs of values.

The number of points in a product grid is the product of the sizes of the
1D rules.

The resulting rule captures monomials up to xN1yN2 where N1 and N2
are the individual accuracies.

25 / 1

Product Rules

A product of 9 point and 5 point rules.

26 / 1

Product Rules

Suppose we take products of a modest 4 point rule:

1D: 4 points;

2D: 16 points;

3D: 64 points;

4D: 256 points;

5D: 1024 points;

10D: a million points;

20D: a trillion points.

100D: don’t ask!

Conclusion: Product rules can’t go very far!

27 / 1

Product Rules

The degree of a monomial xN1yN2 is N1 + N2. Unlike the 1D case, in
2D there are many monomials of a given degree.

There are six (x , y) monomials of degree 5:

x5, x4y , x3y 2, x2y 3, xy 4, y 5.

A rule of accuracy 5 must capture every one of these monomials.

Accuracy means getting all the monomials up to a given degree.

28 / 1

Monomials up to 4th degree

0 1
1 x y
2 x2 xy y 2

3 x3 x2y xy 2 y 3

4 x4 x3y x2y 2 xy 3 y 4

5 x4y x3y 2 x2y 3 xy 4

6 x4y 2 x3y 3 x2y 4

7 x4y 3 x3y 4

8 x4y 4

Monomials appearing below the line are not needed.

29 / 1

Product Rules

As the dimension increases, the useless monomials predominate.

Suppose we take products of a modest rule of accuracy 10, and limit the
exponent total to 10. How many “good” and “useless” monomials do we
capture?

Dim Good Useless
1D 10 0
2D 55 45
3D 120 880
4D 210 9790
5D 252 99748

Conclusion: A ”cut down” product rule might work!

30 / 1

Smolyak Quadrature

Sergey Smolyak (1963) added low order grids together.

His combined “sparse grid”:

had the same accuracy as a product grid.

was a subset of the points of the product grid.

used far fewer points.

31 / 1

2D Quadrature:

A 17x17 product grid (289 points).

32 / 1

2D Quadrature: Level4 Sparse Grid

An“equivalent” sparse grid (65 points).

33 / 1

2D Quadrature: Level4 Sparse Grid

To capture only “desirable” monomials, we essentially add product grids
which are sparse in one direction if dense in the other.

Because of nesting, the grids reuse many points.

The big savings comes from entirely eliminating most of the points of the
full product grid.

The improvement is greater as the dimension or level increases.

34 / 1

2D Quadrature: Level4 17x1 component

35 / 1

2D Quadrature: Level4 9x3 component

36 / 1

2D Quadrature: Level4 5x5 component

37 / 1

2D Quadrature: Level4 3x9 component

38 / 1

2D Quadrature: Level4 1x17 component

39 / 1

3D Quadrature: Level5 Sparse Grid

Sparse grid = 441 points; Product grid would have 35,937.

40 / 1

6D Quadrature: Sparse Grid Error

N Estimate Error
1 0.062500 0.573282

13 0.600000 0.0357818
85 0.631111 0.00467073

389 0.636364 0.000582152
1457 0.635831 0.0000492033
4865 0.635778 0.00000375410
∞ 0.635782 0.0000

41 / 1

6D Quadrature: Monte Carlo vs Sparse Grid

SG N SG Estimate — MC N MC Estimate
1 0.062500 — 1 0.796541

13 0.600000 — 16 0.652621
85 0.631111 — 256 0.637351

389 0.636364 — 4096 0.633428
1457 0.635831 — 65536 0.635926
4865 0.635778 — 1048576 0.635666
∞ 0.635782 — ∞ 0.635782

42 / 1

High Dimensional Quadrature: A Quote

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has been
found.

”A secondary conclusion is that we might have made a very good choice
in selecting an integration method to exploit whatever features of f made
it tractable.”

Art Owen, Stanford University.

43 / 1

The Diffusion Equation

−∇ · (a(x , y)∇u(x , y)) = f (x , y)

u is an unknown quantity, like temperature;

a is a known physical property, the conductivity, which controls how
quickly hot or cold spots average out.

heat conduction;

slow subsurface flow of water;

particle diffusion;

Black-Scholes equation (flow of money!).

44 / 1

The Diffusion Equation: Uncertain Conductivity

Using a fixed value for a(x , y) might be unrealistic.

Without variations in a(x , y), we might never see the bumps and swirls
typical of real physical problems.

We might think of a(x , y) as a random field a(ω; x , y).

The ω represents the unknown variation from the average.

45 / 1

The Diffusion Equation: Uncertain Solution

If a(ω; x , y) has an “unknown” component, then so does our solution,
which we write u(ω; x , y).

−∇ · (a(ω; x , y)∇u(ω; x , y)) = f (x , y)

Now if we don’t know what the equation is, we can’t solve it!

Can we still extract information from the equation?

46 / 1

The Diffusion Equation: Expected Values

Each variation ω determines a solution u.

If we added up every variation, we’d get an average or expected value for
the solution.

The expected value is an important first piece of information about a
problem with a random component.

E (u(x , y)) =

∫
Ω

u(ω; x , y) pr(ω) dω

It’s like using weather records to estimate the climate.

47 / 1

The Diffusion Equation: Approximate Integral

We approximate the function space Ω by an M-dimensional space ΩM , of
linear sums of perturbations ωM .

We now estimate the integral of u(ωM ; x , y) in ΩM .

Monte Carlo: select a random set of parameters ωM , solve for u, multiply
by the probability, and average.

Sparse grid: choose a level, defining a grid of ωM values in ΩM , solve for
each u, multiply by the probability, and take a weighted average.

48 / 1

The Diffusion Equation: Monte Carlo

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

N = 11 & L = 1/16

N = 11 & L = 1/4N = 11 & L = 1/2

N = 11 & L = 1/64

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

log10(# points) log10(# points)

log10(# points)log10(# points)

Anisotropic full tensor product with Gaussian abscissas (N = 11)

Isotropic Smolyak with Gaussian abscissas (N = 11)

Isotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic Smolyak with Gaussian abscissas (N = 11)

Monte Carlo

Monte Carlo

Monte Carlo

Monte Carlo

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

49 / 1

The Diffusion Equation: Smolyak

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o
g

1
0
(L

2
 e

rr
o
rs

)

Errors vs. # points

N = 11 & L = 1/16

N = 11 & L = 1/4N = 11 & L = 1/2

N = 11 & L = 1/64

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

log10(# points) log10(# points)

log10(# points)log10(# points)

Anisotropic full tensor product with Gaussian abscissas (N = 11)

Isotropic Smolyak with Gaussian abscissas (N = 11)

Isotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic Smolyak with Gaussian abscissas (N = 11)

Monte Carlo

Monte Carlo

Monte Carlo

Monte Carlo

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

50 / 1

Conclusion: Future Research

Precompute quadrature rules, for parallel application

Composite version for decomposition of a few dimensions.

Modify the algorithm so that some dimensions may be approximated
more carefully.

Detect anisotropy in the data.

Estimate the quadrature error cheaply.

51 / 1

Conclusion: The End

High dimensional integration is a feature of modern algorithms

Accurate Monte Carlo results take a long time

Product rules quickly become useless

“Smooth” data can be well integrated by Smolyak grids

High dimensional probability spaces, for example, generate smooth
data

52 / 1

Conclusion: Software

SMOLPACK, a C library by Knut Petras for sparse integration.

SPINTERP, ACM TOMS Algorithm 847, a MATLAB library by Andreas
Klimke for sparse grid interpolation.

SPARSE GRID CC a directory on my website containing examples of
sparse grids generated from Clenshaw Curtis rules.

53 / 1

Conclusion: References

Volker Barthelmann, Erich Novak, Klaus Ritter, High Dimensional
Polynomial Interpolation on Sparse Grids, Advances in Computational
Mathematics, Volume 12, Number 4, March 2000, pages 273-288.

Thomas Gerstner, Michael Griebel, Numerical Integration Using Sparse
Grids,, Numerical Algorithms, Volume 18, Number 3-4, January 1998,
pages 209-232.

Sergey Smolyak, Quadrature and Interpolation Formulas for Tensor
Products of Certain Classes of Functions, Doklady Akademii Nauk SSSR,
Volume 4, 1963, pages 240-243.

54 / 1

