
Slow Growth for Sparse Grids

John Burkardt, Clayton Webster, Guannan Zhang
..........

http://people.sc.fsu.edu/∼jburkardt/presentations/...
slow growth 2014 savannah.pdf

..........
SIAM UQ Conference

31 March - 03 April 2014

1 / 27



References:

Florian Heiss, Viktor Winschel,
Likelihood approximation by numerical integration on sparse grids,
Journal of Econometrics, Volume 144, 2008, pages 62-80.
Matlab program for sparse grid generation with slow growth

Erich Novak, Klaus Ritter,
Simple cubature formulas with high polynomial exactness,
Constructive Approximation, Volume 15, Number 4, December
1999, pages 499-522.
Exactness constraint for sparse grids

Knut Petras,
Smolyak Cubature of Given Polynomial Degree with Few Nodes for
Increasing Dimension, Numerische Mathematik, Volume 93, Number
4, February 2003, pages 729-753.
C program for sparse grid generation with slow growth

Miroslav Stoyanov,
User Manual: TASMANIAN Sparse Grids,
ORNL Report, Oak Ridge National Laboratory, 2013.
C++ program for sparse grid generation with slow growth

2 / 27



SLOW GROWTH FOR SPARSE GRIDS

Introduction

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Conclusion

3 / 27



Need to Estimate Multidimensional Integrals

A vital task in uncertainty quantification estimates integrals of the form

I (f )(x) =

∫
Ω

f (x , ω) ρ(ω) dω

where the uncertainty parameter vector ω lies in Ω, the d-dimensional
unit hypercube, or Rd or some general product region.

To estimate I (f ), we may choose a family of product rules with an index
`, such that Q`(f ) has a known exactness p(`), so that using successive
elements of the family gives us estimates of I (f ) and the error.

However, if the 1D rule requires n points to achieve an exactness of p,
the corresponding product rule requires nd points, ruling out even
moderate values of n and d .

4 / 27



Sparse Grids Can Beat Product Grids

A product rule of exactness p actually catches all integrands of
maximum degree p, when only total degree terms are needed. In high
dimensions, this represents a substantial inefficiency. Sparse grids seek to
match, but not exceed, the exactness requirement by combining low
order product rules.

Here, the total exactness p = 5 of the product grid on the left (n=25
points) is matched by that of the sparse grid on the right (n=13 points).

5 / 27



Sparse Grids Can Be Very Efficient

The classic sparse grid family is constructed from a carefully selected
set of nested 1D Clenshaw-Curtis rules for the interval [-1,+1]; nesting
requires that the order of the rules increases exponentially: 1, 3, 5, 9, 17,
33, 65, ...

Suppose we use these factors to build a product rule, and a sparse grid,
for the 5-dimensional unit hypercube [−1,+1]5.

The table indicates the number of points necessary to achieve successive
exactness levels:

p: 1 2 3 4 5 6 7 8 9 10

n(product) 1 32 243 1024 3125 7776 16807 32768 59049 100000
n(sparse) 1 - 11 - 29 - 65 - 145 -

Despite the fact that the 1D CC rules increase exponentially in size, the
resulting sparse grid grows far more slowly than the product rule.

6 / 27



The Cost of a Bad Start

Now fix an exactness level p, and allow the dimension to increase.

Here are the number of points n needed to achieve a polynomial
exactness p = 9 in various dimensions:

d : 1 2 3 4 5 6 7 8 9 10

n(product) 9 81 729 6K 59K 531K 4M 43M 387M 3B
n(sparse) 33 145 441 1K 2K 4K 9K 15K 26K 41K

On each step, the product rule order increases by a factor of 9, while the
sparse grid factor growth factor is dropping below 2.

Again, we (eventually) have a substantial benefit, but it looks like we
suffer initially because of a bad starting value. Do we really need 33
points in 1D to get exactness p = 9? Of course not - a 9 point rule
would do it.

This peculiar value is an artifact of the way Clenshaw-Curtis sparse grids
are defined, which we usually ignore because we never look closely at the
1D case.

But perhaps we should!

7 / 27



SLOW GROWTH FOR SPARSE GRIDS

Introduction

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Conclusion

8 / 27



Sparse Grids in 1D

Once we have specified a index list of 1D quadrature rules or “factors”,
Smolyak allows us to generate a sparse grid in any dimension.

If we set up the Smolyak machinery, and ask it to generate a “sparse
grid” in 1D, then we get back the original 1D quadrature rules.

It is common to expect a sparse grid of level ` to have an exactness that
grows linearly with the level:

p = 2`+ 1 (Novak & Ritter)

What can we say about our peculiar 1D Clenshaw-Curtis “sparse grid”?

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 5 9 17 33 65 129 257 513 1025 ...
p = exactness 1 3 5 9 17 33 65 129 257 513 1025 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

For the 1D sparse grid, our order and exactness grow exponentially:

n =2` + 1, 1 ≤ `
p =2` + 1 = n

9 / 27



Nesting

Why are we using a 1D factor family that grows exponentially?

We are trying to control point growth in the multidimensional rule.
Recall that the points of a sparse grid are the logical sum of the points of
a collection of product grids that satisfy a constraint on their definition.

If all these product rules are defined using a 1D nested family, then when
we gather together the logical sum of the product grids, the total number
of points can be greatly reduced.

Compare in 2D the nested CCE versus the non-nested GLE
(Gauss-Legendre exponential) sparse grids.

` = level 0 1 2 3 4 5 6 7 8 9 ...
n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (GLE) 1 5 22 75 224 613 1578 3887 9268 21561 ...

Nesting is a very powerful technique to keep sparse grids “affordable”!

10 / 27



Nested CCE family / Nonnested GLE family

The CCE family is completely nested
in the GLE family, only the 0.0 value is repeated. Moreove, because it is
an open rule, the size of each 1D factor is about double that of CCE.

11 / 27



Nesting in 2D Sparse Grids

Nesting keeps the Clenshaw Curtis sparse grid efficient (65 points). The
Gauss-Legendre sparse grid has 224 distinct points.

12 / 27



Can We Abandon Nesting?

One alternative to the exponentially growing version of the CC rule
would be to use a Clenshaw-Curtis family of odd orders and linear
growth, n = 1, 3, 5, 7, 9, ..., which will exactly meet the Novak & Ritter
exactness requirement.

This family is not nested. So our tradeoff is that our sparse grids will be
combining product rules of lower order, but with more distinct points.

What is the effect in 2D?

` = level 0 1 2 3 4 5 6 7 8 9 ...
n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (CCL) 1 5 13 29 57 105 177 281 425 611 ...

The CCL rule doesn’t show an advantage until the underlying factors
begin to differ, after which we see a big reduction.

Does this 2D result carry over to higher dimensions?

13 / 27



Keep Nesting, Slow Exponentiation

A second alternative would be to retain the exponentially growing
factor family, but to always use the lowest such rule that will satisfy the
exactness requirement.

In other words, we start with the CCE factor family
n = 1, 3, 5, 9, 17, 33..., but repeat rules where possible.

Compare the CCE, CCL and CCS 1D factor families:

` = level 0 1 2 3 4 5 6 7 8 9 ...
p (required) 1 3 5 7 9 11 13 15 17 19 ...
n (CCE) 1 3 5 9 17 33 65 125 257 513 ...
n (CCL) 1 3 5 7 9 11 13 15 17 19 ...
n (CCS) 1 3 5 9 9 17 17 17 17 33 ...

The CCS factor family grows faster than CCL, and does so in exponential
“jumps” but makes those jumps far less often than the CCE family, and
inherits the advantages of nestedness.

14 / 27



Compare CCE, CCL, CCS

If we build a 2D sparse grid from the CCS rule, what happens?

Does the 2D sparse grid inherit the “stutter” of the 1D factors?

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (CCL) 1 5 13 29 57 105 177 281 425 611 ...
n (CCS) 1 5 13 29 49 81 129 161 225 257 ...

and for 6D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCE) 1 13 85 389 1,457 4,865 15,121 44,689 127,105 350,657 ...
n (CCL) 1 13 85 389 1,433 4,533 12,961 33,817 82,153 188,039 ...
n (CCS) 1 13 85 389 1,409 4,289 11,473 27,697 61,345 126,401 ...

And for 10D:

` = level 0 1 2 3 4 5 6 7 ...

n (CCE) 1 21 221 1,581 8,801 41,265 171,425 652,065 ...
n (CCL) 1 21 221 1,581 8,761 40,425 162,385 584,665 ...
n (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 ...

As d increases, the CCL and CCS advantages are delayed and decreased.

15 / 27



SLOW GROWTH FOR SPARSE GRIDS

Introduction

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Conclusion

16 / 27



GLE Factor Family

Consider now using Gauss-Legendre rules for our factor family.

We begin with the GLE family, of orders 1, 3, 7, 15, ...

Because the Gauss-Legendre rules are open, the growth is faster than for
the (closed) Clenshaw Curtis rules.

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 7 15 31 63 127 255 511 1023 2047 ...
p = exactness 1 5 13 29 61 125 253 509 1021 2045 4093 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

The GLE order is growing exponentially, and at a rate about double that
of the CCE family.

n(GLE)(`) =2`+1 − 1

p(GLE)(`) =2 · (2`+1 − 1)− 1 = 2 · n(GLE)(`)− 1

Moreover, the exactness is about 4 times that of the CCE rule, and
fantastically exceeds the requirements of the Novak & Ritter constraint.

17 / 27



GLL Factor Family

Using an exponentially growing family for the CC rule was defensible,
because of nesting. But the GL family has (almost) no nesting, so there
is no reason to use exponential growth.

The analogue of our CCL rule would be a GLL rule that uses the lowest
order rule satisfying the Novak & Ritter exactness requirement. Because
of the power of GL rules, the GLL sequence would have the orders 1, 2,
3, 4, ...

However, let us consider trying for a tiny bit of nesting, defining the
alternative GLO rule, which uses the lowest order odd rule satisfying the
constraint.

Here is the order and exactness table for the 1D GLL and GLO factors:
` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n(GLE) 1 3 7 15 31 63 127 255 511 1023 2047 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

n(GLL) 1 2 3 4 5 6 7 8 9 10 11 ...
p(GLL) 1 3 5 7 9 11 13 15 17 19 21 ...

n(GLO) 1 3 3 5 5 7 7 9 9 11 11 ...
p(GLO) 1 3 5 9 9 13 13 17 17 21 21 ...

n(GLL)(`) =2`+ 1

n(GLO)(`) =2 · b`+ 1

2
c+ 1

18 / 27



Point Counts for GLE/GLL/GLO

2D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GLE) 1 5 21 73 221 609 1,573 3,881 9,261 21,553 49,205 ...
n (GLL) 1 5 13 29 53 89 137 201 281 381 501 ...
n (GLO) 1 5 9 17 29 41 65 81 121 141 201 ...

10D:

` = level 0 1 2 3 4 5 6 7 ...

n (GLE) 1 21 261 2,441 18,881 126,925 764,365 4,208,385 21,493,065 ...
n (GLL) 1 21 221 1,581 8,761 40,405 162,025 581,385 1,904,465 ...
n (GLO) 1 21 201 1,201 5,281 19,165 61,285 177,525 474,885 ...

15D:

` = level 0 1 2 3 4 5 6 7 ...

n (GLE) 1 31 541 6,911 71,621 635,687 4,995,357 35,537,007 ...
n (GLL) 1 31 511 5,921 53,921 409,727 2,695,967 15,751,937 ...
n (GLO) 1 31 451 4,151 27,671 145,697 644,937 2,506,137 ...

Here, the GLO rule greatly outperforms the GLL rule, and does do by
using bigger rules! The secret is that we have gained some nesting
opportunities, which turn out to have a tremendous payback.

19 / 27



SLOW GROWTH FOR SPARSE GRIDS

Introduction

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Conclusion

20 / 27



The Gauss-Patterson Factor Family

Nesting and the doubled exactness of Gaussian rules are two techniques
that have a significant influence on the properties of sparse grids.

This suggests looking at a Gauss-Patterson (GP) factor family.

The GP family begins with the 1 and 3 point GL rules. Thereafter, given
a rule with n points, the next rule fixes those points, and adds n + 1 new
points, enforcing nesting. A Gauss procedure squeezes out the best
accuracy possible, given the constraint that the old points must not be
moved.

The result is a nested family with the same exponential growth as GLE
and somewhat reduced exactness,

21 / 27



GPE Factor Family

Here is the exactness table for the GPE 1D factor family:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 7 15 31 63 127 255 511 1023 2047 ...
p = exactness 1 5 11 23 47 95 191 383 767 1535 3071 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

The number of points is the same as for GLE, while the exactness is
reduced:

n(GPE)(`) =2`+1 − 1

p(GPE)(`) =1.5 · (2`+1 − 1) + 0.5 = 1.5 · n(GPE)(`) + 0.5

22 / 27



GLE versus GPE

The GLE family is not nested, but the GPE family is, and retains much of
the exactness of Gauss rules.

Here is a quick comparison of GLE and GPE in 2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (GLE) 1 5 21 73 221 609 1,573 3,881 9,261 21,553 49,205 ...
n (GPE) 1 5 17 49 129 321 769 1,793 4,097 9,217 20,481 ...

23 / 27



GPS: A “Slow” Variant of GPE

Let’s go ahead and define a GPS family which only selects the next 1D
factor when the Novak & Ritter exactness constraint requires it.

Here are sample point counts comparing GPE and GPS for 2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (GPE) 1 5 17 49 129 321 769 1,793 4,097 9,217 20,481 ...
n (GPS) 1 5 9 17 33 33 65 97 97 161 161 ...

and for 6D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GPE) 1 13 97 545 2,561 10,625 40,193 141,569 4,710,417 14,960,657 ...
n (GPS) 1 13 73 257 737 1,889 4,161 8,481 16,929 30,689 ...

and for 10D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GPE) 1 21 241 2,001 13,441 77,505 397,825 1,862,145 8,085,505 32,978,945 ...
n (GPS) 1 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 ...

24 / 27



SLOW GROWTH FOR SPARSE GRIDS

Introduction

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Conclusion

25 / 27



Compare the Champions

In summary, we have “improved” versions of CCE, GLE and GPE. How
do they stack up against each other?

2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (CCS) 1 5 13 29 49 81 129 161 225 257 385 ...
n (GLO) 1 5 9 17 29 41 65 81 121 141 201 ...
n (GPS) 1 5 9 17 33 33 65 97 97 161 161 ...

10D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 1,677,665 4,810,625 ...
n (GLO) 1 21 201 1,201 5,281 19,165 61,285 177,525 474,885 1,192,425 ...
n (GPS) 1 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 ...

26 / 27



Conclusion

Sparse grids outperform product rules.

Even sparse grids rapidly grow in cost as level or dimension increases.

The Ritter & Novak exactness constraint tells you the minimum
exactness you must achieve. Cut your rule down to that level!

Because a sparse grid is built from many product grids superimposed,
nesting is a crucial tool to control the point count.

A Gauss rule can achieve a given exactness with fewer points; but this
happens at the expense of nesting.

A Gauss-Patterson factor family combines nesting and moderate
exactness, for an efficient sparse grid.

Software implementations appear in nwspgr (Heiss & Winschel),
smolpack (Petras), and tasmanian (Stoyanov).

27 / 27


