
DISCRETIZATION OF COST AND SENSITIVITIES
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .
. . . bozeman 1994.pdf



DISCRETIZATION OF COST AND

SENSITIVITIES IN SHAPE OPTIMIZATION ∗

John Burkardt, Max Gunzburger, and Janet Peterson
Department of Mathematics

Interdisciplinary Center for Applied Mathematics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia, 24061

1 The Physical Problem: A Forebody Simulator

We consider a problem in aircraft engine testing [1], [6]. Of special concern is
the influence of the aircraft forebody on the flow that reaches the engine intake.
Modern aircraft are too large to place in a wind tunnel; there may not even
be room for just the forebody and engine. Resourceful engineers build small
“forebody simulators” that roughly reproduce the flow disturbances known to be
caused by the real forebody. A typical setup is shown in Figure 1. Designing an
effective simulator this way is crude, tedious, and expensive, and computational
guidance is desired. This paper investigates computational difficulties arising in
a simplified version of this design problem.

2 Continuous Mathematical Flow Model

We model the wind tunnel problem by fluid flow in a two dimensional rectangu-
lar channel. The forebody is represented by a “bump” that partially obstructs
the flow. The fluid obeys the Navier Stokes equations for steady, viscous, in-
compressible flow:

−ν∆~u + ~u · grad ~u + grad p = ~f (1)

div ~u = 0 (2)

plus appropriate boundary conditions. Here ~u is the velocity vector, with com-
ponents u and v; ν is the kinematic viscosity; ~f is a given forcing function.

Our channel has opposite corners at (0,0) and (10,3). If we wish to include a
bump, it will start at (1,0) and extend to (3,0), with its height defined by some
given function y = bump(x, ~α), with ~α a set of parameters.

∗Supported by the Air Force Office of Scientific Research under grant AFOSR 93-1-0280,
and the Office of Naval Research under grant N00014-91-J-1493.

2



Figure 1: An aircraft engine and forebody simulator in a wind tunnel.

The fluid enters at the left, with velocity u(0, y) = inflow(y, λ), v = 0,
where inflow is some given function, and λ is a parameter. At the top and
bottom of the channel we set the velocity to zero. On the right we set the usual

outflow conditions v = 0 and
∂u

∂x
= 0.

Together, the flow equations, boundary conditions, and parameters produce
a system of equations sufficient to determine the continuous quantities (u,v,p)
throughout the flow region, symbolized by:

G(u,v,p) = 0 . (3)

Of course, G is a function of the parameters ~α and λ, both explicitly and
implicitly, through the dependence of u, v, and p on the parameters.

Once the flow is determined, we measure the state variables on a fixed ver-
tical plane called the “sampling line”, attempting to match a set of given mea-
surements made earlier. The exact evaluation of the discrepancy will be carried
out by a cost functional, to be specified.

3 Discrete Mathematical Flow Model

Equation (3) is not immediately amenable to computational treatment. We
must formulate a discrete set of equations for data which can approximate the

3



solution of that continuous problem. We use the weak formulation which follows
[5]. We represent the region by a mesh of finite elements and approximate
the continuously varying state variables u and v by coefficient vectors u and v
multiplying a set of piecewise quadratic polynomials, and the pressure p by a set
of coefficients p multiplying a set of linear polynomials. Under mild assumptions
on the data, it is known that, if h is a measurement of the fineness of the finite
element mesh, then the solution of the discrete equations approximates the
solution of the continuous equations, as h→ 0.

The discretization results in a coupled system of nonlinear algebraic equa-
tions for the unknown coefficient vectors (u, v, p), which we represent by

G(u, v, p) = 0 . (4)

See [7] for the formulation and convergence results for the discretized Navier
Stokes equations.

4 The Optimization Problem

Suppose our flow problem is fully specified, except for the values of a set of
parameters, ~β. Then the specification of the parameter values determines the
flow field, and hence the flow values along the sampling line, and hence the
discrepancy cost functional, which we denote by J .

J will explicitly be a function of (u, v, p), but we may instead regard it as a

function of the parameters ~β. Our fundamental task becomes an unconstrained
optimization: given a functional J(~β), its partial derivatives ∂J

∂βi
, and a starting

point ~β0, we seek to minimize J .
As a sample cost function, we suppose us(y) is a given set of flow measure-

ments along the sampling line, and consider the integral:

J1 =

∫
x=xs

(u(xs, y)− us(y))
2
dy . (5)

Since the dependence of J on ~β is implicit, we cannot compute an explicit
formula for the partial derivatives we will need. We might try finite differences:

∂J

∂βi
≈ ∆J

∆βi
. (6)

This method is straightforward but costly, each derivative requiring at least one
additional Navier Stokes solution.

A cheaper alternative uses the sensitivities, derived from the implicit rela-
tionship between the state variables and parameters. We rewrite the continuous
Navier Stokes equations to include the parameters:

G(u,v,p, ~β) = 0 . (7)

4



and if G is smooth, we may differentiate with respect to any βi:

∂G

∂u

∂u

∂βi
+
∂G

∂v

∂v

∂βi
+
∂G

∂p

∂p

∂βi
= −∂G

∂βi
. (8)

Because G generally involves derivatives of the continuous variables u, v
and p, we have implicitly assumed we may interchange differentiations. It is
natural to consider the corresponding discrete version of Equation (8), which is
called the discrete sensitivity equations:

∂G

∂u

∂̂u

∂βi
+
∂G

∂v

∂̂v

∂βi
+
∂G

∂p

∂̂p

∂βi
= − ∂G

∂βi
(9)

where the quantities

(
∂̂u

∂βi
,
∂̂v

∂βi
,
∂̂p

∂βi
) (10)

are called the (discrete) sensitivities with respect to βi.
It may be tempting to assume that a discrete sensitivity is equal to the

derivative of the discrete state variable, but this is only true in the limit:

∂̂u

∂βi
≈ ∂u

∂βi
≈ ∂u

∂βi
(11)

where the left and right quantities approach the middle quantity (and hence,
each other) as h→ 0.

If the mesh spacing h is suitably fine, we may use the easily computable
discrete sensitivities as approximations to the unknown state derivatives, pro-
ducing an approximation to the desired cost function derivative:

∂J

∂βi
≈ ∂J

∂u

∂̂u

∂βi
+
∂J

∂v

∂̂v

∂βi
+
∂J

∂p

∂̂p

∂βi
. (12)

If we have just used Newton’s method to solve the discrete flow equations,
the Newton system has the same form as the linear system in Equation (9); thus
sensitivities can be computed at the trivial cost of a linear solve.

5 Simple Channel Flow

The first test of our program was unobstructed channel flow. The inflow was
parabolic, with a strength determined by a single parameter λ. A target solution
was generated with λ = 0.5, and the flow values were measured along the
sampling line xs = 9.

The optimization code was then given an initial value of λ = 0.0 and was re-
quested to minimize the functional J1 as given in Equation (5). It accomplished
this minimization in one step; the exact flow solution, called Poiseuille flow, has
a linear relationship between λ and the horizontal velocity at any point (x, y).

5



Figure 2: Derivative of velocity with respect to the inflow parameter.

This makes the functional J1 a quadratic function of λ, which is why we can
optimize it easily.

If we plot the velocity derivatives with respect to λ, as in Figure 2, we can
easily see that the influence of the inflow parameter extends throughout the
region, dying off only near the walls. Even in problems where the channel is ob-
structed, the inflow parameter will continue to have this very strong global effect
upon the flow. This global influence of λ could also be detected by monitoring
the state variable derivatives.

6 Flow Past a Bump

We now turn to another problem, where the single parameter, α, determines
the height of a parabolic bump in the channel. The inflow parameter λ will be
fixed at a value of 0.5. We generate a target flow with α = 0.5, and then begin
the optimizer at α = 0.

If we use approximate gradients based on the sensitivities, we find that the
optimization does not reach the correct global minimum at α = 0.5. Instead, the
optimizer halts after 24 steps at α = 0.03 giving the message “false convergence”.
Such a message generally means that the derivative data is inconsistent with
the functional. We take that to mean the sensitivities aren’t accurate enough,
a difficulty that can be treated by refining the mesh. We will look at sensitivity
failures more closely in Section 9.

However, there must be something more seriously wrong with this problem.
We converted the program to use finite difference gradients, in which case the
optimization came much closer to the correct answer, reaching α = 0.503 in 17
steps. But this is hardly satisfactory for a one parameter optimization in double
precision!

Why is this bump problem so different from the inflow problem? One hint
comes if we look at the cost function values for the initial guess, α = 0. The
simple channel flow problem had a cost of J1(0) = 0.4, but our bump problem
has a cost of J1(0) = 10−8. Our problem is obviously very badly scaled.

If we graph the field of velocity derivatives with respect to the parameter,

6



Figure 3: Derivatives of the velocity with respect to the bump parameter.

as in Figure 3, we see a great deal of influence near the bump, which dies away
rapidly as we move down the channel towards the sampling line. Clearly, we
should try moving the sampling line closer to the bump, to make our measure-
ments as accurately and robustly as possible.

Simply moving our sampling line to xs = 3, defining a new version of our
cost functional, J2, causes the cost of the α = 0 solution to jump to a “healthy”
value of J2(0) = 0.009. Our optimization converges in just 10 steps to the more
accurate value α = 0.500003. Moreover, we can return to using sensitivities in
our formulation. This suggests that sensitivities on a coarse grid aren’t worth-
less. They just aren’t accurate enough to solve problems that need a great deal
of resolution.

Thus, the bump problem is harder to solve than the simple channel problem,
because the influence of the bump parameter on the state variable u is weak
and local, a fact which we were able to deduce by looking carefully at the state
derivatives.

7 Encountering a Local Minimum

We looked at problems where the bump was modeled by a cubic spline with
equally spaced abscissas. We used a bump modeled by α1, α2, and α3, which
represented the height of the bump at each of the interior abscissas. A single
parameter λ controlled the strength of the inflow. The target solution was
generated with a parabolic bump described by α = (0.375, 0.5, 0.375) and inflow
λ = 0.5.

The optimizer started from λ = 0, α = (0, 0, 0). Instead of reaching the tar-
get parameters, the optimizer settled down at λ = 0.507, α = (0.140, 0.539, 0.059),
where it declared satisfactory convergence.

The cost of the zero solution was J2(~0) = 0.429, so poor functional scaling
was not to blame. Our next suspicion was that the cost functional might be
so flat between our final iterate and the target value that further progress was
not possible. But this belief was quickly dispelled when we computed the cost
functional at a series of intermediate points, and found that it rose from J2 =

7



Figure 4: The functional between local and global minimizers.
The local minimizer has J2 = 0.3E − 06, the global minimizer has J2 = 0.

Figure 5: Locally minimizing flow produced by the optimizer.
The global minimizer has a parabolic bump, and no “gutters”.

0.3E − 06 to a value of J2 = 0.7E − 04 before falling to J2 = 0 at the target, as
shown in Figure 4, suggesting that we might have reached a local minimum.

We looked at the actual flow solution, as shown in Figure 5, to make sure it
was acceptable and meaningful. The graph shows that the resulting bump had
roughly the same height as the target bump, but with a “gutter” before and
after it.

The question then arose as to whether this was actually a local minimum
or a spurious numerical solution. There are numerical reasons for doubting the
accuracy of this solution. The gutter regions are made up of elements that
have become stretched and twisted, reducing the accuracy of the finite element
discretization. This is an issue that is best addressed by a new calculation on a
finer mesh.

If we used a mesh that is twice as fine, the gutters got almost twice as deep.
This fact makes it unlikely that there is actually a physical solution that our
data is trying to model. We therefore turned from investigating the meaning of
this local minimum, and began to consider instead how we could avoid it.

8



Figure 6: Contours for J2 on plane including local and global minima.
The global minimum is marked.

8 Smoothing the Cost Functional

It’s possible that a solution with very deep gutters would be unacceptable to the
wind tunnel engineer: such a forebody simulator might not fit the apparatus.
We leave ourselves open to such results since we haven’t placed any feasibility
constraints on our parameter space.

We note that it is likely that a higher Reynolds number would simplify
matters. The flow should be affected in a stronger way by the details of the shape
of the bump, and these effects should be passed downstream to the sampling
line.

However, let us suppose that we need to solve this problem, or problems
similar to it, at the given, low, Reynolds number. What changes can we make
so that we are likelier to avoid the local minimum? One possibility is to add a
penalty Jbump based on the integral of the square of the derivative of the bump.
Such a penalty is zero for a flat line, low for a small parabola, and high for a
curve with wiggles or severe curvature. Our formula would be:

Jbump(~α) =

∫ 3

1

(bumpx(x, ~α))2 dx . (13)

Then we will work with a new cost function J3 defined by adding a “small”
multiple of the bump penalty to the original cost:

J3 = J2 + ε · Jbump . (14)

To get an idea of the smoothing effect of this change in the functional, let’s
consider a two dimensional plane containing the local minimum and the global

9



Figure 7: Contours of J3 on the same plane, with ε = 0.0002.
The local minimum evident in the previous figure has disappeared.

minimum. Contour lines of the functionals are displayed in Figure 7, and should
be compared with those drawn in Figure 6.

The added bump term seems to have smoothed away the local minimum.
And if we start from zero, the optimizer now finds the global minimizer. How-
ever, the global minimizer of J3 is not the minimizer of J2, the function we
actually want to minimize. What is true is that, for small ε, the minimizer of
J3 is close to the minimizer of J2. That means that, in a case where we are be-
deviled by a local minimum or other irregularities in the functional, we can try
adding such a smoothing term. Starting from a zero initial guess, we can find
the minimizer of the smoothed functional. Then we can restart the optimiza-
tion from this point, but using the unsmoothed functional. If the minimizers
of the two functions are close enough, we now have a much better chance of
converging to the desired global minimum. For instance, an optimization of J3
with ε = 0.0002 converged to the point λ = 0.500, α = (0.276, 0.495, 0.364). If
we now reset ε to 0, which restores our original optimization function J2, and
restarted the optimization, we reached the desired target point, bypassing the
local minimizer.

Of course, this doesn’t settle the question. We still have to detect that
we have reached an undesired solution, and choose a smoothing function of a
“suitable” type, and a smoothing parameter ε of a “suitable” size. For a more
challenging case, we might have to smooth and restart several times, increasing
the number of ad hoc choices made. In that case, a more suitable approach
would be to add ε directly and explicitly as another parameter to the problem,
and optimize once on the enlarged system. The partial derivative with respect
to ε is trivial to compute. The only further complication is that there will be

10



Figure 8: J1(α), with sampling line at xs = 9.

Figure 9: dJ1
dα by finite differences.

new contributions to the derivative with respect to α coming from the term
ε · Jbump.

9 Sensitivity Failure

Throughout our discussion and computations, we have used the sensitivities to
arrive at cheap approximations for the derivatives of our state variables (u, v, p)
and cost functional J . Unfortunately, an optimization requires very accurate
derivatives near the minimizer, precisely where the errors in the sensitivities
become large, in the relative sense. We already encountered this problem in
Section 6. When the optimizer returned the message “false convergence”, it
had reached a point where the approximate derivative of J2 was too incorrect
to use.

To get a feeling for what the optimizer was dealing with, let us look at the

functional J1 and its derivative
dJ1
dα

as approximated by finite differences and

11



Figure 10: dJ1
dα by sensitivities.

Figure 11: J2(α) with sampling line at xs = 3.

by sensitivities, in Figures 8 through 10.
The sensitivities provide an astonishingly bad “approximation”. We might

have been warned by the small magnitude of the quantities, though a better
warning lies in the fact that the state derivatives we sample are much smaller
than the same quantities elsewhere in the region, and hence are relatively poorly
approximated. Figures 11 through 12 show how moving the sampling line to
xs = 3 corrects this problem.

We should keep in mind that the underlying data is identical for the two
sets of plots we are comparing here. This includes the state variables and state
derivatives. The difference is in the definition of the functional and its derivative,
that is, in which state variables we sample.

Near the minimizer, errors in the sensitivities can become so serious that the
partial derivatives are worthless. This occurred in the multiparameter bump
problem, with one inflow parameter and three bump parameters, at a Reynolds
number of 100. We were using a cost functional, J4, which included the discrep-

12



Figure 12: dJ2
dα by finite differences and sensitivities.

The two calculations are now essentially identical.

ancies in both horizontal and vertical velocities along the line xs = 3:

J4 =

∫
x=xs

(u(xs, y)− us(y))
2

+ (v(xs, y)− vs(y))
2
dy . (15)

The target parameters were λ = 0.500, α = (0.375, 0.500, 0.375). The opti-
mizer reached λ = 0.493, α = (−0.078, 0.476, 0.101) and reported “false conver-
gence”. Note that at this point, J4 = 0.0006, hardly the sort of extremely small
value we took as a warning earlier.

To see what was going on, consider a plane including the point where the
optimizer stopped, and the global minimizer. We used sensitivities to compute
the cost function gradients, projected onto the plane.

Figure 13 shows the functional contour lines, overlaid with the projected
computed gradient field (normalized and multiplied by -1, so that it should point
towards the minimizer). We can immediately see that, at least in this “slice”
of parameter space, and near the minimizer, the errors of approximation are so
serious that the direction field is utterly lost. It is no wonder that the optimizer
is unable to find the minimizer. There can be little doubt that this problem
is caused by discretization errors. If we halve the mesh size and recompute
the same quantities, all the approximate gradients point inwards, towards the
minimizer. Even then, small errors in the direction of the gradients plainly
persist.

10 Conclusions

If a cost functional and the independent variables are only implicitly related,
singularities, poor scalings, and local minima may easily occur. Diagnosis of
such problems is usually possible through such means as making a plot of the
state solution, a table of functional values along a line or plotting contours of the
functional along two directions. Problems may be treated in a variety of ways.

13



Figure 13: Gradients approximated by sensitivities.
The approximate gradients clearly do not match the contours.

The functional may be modified so that it depends on more state variables,
or on state variables that are more sensitive to variations in the parameters.
The functional may include the cost of control, or other terms that tend to
“regularize” or smooth out the contour levels.

Sensitivities are a valuable method of approximating derivatives. However,
their use entails an extra source of error, which must be monitored. In particu-
lar, a grid which is fine enough to get good approximations to the state variables
may not be fine enough to provide approximations of the state variable deriva-
tives.

Small errors caused by using sensitivities can also interfere with an optimiza-
tion during the final steps, near a minimizer, when the gradient has dropped
to a very low magnitude, essentially magnifying the significance of errors in the
derivatives.

Simple checks can be applied after the failure of an optimization that uses
sensitivities. These include trying a refined grid, comparing the results of ap-
proximating the derivatives with finite differences, plotting the state variable
field, plotting the functional gradient field, and considering whether the relation-
ship between the parameters and the functional is weakly or strongly mediated
by the state variables.

11 Acknowledgements

The authors thank Ken Bowers and John Lund, the organizers of the fourth
conference on Computation and Control at Montana State University.

14



References

[1] J. BORGGAARD, J. BURNS, E. CLIFF, M. GUNZBURGER, Sensitivity
Calculations for a 2D, Inviscid Supersonic Forebody Problem, in Identifi-
cation and Control of Systems Governed by Partial Differential
Equations, H T Banks, R Fabiano, K Ito, editors, SIAM Publications,
1993.

[2] J. BURKARDT and J. PETERSON, Control of Steady Incompressible 2D
Channel Flow, Flow Control, The IMA Volumes in Mathematics and
its Applications, Volume 68, pages 111-126, edited by Max Gunzburger,
Springer Verlag, New York, 1995.

[3] C. DEBOOR, A Practical Guide to Splines, Springer Verlag, New York,
1978.

[4] D. GAY, Algorithm 611, Subroutines for Unconstrained Minimization Us-
ing a Model/Trust Region Approach, ACM Transactions on Mathe-
matical Software, Volume 9, Number 4, December 1983, pages 503-524.

[5] M. GUNZBURGER, J. PETERSON, On Conforming Finite Element
Methods for the Inhomogeneous Stationary Navier-Stokes Equations, Nu-
merische Mathematik, Volume 42, pages 173-194.

[6] HUDDLESTON, Development of a Free-Jet Forebody Simulator Design
Optimization Method, AEDC-TR-90-22, Arnold Engineering Development
Center, Arnold AFB, TN, December 1990.

[7] O. KARAKASHIAN, On a Galerkin-Lagrange Multiplier Method for the
Stationary Navier-Stokes Equations, SIAM Journal of Numerical
Analysis, Volume 19, Number 5, October 1982, pages 909-923.

15


