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Introduction to Part 1:

Many physical systems end up being described by variations of just a few
typical families of mathematical equations. We might a term or a
parameter or a boundary condition, of course. But sometimes it’s not
obvious why the physical behavior is modeled by those equations, or what
those equations tell us about the possible physical behaviors.

Fluids transmit signals. A splash in the pond creates a wave that has a
shape and a velocity that is recognizable for a great distance.

The same hyperbolic equations that describe fluids also govern sound,
electricity, radio waves, and light. Our cell phones use the wave equation;
we could never use the heat equation to send a directional signal!
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Introduction: The Mathematician’s Wave Equation

For the classic wave equation

utt = c2 uxx

it’s not hard to see that a traveling wave u(x , t) = f (x − ct), for any
function f (), is a solution. The fact that some mediums, such as air and
water, can support waves, in which the medium does not move (very
much) but a signal or disturbance does move, is the fundamental
property of waves.

However, the mathematician’s wave equation misses other important
features, including that wave motion in water can depend on the depth of
the medium, that waves tend to disperse, and that waves of different
frequency may travel at different speeds.
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Introduction: The Navier Stokes Equations

A more detailed model of the behavior of water can be found in the
(incompressible) Navier-Stokes equations:

ρ(
∂v

∂t
+ v · ∇v) = −∇p + µ∇2v F=ma

∂ρ

∂t
+∇(ρv) = 0 mass conservation

Here ρ and µ are the fluid density and viscosity, while v is the velocity
vector and p is the fluid pressure.

However, accurate solutions of this equation require fine spatial meshes,
tiny time steps.

Using the Navier-Stokes equations to model waves that cross the ocean
would be a hopeless task.
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Introduction: The Shallow Water Equations

However, the behavior of water in an ocean is a very special case.
Compared to the horizontal distances involved (thousands of kilometers),
the typical vertical distance is negligible (4 km). Thus, on a global scale,
the ocean is more “shallow” than a bathtub with a millimeter of water.

When we are studying waves, the water itself doesn’t move much, except
for a back-and-forth motion. Relative to the speed of the wave signal, we
can treat the ocean as essentially standing still.

What “moves” is a pressure disturbance, that is indicated by temporary
changes in the water height - storing and transmitting energy. This is the
signal, or wave, that is rapidly transmitted.

Using these insights, and some other approximations, it is possible to
derive the Shallow Water Equations, which are a good, simplified model
for large scale wave behavior.
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Introduction: Conservative Form

Here is one form of the shallow water equations:

∂h u

∂t
=− h

ρ0

∂p

∂x
− ∂h u2

∂x
− ∂h u v

∂y
+ f h v

∂h v

∂t
=− h

ρ0

∂p

∂y
− ∂h u v

∂x
− ∂h v 2

∂y
− f h u

∂h

∂t
+
∂h u

∂x
+
∂h v

∂y
= 0

At time t and position (x , y), the fluid has a height h, a pressure p, and
a (horizontal) velocity vector (u, v). The fluid is incompressible, with a
density of ρ0, so h is essentially a mass measurement.
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Introduction: The Mathematician’s Wave Equation

You can see that, even though the shallow water equations are
supposed to be a simplified model, it’s not at all likely that we can spot
exact mathematical solutions.

However, these equations can be used as a guide for construction
computational programs to approximate the solution over a simplified,
discretized geometry. Such a program makes it easy to investigate the
effects of various parameters, and to consider the kinds of solutions that
arise.

These lectures will introduce some of the ideas and techniques involved
in turning a set of equations into a computer program. Our goal is that
you will to be able to understand, describe, explain, use and modify the
computations involved in Cleve Moler’s 2D shallow water simulation
program.
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Physics: Longitudinal Waves in a Slinky

A “Slinky” is a coiled metal wire which acts like a gentle spring. Pushing
it on the left, the coils compress, storing energy, and then separate, and
the pressure disturbance moves to the right.

http://people.sc.fsu.edu/∼jburkardt/latex/sem 2012 shallow/slinky.mov
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Physics: Longitudinal Waves in the Air

We hear sound because our ear drum detects pressure changes
transmitted by the rarefaction and compression of air.
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Physics: The Air is Just a Medium for the Wave

A sound wave is not so much the motion of air, as it is the transmission
of air pressure. A packet of air at higher pressure squeezes its neighbor,
which compresses, and then passes on the pressure to the next neighbor,
and so on. The air is essentially transporting the pressure as though it
were a signal.

Waves occur in water as well. A wave can start in San Francisco and
travel across the ocean to Shanghai. But the water in San Francisco
doesn’t actually travel to Shanghai. Instead, it’s the disturbance or
energy or some kind of signal that travels.

Unlike air, water is not easily compressible. That means that a wave
signal doesn’t move by compressing the water. Instead, the energy is
stored by increasing the height of the water, which involves very small
left-to-right motions of the water itself.
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Physics: Longitudinal Waves in Water

Especially when the wave has a long way to travel over a relatively
shallow basin, the energy can be transmitted in this way, by having the
water store and release energy by local height variations.

The equations relating height h, horizontal velocities u and v , and the
pressure p are called the shallow water equations.

http://people.sc.fsu.edu/∼jburkardt/latex/sem 2012 shallow/shallow water wave.mov
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Moler’s 2D Shallow Water Program

Moler lets a giant droplet of water fall onto a tranquil ocean.
A coarse 64x64 grid is used, unsuitable for Navier Stokes calculation.
Even the shallow water calculation eventually breaks down here.

http://people.sc.fsu.edu/∼jburkardt/m src/shallow water 2d/shallow water 2d.m
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Moler’s Program

Cleve Moler has implemented a simulation of the 2D shallow water
equations in a simple MATLAB code, as part of his electronic book
“Experiments in MATLAB”.

The source code is available at

http://www.mathworks.com/moler/exm/exm/waterwave.m.

Moler’s 4 page discussion of the shallow water equations is available at

http://www.mathworks.com/moler/exm/chapters/water.pdf.

We are going to try to understand how the physics and math of the
shallow water equations was turned into the lines of MATLAB code that
form the program.
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Moler’s Program: Modeling Issues

What terms do you neglect, or regroup, or rewrite?

How do you model:

the region: approximating shape;

the geometry: replacing areas by grid points;

a function u(x , y , t) now defined on grid points;

spatial derivatives ux , uy only defined on grid points;

conditions at the boundary;

time discretization, and time steps;

time derivatives ut ;

initial conditions.
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Moler’s Program: Algorithmic/Computational Issues

We will consider algorithmic issues:

how do we approximate the solution of a partial differential
equation?

what error can we expect in spatial and time approximations?

when we use an explicit time integration scheme, are there limits to
our time step?

We will consider computational design issues:

Are there conserved quantities which we can use as a check?

How can we report or display the results?
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Equations: Moler’s Variations

Moler takes as his state variables the set h, hu and hv , that is, he works
with momentum or mass-velocity rather than velocity.

Moler neglects the Coriolis force terms f ∗ h ∗ v and f ∗ h ∗ u, important
for long range waves on the surface of the earth.

He assumes that the ocean bottom is of constant depth (otherwise, the
varying depth significantly affects the equations!)

He assumes the pressure simply reflects the mass of the water column, so
the gravitational constant g relates pressure p and height h:

p = (ρ0 ∗ h) ∗ g

so Moler rewrites the pressure terms, such as:

h

ρ0

∂p

∂x
=
∂ 1

2 g h2

∂x

so that pressure p is eliminated.
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Equations: Conservative Form

Recall our statement of the shallow water equations:

∂h u

∂t
=− h

ρ0

∂p

∂x
− ∂h u2

∂x
− ∂h u v

∂y
+ f h v

∂h v

∂t
=− h

ρ0

∂p

∂y
− ∂h u v

∂x
− ∂h v 2

∂y
− f h u

∂h

∂t
+
∂h u

∂x
+
∂h v

∂y
= 0

At time t and position (x , y), the fluid has a height h, a pressure p, and
a (horizontal) velocity vector (u, v). The fluid is incompressible, with a
density of ρ0, so h is essentially a mass measurement.
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Equations: Conservative Form (Moler)

After reordering equations, dropping the Coriolis force, rewriting the
pressure relation, and bringing all terms to the left hand side, we have:

∂h

∂t
+
∂h u

∂x
+
∂h v

∂y
= 0

∂h u

∂t
+
∂(h u2 + 1

2 g h2)

∂x
+
∂h u v

∂y
= 0

∂h v

∂t
+
∂h u v

∂x
+
∂(h v 2 + 1

2 g h2)

∂y
= 0

Unless we add some source terms, the only things that will now make
this system do anything are boundary and initial conditions.
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Equations: Vector Definitions

Using Moler’s formulation, we define the following quantities:

U =

 h
h u
h v


F (U) =

 h u
h u2 + 1

2 g h2

h u v


G (U) =

 h v
h u v

h v 2 + 1
2 g h2
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Equations: Vector Version of Conservative Form

We can now write our equations in the very abstract form:

∂U

∂t
+
∂F (U)

∂x
+
∂G (U)

∂y
= 0

This form is known as a hyperbolic conservation law. It identifies a
quantity which can never simply disappear. It can only change by fluxes
that enter or exit through the boundaries of the region.

Consider a scalar law of the form

∂u

∂t
+
∂f (u)

∂x
+
∂g(u)

∂y
= 0

Integrating over a region Ω, we have:∫
Ω

∂u

∂t
dΩ +

∫
Ω

∇ · (f (u), g(u)) dΩ = 0
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Equations: Hyperbolic Conservation Law

Assuming appropriate smoothness for the boundary of Ω and the
various derivatives, we can use the divergence theorem to arrive at:

d

dt

∫
Ω

u dΩ +

∫
∂Ω

(f (u), g(u)) · n̂ ∂Ω = 0

So (f (u), g(u)) represents the flux of u at the boundaries of Ω.

If u decreases in Ω, then it must increase correspondingly in the
neighboring regions. It never “disappears” (except by entering or exiting
the region over which the law holds).
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Geometry: Model 3D Region by a Rectangular Array

We are modeling a flow in a geometric region. Our model of the
geometry will be influenced by how much detail we want, and what will
make our algorithm easy to program.

Because we will be using the finite difference method, the geometry will
be represented by a rectangular array of points. In order to estimate
derivatives easily, we need the axes of the rectangle to be aligned with
the coordinate axes. For convenience in forming the differences, we will
prefer to use equally spaced nodes in both x and y directions.

Because these are “shallow water” equations, the z direction is not
broken down into individual points.
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Geometry: Rectangular Array Simplifies Geometry

The values of a physical quantity u(x , y) will be stored in an M by N
array called U, with a typical entry being U(I , J).

In finite differences, it is important to be able to located values
associated with neighboring points. Using an array makes this trivial.

It is also crucial to be able to determine whether a point is on the
boundary of the region or in the interior. Because we are using an array,
this is also trivial.

By contrast, consider that these questions are not trivial for a finite
element code!
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Geometry: Rectangular Array Simplifies Geometry

Questions about directions, neighbors, and boundaries are much simpler
for finite differences than for finite elements.
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Geometry: Rectangular Array Simplifies Geometry

Because we have chosen a rectangular array, some things have become
easy. Suppose we are not happy with this simple geometry? Are there
some modifications that aren’t too hard?

Vary the spacing in the X or Y directions (easy)

Use a region that is only a subset of the rectangle (some work)

Include internal “holes” in the geometry (a little work)

Use a “logically rectangular” array that is curved (much work)

Once we start using curved geometry, the approximation of derivatives
becomes more difficult.
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Geometry: Computational Description of Geometry

Our geometry can be defined by:

M and N, the number of rows and columns of points;

DX and DY , the constant X and Y spacings;

State variables are computed at grid points, and stored in MxN arrays,
such as U(I , J).

Although the flow is 3D, we are really using a 2D geometry, so the
quantity H(I , J), the water height at each grid point, is not really a
geometric quantity, but another state variable, to be computed and
updated.

26 / 105



Geometry: Boundary Conditions

Our problem will include boundary conditions that describe what
happens at points on the boundary of the region.

We can add an exterior layer of nodes to the problem, and manipulate
the solution values at these nodes to enforce the boundary conditions.

One way to do this is consider M and N the number of rows and columns
of interior nodes. Then our arrays will actually be of size M + 2 by N + 2,
with the first and last rows and columns containing boundary data.

To work on just the interior nodes, we set up loops that run
I = 2 : M + 1 and J = 2 : N + 1, for instance.
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Geometry: Boundary Conditions

You might expect to specify boundary conditions that are

Dirichlet: specify solution values;

Neumann: specify solution derivatives;

Robin: specify a relation between values and derivatives;

but who really expects to “control” the boundary of the ocean? Unless
we have good intuition, specifying these kinds of boundary conditions will
just send signals across the interior. We’d much rather investigate the
natural behaviors that might arise in unforced conditions. Here are three
boundary conditions more typical of this kind of study:

reflective: the boundary behaves like a mirror;

free: the boundary exerts no stress;

periodic: the left and right boundaries are joined;
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Geometry: Boundary Conditions

In the 1D case, here is one way to enforce these conditions for the
variable U at node 1:

reflective: U(1) = - U(2)

free: U(1) = U(2);

periodic: U(1) = U(N+1);
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Geometry: Boundary Conditions

For our problem, it probably makes sense to use the free boundary
condition for the height H, and either the reflective or periodic condition
for the momentum HU.

The choice of boundary condition has an effect on the solution of the
problem, and we should be aware of what we are trying to model.

The boundary conditions can also show up in the conservation laws!
Remember, the conservation laws hold within the region, but at external
boundaries we may find inflow or outflow.
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Geometry: Estimating the Solution at Interfaces

We may need to estimate solution values at the midpoint M of the
interface between the regions around nodes L and R.

Assuming both cells are the same size, then we might estimate

U(M) ≈ U(L) + U(R)

2

This means we are modeling U as a piecewise linear function between
any pair of neighboring nodes...but we are not saying that U is modeled
by a piecewise bilinear function for arbitrary points in the domain. That
would actually be tricky to work out.
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Geometry: Estimating the Flux at Interfaces

We may need to estimate the flux ∂F (U)
∂x at the midpoint M of the

interface between the regions around nodes L and R.

We can estimate this quantity as:

∂F (U)

∂x
≈ F (U(R))− F (U(L))

∆X

We can regard this as simply the slope of the linear interpolant between
the values of F at U(L) and U(R).
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Geometry: Estimating the Time Derivative

We wish to approximate the solution over the entire region for NT + 1
equally spaced times from T0 to TNT .

The initial condition gives us data for T0.

We will be using an explicit marching algorithm.

Assuming we have the approximation for time Tk , we use that
information to estimate the time derivatives of the data, and march
forward one further time step.

We can estimate a time derivative by

∂Uij

∂t
≈

Uk+1
ij − Uk

ij

∆T
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Geometry: Seek Solution Values at Nodes

The light blue points will handle boundary conditions.
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Geometry: Interior Nodes Define Square Regions

Physical properties are assumed constant in each region.
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Geometry: Neighboring Nodes Define Fluxes

Fluxes will be estimated at the green nodes.
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Geometry: Solve One Time Level at a Time

Here, the vertical axis represents time.
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End of Part 1

In part 2, we write out the discrete equations, look at two ways to
approximate the time derivative, and then examine a 1D version of
Moler’s algorithm.
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Discretization

We start with the solution at time level 0. In order to advance to the
next time level, we simply need to write a discrete version of the shallow
water equations, using the time derivative term to tell us what the values
should be at the next time level.

So now it’s time to put together our approximations for the fluxes and
time derivatives, so we can prescribe our marching algorithm.
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Discretization: A Simple Finite Difference Approach

It’s easy to write an explicit finite difference stencil for the equations.

The fluxes can be estimated by centered differences:

∂F (U)

∂x
≈ F (U right)− F (U left)

∆X

and the time step by a forward difference:

∂U

∂t
≈ Unew − Ucurrent

∆T

resulting in:

Unew − Ucenter

∆T
+

F (U right)− F (U left)

∆X
+

G (Uup)− G (Udown))

∆Y
= 0
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: 2D First Order Scheme
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Discretization: The Lax-Wendroff Stencil

Our approximation to the fluxes is second order accurate, but our time
integration is a simple Euler method, which is only first order accurate.

As a better approach, we consider the Lax-Wendroff scheme. This is
based on an integration scheme known as the modified Euler method, or
the Euler half-step method, or the Runge-Kutta 2 method .

ym = y0 +
1

2
∆T f (y0)

y1 = y0 + ∆T f (ym)

By taking a half-step and evaluating the derivative there, this method
produces results which are second order accurate in time.

A method that is second order accurate in time and space can take
bigger time steps, and use a coarse mesh.

This could be the difference between waves in a pond or the ocean.
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: 2D Lax Wendroff Scheme
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Discretization: Comparison

The first order scheme estimates the derivative at the current time.
Lax-Wendroff estimates it a half timestep into the future. This gives the
scheme greater accuracy.
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1D Program:

We have talked about the physical problem, the mathematical
formulation of the differential equations, and some discretizations that
lead to a system of finite difference equations.

We also have suggested how we might handle the location of interior and
boundary points, how to approximate spatial and time derivatives.

Now it is time to see how these ideas are assembled into a unified
program for solving the shallow water equations.
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1D Program: The “Training Wheels” Version

I will not concentrate on Moler’s 2D code. Instead, I present a code for
the 1D version of the problem.

This simplifies many things.

It makes less impressive pictures; on the other hand, it will be easier to
pose some experiments, to observe the simulated solutions, and to try to
understand what they mean!

If you understand the 1D code, you will still find the 2D code an
interesting but not impossible puzzle to work out!
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1D Program: Conservative Form (Moler)

In a 1D world, we have two state functions, h and u, which depend on
x and t according to the following 1D shallow water equations:

∂h

∂t
+
∂h u

∂x
= 0

∂h u

∂t
+
∂(h u2 + 1

2 g h2)

∂x
= 0
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1D Program: Vector Definitions

If we define the quantities:

U =

(
h

h u

)
F (U) =

(
h u

h u2 + 1
2 g h2

)
we can write our equations as:

∂U

∂t
+
∂F (U)

∂x
= 0

which gives us our 1D hyperbolic conservation law.
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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Discretization: 1D Lax Wendroff Scheme
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1D Program: Command Line Input

The 1D program is invoked by the command:

[ H, UH, x, t ] = shallow water 1d ( nx, nt, x length, t length, g );

so that we can easily specify input:

nx and nt are the number of space and time steps;

x length and t length are the space and time step sizes;

g is the magnitude of the gravitational force.

and retrieve useful output:

H and UH contain the nx by nt+1 solution arrays;

x and t contain the nx space and nt+1 time vectors;

http://people.sc.fsu.edu/∼jburkardt/m src/shallow water 1d/shallow water 1d.m
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1D Program: Typical Input Values

A reasonable set of values to start with is:

[ H, UH, x, t ] = shallow water 1d ( 41, 100, 1.0, 0.2, 9.8 );

This means that H and UH will be arrays of dimension 41 x 101, while x
will be a vector of length 41, and t a vector of length 101.

The spacing dx between nodes will be 1.0 / 40.

The spacing dt between time steps will be 0.2 / 100.

Gravity is set to 9.8 m/s/s.
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1D Program: Initial Conditions

The user must modify the function which defines the initial conditions:

function [ h, uh ] = initial conditions ( nx, nt, h, uh, x )

h(1:nx) = 2.0 + sin ( 2 * pi * x(1:nx) );

uh(1:nx) = 0.0;

return

end

This example starts with zero mass velocity, and an average height of 2
with a sinusoidal variation.

Another interesting flow would have h = 1 and uh = x. What might
happen then?
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1D Program: Boundary Conditions

The user must modify the function which defines the boundary
conditions:

function [ h, uh ] = boundary conditions ( nx, nt, h, uh, t )

h(1) = h(2);

h(nx) = h(nx-1);

uh(1) = - uh(2);

uh(nx) = - uh(nx-1);

return

end

This example sets free conditions for h, reflective conditions for uh.
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1D Program: Structure

To fill up the H and UH arrays, we start with the initial condition, and
then take repeated time steps. The program outline is:

1 initialize arrays, define constants like dx and dt
2 set solution at time step 0 by initial conditions
3 begin time loop on nt steps
4 estimate h and uh at cell midpoints, one half time step
5 evaluate derivative at half time step, take full step
6 apply boundary conditions
7 end of time loop
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1D Program: The Half Step for H

The half step for h is carried out at the midway point m between two
nodes lm and rm. We will estimate the time change in h here, so first we
have to estimate the current value of h as the average of the neighbors.

h(m) ≈ h(lm) + h(rm)

2

Now we also need the flux of uh at m, but that’s just the difference of
the values at the nodes to right and left of m:

∂uh(m)

∂x
≈ uh(rm)− uh(lm)

dx

The DE then says that the time derivative of h plus the flux of uh is zero:

h
1
2 (m)− h(m)

dt/2
+

uh(rm)− uh(lm)

dx
= 0

81 / 105



1D Program: The Half Step for H

Rearranging, we have

h
1
2 (m) =

h(lm) + h(rm)

2
− (dt/2) ∗ uh(rm)− uh(lm)

dx

and if we use hm as the name of our temporary value for h at the half
timestep and midway point, this corresponds exactly to the line in the
program which computes this value at all the midpoints:

hm(1:nx-1) = ( h(1:nx-1) + h(2:nx) ) / 2.0 ...

- ( dt / 2.0 ) * ( uh(2:nx) - uh(1:nx-1) ) / dx;
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1D Program: The Full Step for H

In the same way, we have also estimated uh at each midpoint m,
advanced a half step in time, and called this value uh

1
2 (m) or UHM.

Now we are ready to take a full step, to advance the value of h at each
node c, using a derivative that is evaluated at the half time step, and
using midside nodes lc and rc to the left and right of c:

h1(c)− h0(c)

dt
+

uh
1
2 (rc)− uh

1
2 (lc)

dx
= 0

which in the code is written:

h(2:nx-1) = h(2:nx-1)

- dt * ( uhm(2:nx-1) - uhm(1:nx-2) ) / dx;
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1D Program: The Half Step and Full Step for UH

Similar calculations are used for uh. Of course, we must take the half
step in both h and uh before taking the full step.

Also, the right hand side for uh includes terms like u2h. To express this
in terms of our variables, we must write expressions like (uh * uh )/ h!

Overall, the treatment of uh is the same as h, so we won’t discuss it
further.
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1D Program: Storing All the Data

The program really only needs two vectors of length NX to store H and
its half-step update, and two more for UH.

However, if we want to plot the data at the end we need to save all the
values at every time step. (This would not be practical for large
problems.)

Inside the program, the vectors are called h and uh, using lowercase. The
corresponding arrays H and UH are used to save a copy of these
quantities for the initial condition and for every time step (which is why
there are NT+1 sets of values!).

These arrays, plus the x and t grids, are the output of the program.
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1D Program: Output

We said that the program outputs some large arrays: H, UH, x and t.

This output can be used as input to a program that will display
successive snapshots of the solution:

shallow water 1d display ( H, UH, x, t )

will display the height and mass velocity at each time step, advancing as
you hit RETURN.

Another program, shallow water 1d animation can make a series of
JPEG files that can be turned into an animation.

http://people.sc.fsu.edu/∼jburkardt/m src/shallow water 1d/shallow water 1d display.m

http://people.sc.fsu.edu/∼jburkardt/m src/shallow water 1d/shallow water 1d animation.m
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1D Program: Graphical Display

The height is the blue ”Batman” shape on the left. The mass velocity is
shown in red on the right.
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2D Program: Remarks

The 2D program does not have commandline input. However, at the
beginning of the program there are some variables whose values can be
modified, in particular: n, g, dt, dx, dy.

This is a 2D program, so saving all the data can be expensive. Instead,
the graphical display is made simultaneously as the time steps are taken.

The height, X momentum and Y momentum are stored in n+2 by n+2
arrays H, U and V (but remember that U and V are “really” HU and
HV, that is, mass velocities, not velocities!)

The boundary data is stored in the first and last rows and columns.
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2D Program: How are Fluxes Stored?

When the half step time integration is carried out, the midside flux data
is stored as Hx, Hy, Ux, Uy, Vx and Vy.

The x direction increases with array index i , y with array index j .

There are n+2 nodes in each row and column, so there are n+1 midside
nodes. Thus the flux arrays are evaluated between the regular arrays.

+------------------+-------------------+

| | |

Hx(i-1,j) H(i,j) Hx(i,j) H(i+1,j) Hx(i+1,j)

| | |

* O * O *

| | |

| | |

+------------------+-------------------+
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2D Program: The Half Step Flux Terms

In the 2D code, our discretized PDE should look something like this:

U^{new} = U - dt * ( ( F(UR) - F(UL) ) / dx )

+ ( G(UU) - G(UD) ) / dy ) )

whether we are approximating the half step or the full step.

But when we compute half-step midside fluxes on the left and right, we
use

U^{new} = U - dt * ( F(UR) - F(UL) ) / dx )

and for the midside fluxes “up” and “down”, we use

U^{new} = U - dt * ( G(UU) - G(UD) ) / dy )

Why could we drop one term?
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2D Program: The Half Step Flux Terms

The reasoning here is that the fluxes only occur at cell boundaries and
are normal to them. Therefore, when we estimate the flux at on the left
or right side of a region, there is no G flux:

+------G flux------+-------G flux------+

| | |

| | |

F flux O F flux O F flux

| | |

| | |

+------G flux------+-------G flux------+

and similarly, when we estimate fluxes on the ”up” or ”down” sides of a
region, the F flux vanishes.
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2D Program: The Full Step Flux Terms

But when it comes time to generate the full step, we are estimating the
flux at the center node, and in that case, we consider both F and G
terms:

+------G flux-----+

| A |

| : |

F flux --> O --> F flux

| A |

| : |

+------G flux-----+

In the 2D code, compare the right hand sides for Hx (horizontal midside,
half step), Hy (vertical midside, half step) and H (central node, full step).
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2D Program: Boundary Conditions

The 2D says it uses ”reflective” boundary conditions. It actually uses
free boundary conditions for H and reflective for UH and VH.

In 2D, the implementation of reflective boundary conditions is a little
more complicated than in 1D.

Look carefully at how UH is handled. On the left and right boundaries,
the boundary value is the negative of the neighbor. But on the top and
bottom, it is set equal to the neighbor.

The reflection or reversal of the horizontal velocity only happens at the
horizontal boundaries. At the vertical boundaries, we essentially use a
free condition as well.

Similar remarks hold for the vertical velocity.
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2D Program: MATLAB Remarks - Indexing

You may be used to using loops to set a variable:

for i = 1 : nx - 1

flux(i) = ( value(i+1) - value(i) ) / 2;

end

In MATLAB, we can write the equivalent vector statement:

flux(1:nx-1) = ( value(2:nx) - value(1:nx-1) ) / 2;

It is also possible to assign a name to a frequently used set of array
indices:

left = 2:nx;

right = 1:nx-1;

flux(right) = ( value(left) - value(right) ) / 2;
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2D Program: MATLAB Remarks - Dot Operations

When you replace a loop and a scalar assignment by a vector
assignment, MATLAB will generally apply the operations to each
element.

But certain operators are ambiguous, including *, /, and ^. If A, B and C
are vectors or arrays, MATLAB interprets the statement

A = B * C;

as a request for a dot product, matrix-vector multiplication, or
matrix-matrix multiplication. If, instead, you simply want an element by
element multiplication, you must signal this by writing

A = B .* C;

Similarly, use the ./ and .^ operators if you want the non-vector
operators. The dot operator is used extensively in the 2D program!
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Conservation:

We expect the following quantities to be conserved:

mass, H;

momentum or mass velocity, HU and HV ;

energy, 1
2 (HU2 + HV 2 + gH2);

potential vorticity;

Of course, conservation laws don’t mean things can’t change in time, just
that time changes correspond to fluxes.
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Conservation:

Suppose we start a problem with zero mass velocity (but perhaps with a
perturbed value of H). As the fluid adjusts itself, nonzero mass velocities
will arise, but we’d expect that they still sum to zero.

However, consider the animation uh reflective.mov from the 1D code.
The plots clearly suggest that, after a short time, mass velocity is no
longer summing up to zero.

Has conservation been violated?

What other explanation is there?

Is there a way of running the simulation so that mass velocity is
constant over time?

http://people.sc.fsu.edu/∼jburkardt/m src/shallow water 1d/uh reflective.mov
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CFL Condition:

When we discretize the shallow water equations, we must specify step
sizes in both space dx and time dt.

We know that choosing these values too large will give us inaccurate
results. We assume, though, that making either quantity smaller is
guaranteed to improve the accuracy.

For an explicit code, we don’t have a linear system to worry about, so the
work is easy to compute. Halving dt doubles our timestep work; halving
dx doubles or quadruples our spatial work, depending on whether we are
in 1D or 2D.
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CFL Condition:

Here’s what happens if I use 4 times as many nodes as in the suggested
input, after just 6 time steps:

The jagged shapes at the ends are the beginning of a fatal and violent
loss of convergence!
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CFL Condition: Time Step Must be Small Enough

It turns out that the issue that arises here is that we have violated the
Courant-Friedrichs-Lewy condition or “CFL”.

Essentially, this rule says that, in an explicit time scheme for a hyperbolic
PDE, the timestep must be small enough that no particle has time to
cross an entire cell, or else the computation is likely to diverge.

For 2D shallow water equations, this takes the form of

dt ≤ dx

|u|+ |v |+
√

gh

Here
√

gh measures motion due to gravity waves. The time step has to
be small enough that this inequality holds at each node.
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CFL Condition: Reduced DX May Require Reduced DT

From the initial conditions, we can sometimes make a guess as to a
time step that will satisfy the CFL, but as the solution proceeds, we may
encounter larger velocities and heights that would require us to stop, or
to reduce our time step before proceeding.

And for a given problem, this means that if we reduce dx, we may have
to reduce dt as well, if we are near the CFL limit.

So, in other words, you can always reduce dt to get more accuracy in
time, but if you reduce dx, you may have to reduce your timestep dt as
well.
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Conclusion

You should now have a reasonable background mathematically,
algorithmically, and computationally, for understanding the shallow water
equations as implemented in Cleve Moler’s code.

You can see that when a single line of MATLAB appears in the code, it
reflects many decisions and choices.

If you are interested in numerical computations, you should study this
program and try to get a feeling for what is going on in every
computational line!

Moler’s 2D code, or the simpler 1D version, can be the starting point for
your own investigations.
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Conclusion: Suggested Projects

add a variable bottom profile to the 1D simulation and make an
animation of a wave going over a shallow rise;

investigate the conservation of mass, momentum, energy, potential
vorticity; calculate these quantities for the 1D or 2D simulation;

compute and monitor the CFL condition on each time step;

investigate more accurate time and space schemes;

investigate implicit time schemes;

add the Coriolis force to the 2D simulation;

remove the random drops from the 2D simulation, and investigate
“interesting” initial conditions;

if the 2D code uses data with no y dependence, do the 1D and 2D
codes get the same results?

can you make a parallel version of the program?

can you make a C or Fortran or Python version of the program?
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Conclusion

The 1D version of Moler’s code is available at
http://people.sc.fsu.edu/∼jburkardt/...
m src/shallow water 1d/shallow water 1d.html

shallow water 1d.m, computes solutions;

shallow water 1d display.m, displays the solution

shallow water 1d animation.m, makes animations

h periodic.mov, movie of H with periodic BC

uh periodic.mov, movie of UH with periodic BC

h reflective.mov, movie of H with reflective BC

uh reflective.mov, movie of UH with reflective BC
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Conclusion

Some references and demonstration software are available:

en.wikipedia.org/wiki/Shallow water equations

www.amath.washington.edu/∼rjl/research/tsunamis

www.amath.washington.edu/∼dgeorge/tsunamimodeling.html

www.amath.washington.edu/∼claw/applications/shallow/www

105 / 105


