
Parallel Programming with OpenMP

John Burkardt
Information Technology Department

Virginia Tech
..........

https://people.sc.fsu.edu/∼jburkardt/presentations/. . .
openmp 2010 vt.pdf

..........
Virginia Tech Parallel Programming Bootcamp

1010 Torgersen Hall

10 August 2010

1 / 1

Parallel Programming With OpenMP

1 INTRODUCTION

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

2 / 1

INTRO: Clock Speed Ceiling

CPU speeds have hit physical limits (about 4 GigaHertz).

3 / 1

INTRO: Parallel Programming

Sequential programming assumes the commands in a program are
carried out one at a time. Sequential programs will never run
faster than they did in 2002.

Parallel programming takes advantage of certain facts:

Many program steps can be carried out simultaneously;

Multiple processors are available to execute one program;

Processors can cooperate under one program and one memory;

Processors can communicate, running separate programs and
memory.

Old languages have been updated, and new languages invented, so
that the programmer can use these new ideas.

4 / 1

INTRO: Extending Languages

In some cases, parallel programming appears as a small
modification to an existing language. In other cases, existing
languages appear as a small part of an extensive new parallel
programming framework.

OpenMP is a gentle modification to C and FORTRAN; a
single program include parallel portions;

MPI also works with C and FORTRAN; multiple copies of a
program cooperate;

MATLAB has a Parallel Computing Toolbox from the
MathWorks; there are also a free MPI-MATLAB, and a free
“multicore” toolbox;

CUDA, OpenCL and DirectCompute are programming
frameworks that include a programming language (usually C)
but also interfaces that talk directly with the underlying
hardware, usually a GPU.

5 / 1

INTRO: OpenMP

OpenMP runs a user program in parallel.

Parallelism comes from multiple cooperating threads of execution.

These threads cooperate on parallel sections of a user program.

This happens on a shared memory system, where every thread
can see and change any data item.

6 / 1

INTRO: A Shared Memory System

A shared memory system might be:

one core, one memory (older PC’s, sequential execution)

multicore, one memory (your laptop; VT Ithaca system)

multicore, multiple memory NUMA system (VT SGI system)

7 / 1

INTRO: Multicore Shared Memory

On VT’s Ithaca system, OpenMP can run a single program on a
pair of Nehalem quadcore processors sharing one memory.

8 / 1

INTRO: NUMA Shared Memory

VT’s SGI ALTIX systems use the NUMA model, with as many as
128 dual-core processors; OpenMP programs can run here as well.

On a NUMA system, a very fast communication network and
special memory addressing allows multiple memories to be shared
(although ”far” memory can be slower to access.)

9 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

10 / 1

PARALLEL: Programming Without Parallelism

If you’ve programmed in a “traditional” style, you probably have a
mental image of how a program works.

At one level, you regard the program as a list of calculations to be
carried out. Variables are little boxes with names on the outside,
and changeable values inside. The processor executes the program
by reading the next statement, which usually requires getting
numbers out of some boxes, performing a calculation, and puting
the result into another box.

The program may have loops, and conditional statements, and
calls to functions, but as the processor executes the program, there
is never any doubt about what statement is being executed, and
what the next statement is.

We call this a sequential or serial or non-parallel model of
computation.

11 / 1

PARALLEL: Adding Parallelism

A typical program will contain loops, that is, sequences of
operations to be repeated many times. Sometimes each iteration
of the loop is an independent computation. This is a common
example where OpenMP can be used.

OpenMP provides a language for the user to mark such loops and
other sections of code as parallelizable. It responds to such
remarks by activating multiple cooperating cores to share the work
of those calculations.

Before we look at the OpenMP language, let’s consider some
simple calculations that might be parallelizable.

12 / 1

PARALLEL: A Parallelizable Loop

Suppose a teacher has 150 students in a class, has given 16
quizzes, and that every student has (amazingly) taken every quiz.
An averaging program might look like this:

for (s = 0; s < 150; s++) { do s = 1, 150

av[s] = 0.0; av(s) = 0.0;

for (q = 0; q < 16; q++) { do q = 1, 16

av[s] = av[s] + g[s][q]; av(s) = av(s) + g(s,q)

} end do

av[s] = av[s] / 16.0; av(s) = av(s) / 16.0

} end do

Each student’s average can be computed in parallel.

13 / 1

PARALLEL: Almost Parallelizable Loop

Suppose we want the maximum score on test 5:

mx = 0.0; mx = 0.0;

for (s = 0; s < 150; s++) { do s = 1, 150

if (mx < g[s][4]) {

mx = g[s][4]; mx = max (mx, g(s,5))

}

} end do

Notice that we are computing a single value mx.
Can such a computation be done in parallel?

14 / 1

PARALLEL: A Non-Parallelizable Loop

Consider the following procedure to compute the base 2 digits of
an integer n.

If n is even, write a 0, otherwise 1;

Divide n by 2;

If n is zero, stop;

Otherwise repeat the loop to compute the next digit.

15 / 1

PARALLEL: A Non-Parallelizable Loop

n = some value; n = some value
i = - 1; i = -1

do { do while (0 < n)

i = i + 1; i = i + 1

d[i] = n % 2; d(i) = mod (n, 2)

n = n / 2; n = n / 2

} while (0 < n) end do

Parallelization tests:

Do we know there will be an iteration 17?

If so, could we compute iteration 17 immediately?

16 / 1

PARALLEL: Dependent Variables

There are two parallelization problems with this loop.

First, it’s a while loop rather than a for or do loop, which means
that when we begin the loop, we can’t divide up the work because
we don’t know how much there is. We can’t start iteration 17
because there may not be one! (Test 1 fails.)

Second, and more seriously, iteration i of the loop needs to “read”
the value of n in order to do its job. But the iteration i-1 of the
loop just changed the value of n. So the only iteration that can be
begin immediately is iteration 0. Only when it is complete can
iteration 1 begin. And iteration 17 can’t begin until 16, 15, 14, ...
have completed. (Test 2 fails.)

17 / 1

PARALLEL: A Simple Loop to Parallelize

Suppose you had to calculate the norm of a vector by hand. If
there were 100 entries to square and sum, that’s a lot of work. If a
friend offered to help, you could certainly figure out a way to
cooperate on the task, and finish in about half the time.

norm = 0.0

do i = 1, n

xsq = x(i) * x(i)

norm = norm + xsq

end do

norm = sqrt (norm)

OpenMP can speed up exactly these kinds of calculations.

18 / 1

PARALLEL: How OpenMP Sees Your Loop

We could imagine two cooperating processors executing the
program something like this:

norm = 0.0

IF (id == 0) THEN ELSE IF (id == 1) THEN

do i = 1, n/2 | do i = n/2 + 1, n

xsq = x(i) * x(i) | xsq = x(i) * x(i)

norm = norm + xsq | norm = norm + xsq

end do | end do

END IF

norm = sqrt (norm)

But we must handle the variables in these loops in a special way, in
order to get the right answer!

19 / 1

PARALLEL: New Variables

We might need a couple new variables:

Assume that each processor has an ID, so it knows what part
of the code to execute.

Assume each processor knows how many processors there are,
so that we know whether to break the loop into halves,
thirds,...

20 / 1

PARALLEL: Shared Variables

Some variables won’t cause any problems. They can be shared.
For instance, both processors will want to know the value of N.
Both processors will want to know values of the array X.

Since both processors only “read” the values of these variables, we
don’t anything to worry about. As we will see, it is when both
processors try to “write” to a variable that the problems arise!

21 / 1

PARALLEL: Private Variables

But consider the simple variable I, used as a loop counter.
Processor 0 will want I to have values like 1, 2, 3, ... up to 50,
while processor 1 will expect I to contain values like 51, 52, ...,
100. They cannot share the variable I. What if we somehow make
two copies of this variable, so that each processor can have its own
private copy?

The variable XSQ is just like I; that is, each processor will be
trying to put different information into it, so we must give them
private copies of XSQ as well.

Note that both private variables I and XSQ are simply
conveniences used during the loop. After the loop is completed, we
don’t expect them to contain any interesting information.

22 / 1

PARALLEL: Reduction Variables

This is not true for our remaining variable, NORM. This
variable seems to stand on the borderline between a shared and
private variable. It has a value before the loop, and we want to
know its value after the loop. But both processors will try to
modify it during the loop.

A variable like this is called a reduction variable. Essentially, we
make give each processor a private copy during the loop, and when
the loop is over, we combine these private results into a final
shared result.

That’s actually how you and your friend would share the work of
the norm calculation if you had to do it by hand!

23 / 1

PARALLEL: Summary

We have had an informal introduction to some of the ideas that
OpenMP uses in order to make it possible to execute a program in
parallel.

Now we will look at some actual programs, and start to learn the
rules for what can be parallelized, how you classify variables in a
loop, and what sorts of changes you make to your program so that
it can use OpenMP.

24 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

25 / 1

HELLO: How Things Should Work

Now let’s assume we have a program including some portion that
can be parallelized, and look at how OpenMP can be involved.

We’ll assume we have a quadcore computer; we will want to
harness all 4 cores to cooperate in executing our program. Each
core will be in charge of a “thread” of execution.

(We will use the words core, thread, worker, and processor as
though they meant the same thing: an entity capable of executing
a sequential program.)

There will be one “master thread” which is always running. It
executes the sequential portions of the program. When it comes to
a parallel region, it calls the extra threads for help.

26 / 1

HELLO: Shared Memory

In order for the processors to cooperate, each needs a numeric ID;
they will also need some “private” memory space that no other
processor can get to. That’s where it can keep its ID, the value of
the loop index it is executing, and possibly a few other temporary
variables (examples coming!).

However, most program data sits in one place, accessible for
reading or writing by all processors. This feature is so important
that OpenMP is denoted as shared-memory programming.

The cores in a desktop machine can always cooperate in this way;
some computer clusters can also use shared memory. When a
cluster cannot use shared memory it is called a distributed memory
cluster, and parallel programming is done with MPI instead.

27 / 1

HELLO: How Things Should Work

To modify our program and run it with OpenMP, we would need
to do the following things:

1 mark the loops or other code that is to run in parallel;

2 compile the program, indicating that we want to use OpenMP;

3 signal the number of parallel workers we want;

4 execute the program.

If we have used parallel programming correctly and wisely, then
using 4 workers we could hope to run up to 4 times faster.

28 / 1

HELLO: Let’s Say Hello!

Let’s go through the steps of running a “Hello, World” program.

To mark a parallel region, we use comments of the form

#pragma omp parallel !$omp parallel

{

parallel commands parallel commands
} !$omp end parallel

Work in the parallel region is shared by the available threads.

The default behavior is that each thread carries out all the
commands. (This is not what we will want to do in general!)

29 / 1

HELLO: HELLO in C++ and F90

void main (){ program main

cout << "Sequential hi!\n"; print *, ’Sequential hello!’

#pragma omp parallel !$omp parallel

{

cout << "Parallel hi!\n"; print *, ’Parallel hello!’

} !$omp end parallel

return; stop

} end

30 / 1

HELLO: HELLO in C and F77

void main (){ ______program main

printf ("Sequential hi!\n");______print*,’Sequential hi!’

#pragma omp parallel c$omp parallel

{

printf ("Parallel hi!\n"); ______print*,’Parallel hi!’

} c$omp end parallel

return; ______stop

} ______end

31 / 1

HELLO: Comments

The parallel directive marks parallel regions in the code.

In C and C++, the directive is used just before the block of
statements. Braces {} may be used to create a block.

In Fortran, the beginning and end of the parallel region must
be marked;

The parallel directive can include further information about
shared and private variables;

Other directives may be inserted into the parallel region to
indicate loops that can be divided up.

The form of the directive makes it look like a comment.

So if we compile the program in the usual way, it runs sequentially.

32 / 1

HELLO: Making It Run

To compile the program with OpenMP and run it:
1 Compile with C or C++:

gcc -fopenmp hello.c
g++ -fopenmp hello.C
icc -openmp -parallel hello.c
icpc -openmp -parallel hello.C

2 or compile with FORTRAN:

gfortran -fopenmp hello.f90
ifort -openmp -parallel -fpp hello.f90

3 Set the number of OpenMP threads:

export OMP NUM THREADS=4 (Bourne, Korn, Bash)
setenv OMP NUM THREADS 4 (C or T shell)

4 Run the program:

./a.out

33 / 1

HELLO: HELLO Output

The print in the sequential region is done by the master thread;
The print in the parallel region is done by every thread.

A sequential hello to you!

Parallel hello’s to you!

Parallel hello’s to you!

Parallel hello’s to you!

Parallel hello’s to you!

Of course usually we will want to use OpenMP to divide work up,
rather than doing the same thing several times! We will learn how
to do that in a few minutes.

34 / 1

HELLO: The Number of Threads

We got 4 printouts because we had 4 threads.

We asked for them by setting the environment variable
OMP NUM THREADS to 4 before the program ran.

If your program has access to 8 cores (hardware), it is always legal
to ask for anywhere from 1 to 8 threads (software).

In some cases, you can ask for more than 8 threads; then some
cores “double up” and keep track of more than one thread.
Usually, this reduces performance.

35 / 1

HELLO: Helpful Functions

OpenMP provides a small number of useful functions:

omp get wtime(), wall clock time;

omp get num procs(), number of processors available;

omp get max threads(), max number of threads available;

omp get num threads(), number of threads in use;

omp get thread num(), ID for this thread;

To use these functions, you need the statement:

include "omp.h" C / C++
include "omp_lib.h" FORTRAN77
use omp_lib FORTRAN90

Let’s redo HELLO using these functions.

36 / 1

HELLO: HELLO Again!

wtime = omp_get_wtime ();

cout<<"Available processors:"<<omp_get_num_procs()<<"\n";

cout<<"Available threads "<<omp_get_max_threads()<<"\n";

cout<<"Threads in use "<<omp_get_num_threads()<<"\n";

#pragma omp parallel private (id)

{

id = omp_get_thread_num ();

cout << " Hello from process " << id << "\n";

if (id == 0)

{

cout<<"Threads in use"<<omp_get_num_threads () << "\n";

}

}

wtime = omp_get_wtime () - wtime;

cout << " Wtime = " << wtime << "\n";

37 / 1

HELLO: HELLO Again!

wtime = omp_get_wtime ()

print*,’ Available processors: ’, omp_get_num_procs ()

print*,’ Available threads ’, omp_get_max_threads ()

print*,’ Threads in use ’, omp_get_num_threads ()

!$omp parallel private (id)

id = omp_get_thread_num ()

print *, ’ Hello from process ’, id

if (id == 0) then

print*,’ Threads in use ’, omp_get_num_threads ()

end if

!$omp end parallel

wtime = omp_get_wtime () - wtime

print *, ’ Wtime = ’, wtime

38 / 1

HELLO: Making It Run

Now compile the hello program, but let’s also change the
number of threads from 4 to 2:

export OMP NUM THREADS=2 (Bourne, Korn, Bash)

setenv OMP NUM THREADS 2 (C or T shell)

39 / 1

HELLO: HELLO Again Output

Available processors: 4 <- OpenMP knows we have 4

Available threads 2 <-- We asked for 2 threads

Threads in use 1 <-- In sequential region

Hello from process 0

Hello from process 1

Threads in use 2 <-- In parallel region

Wtime = 0.732183E-03

40 / 1

HELLO: Private? What’s That?

There’s one item not explained in the previous example.
Why did I mark the beginning of the parallel region this way:

#pragma omp parallel private (id)

!$omp parallel private (id)

OpenMP is based on the idea of shared memory. That is, even
though multiple threads are operating, they are expected not to
get in each other’s way.

When variables are being computed, we have to make sure that

only one thread sets a particular variable, or

only one thread at a time sets a variable, and “puts it back”
before another thread needs it, or

if the threads can’t share the data, then each thread needs its
own private copy of the variable.

41 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

42 / 1

SAXPY: Work That Can Be Divided

If you simply put statements inside a parallel region, (as we saw
in the Hello example), then all the threads execute them.

Rather than repeating the work, we would like to look at how we
can divide work among the threads. Then all the work gets done,
and each thread’s work is just a portion of the total, and we’re
done faster.

The kind of work we can divide up comes in three varieties:

loops;

sections, an explicit list of tasks;

workshare, (Fortran only).

Each loop, set of sections, or workshare is considered a block.

43 / 1

SAXPY: Blocks of Tasks

Inside of a parallel region, you are allowed to have one or more
blocks of code to be executed:

!$omp parallel

PARALLEL BLOCK 1 (a loop on I)

...a few statements executed by all threads...

PARALLEL BLOCK 2 (explicit list of tasks)

PARALLEL BLOCK 3 (a nested loop on I and J)

!$omp end parallel

By default, no thread moves to the next block until all are done
the current one.

This waiting can be cancelled by the (nowait) clause on a block.

44 / 1

SAXPY: The FOR or DO Directive

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < n; i++) {

...for loop body...
}

..more blocks could follow...
}

- -

!$omp parallel

!$omp do

...do loop body...
!$omp end do

..more blocks could follow...
!$omp end parallel

45 / 1

SAXPY: The FOR or DO Directive

A parallel region of just one loop can use a short directive:

#pragma omp parallel for

for (i = 0; i < n; i++) {

...for loop body...
}

- -

!$omp parallel do

do i = 1, n

...do loop body...
end do

!$omp end parallel do

(But I think it’s better to use separate statements.)

46 / 1

SAXPY: Nested Loops

If loops are nested, you only parallelize one index!

#pragma omp parallel

{

#pragma omp for (nowait) ¡– an option
for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {

This nested loop is parallel in I
}

}

for (i = 0; i < m; i++) {

#pragma omp for

for (j = 0; j < n; j++) {

This nested loop is parallel in J
}

}

} <-- End of parallel region 47 / 1

SAXPY: Nested Loops

!$omp parallel

!$omp do

do i = 1, m

do j = 1, n

This nested loop is parallel in I
end do

end do

!$omp end do (nowait) <-- nowait goes here in Fortran!
do i = 1, m

!$omp do

do j = 1, n

This nested loop is parallel in J
end do

!$omp end do

end do

!$omp end parallel 48 / 1

SAXPY: The SECTION Directive

Another kind of block is described by the sections directive.

It’s somewhat like a case statement. You simply have several sets
of statements to execute, and you want each set of statements to
be executed by exactly one thread.

The group is marked by sections; each section is marked by a
section directive and will be executed by exactly one thread.

If there are more sections than threads, some threads will do
several sections.

If there are more threads than sections, the extras will be idle.

49 / 1

SAXPY: SECTION Syntax

!$omp parallel <-- inside "parallel"

... <-- earlier blocks

!$omp sections<-- begin sections block

... <-- all threads will do

!$omp section

code for section 1 <-- only 1 thread will do

!$omp section

code for section 2 <-- only 1 thread will do

<-- more sections could follow

!$omp end sections <-- end sections block; optional (nowait)

... <-- later blocks

!$omp end parallel

50 / 1

SAXPY: Section Example

A Fast Fourier Transform (FFT) computation often starts by
computing two tables, containing the sines and cosines of angles.

#pragma omp parallel

{

cout << "Hey!\n";

#pragma omp sections <-- optional (nowait)
{

cout << "Hello!\n";

#pragma omp section

s = sin_table (n);

#pragma omp section

cout << "Hi!\n";

c = cos_table (n);

}

}

How many times will ”Hey!”, ”Hello” and ”Hi” appear?
51 / 1

SAXPY: The WORKSHARE Directive

A third kind of task that can be included in a parallel region
involves any of three kinds of FORTRAN commands:

array operations that use colon notation;

the where statement;

the forall statement.

To indicate that such an operation or block should be done in
parallel, it is marked with the workshare directive.

Unfortunately, the workshare directive does not actually seem to
have been implemented, at least not in the Gnu and Intel
compilers that I have seen.

In any case, here’s how it is supposed to work!

52 / 1

SAXPY: Workshare for Colon and WHERE

!$omp parallel

!$omp workshare

y(1:n) = a * x(1:n) + y(1:n)

!$omp end workshare

!$omp workshare

where (x(1:n) /= 0.0)

y(1:n) = log (x(1:n))

elsewhere

y(1:n) = 0.0

end where

!$omp end workshare

!$omp end parallel

53 / 1

SAXPY: Workshare for FORALL

!$omp parallel

!$omp workshare

forall (i = k+1:n, j = k+1:n)

a(i,j) = a(i,j) - a(i,k) * a(k,j)

end forall

!$omp end workshare

!$omp end parallel

(This calculation corresponds to one of the steps of Gauss
elimination or LU factorization)

54 / 1

SAXPY: Add a multiple of one list to another

The SAXPY program will demonstrate how we can combine the
parallel directive, which makes multiple workers available, and the
for or do directive, which tells OpenMP that the following work
should be divided among the available workers.

It is this kind of procedure that we expect will speed up our
execution!

55 / 1

SAXPY: Program with Parallel Loop

int main () {

int i, n = 1000;

double x[1000], y[1000], s = 123.456;

x = random_vector (n);

y = random_vector (n);

#pragma omp parallel private (i)

#pragma omp for

for (i = 0; i < n; i++)

{

y[i] = y[i] + s * x[i];

}

return 0;

}

56 / 1

SAXPY: Program with Parallel Loop

program main

integer i

integer, parameter :: n = 1000

double precision :: s = 123.456

double precision x(n), y(n)

call random_vector (n, x)

call random_vector (n, y)

!$omp parallel private (i)

!$omp do

do i = 1, n

y(i) = y(i) + s * x(i)

end do

!$omp end do

!$omp end parallel

stop

end 57 / 1

SAXPY: Program Comments

This program shows how threads can cooperate on a calculation.

Imagine that 4 threads would each do 250 iterations, for instance.

Is it clear these calculations are independent? What is the test?

One variable gives us a little trouble, though. In a shared memory
system, there’s only one copy of each variable. This means the
variable I could have only one value. But each thread needs a
separate copy of I, to keep track of its iterations.

The parallel directive can include a private() clause, which
provides a lists of those variables which must be stored privately by
each thread for the duration of this parallel region.

When a parallel region begins, the private variables do not
“remember” values they may already have had, and when the
region ends, their values are lost.

58 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

59 / 1

PI: Data Conflicts

When multiple workers are handling data, there are many
possibilities for data conflicts; basically, this means the orderly
reading and writing of data that occurs in a sequential calculation
has broken down when we parallelized it.

When the value of a variable cannot be shared in the default way,
there are OpenMP directives that can sometimes fix the problem.

The issues we will concentrate on here involve temporary variables
and reduction variables and they will both be illustrated by a simple
program that estimates an integral (whose correct value is π

4).

60 / 1

PI: Sequential Version

n = 100000;

h = 1.0 / (double) (n);

q = 0.0;

x = - h;

for (i = 0; i < n + 1; i++)

{

x = x + h;

q = q + 1.0 / (1.0 + x * x);

}

q = q / (double) (n + 1);

61 / 1

PI: Sequential Version

n = 100000

h = 1.0 / dble (n)

q = 0.0

x = - h

do i = 1, n + 1

x = x + h

q = q + 1.0 / (1.0 + x * x)

end do

q = q / dble (n + 1)

62 / 1

PI: The Problem of Variable X

The first thing to realize about this loop is that it looks like it
cannot be parallelized. We cannot begin the 17th iteration, for
instance, without knowing the values of X and Q, which were
modified by every one of the previous iterations.

Let’s try to address the problem of X first.

X is really a convenience variable, or temporary variable. We don’t
need its value before or after the loop. The first loop iteration sets
X to 0, the second to H, the third to 2*H, and the 17th to 16*H.
So we could calculate X immediately by:

x = i * h; ...or... x = (i - 1) * h

Then, if we make X a private variable, X is no longer a problem.

63 / 1

PI: The Problem of Variable Q!

Q is also a problem.

If Q is shared, we will have problems. Each worker reads, adds,
and writes Q in an orderly way. But at run time, the operations of
multiple workers are interleaved in an unpredictable way.

Suppose Q starts at 0, and consider the several ways in which the
six worker operations can be interleaved, although each worker
does its steps in order. What are possible values for Q at the end?

Worker 1 reads Q. Worker 2 reads Q.

Worker 1 adds 10. Worker 2 adds 20.

Worker 1 updates Q. Worker 2 updates Q.

64 / 1

PI: The Problem of Variable Q!

So could we make Q a private variable?

Private variables are temporary; their values are not saved once we
leave the loop. But the point of this loop is to compute Q and
return its value, so making Q private is the wrong approach.

Q is a sort of intermediate variable, not exactly private or shared;
it’s called a reduction variable. An orderly way to compute its
value allows each worker to compute a private version of Q that we
never need to know about. At the end, these are joined into the
shared variable Q.

By declaring Q to be a reduction variable, OpenMP has enough
information to create the temporary hidden private copies, and to
combine them at the end.

65 / 1

PI: The Reduction clause

Any variable which contains the result of a reduction operator
must be identified in a reduction clause of the parallel directive.

Each worker operates on a private copy of the variable, and these
results are combined into a shared variable at the end.

Reduction clause examples must also include the type of operation:

reduction (+ : xdoty) ; xdoty is a sum;

reduction (+ : sum1, sum2, sum3) , several sums;

reduction (* : factorial), a product;

reduction (&& : b) , logical AND in C/C++;

reduction (.and. : b) , logical AND in FORTRAN;

reduction (max : p) , max / min (FORTRAN only);

66 / 1

PI: Directive Clauses

n = 100000;

h = 1.0 / (double) (n);

q = 0.0;

#pragma omp parallel shared (h, n) private (i, x) \

reduction (+ : q) <-- note how we continued the directive!

#pragma omp for

for (i = 0; i < n + 1; i++)

{

x = i * h;

q = q + 1.0 / (1.0 + x * x);

}

q = q / (double) (n);

67 / 1

PI: Directive Clauses

n = 100000

h = 1.0 / dble (n)

q = 0.0

!$omp parallel shared (h, n) private (i, x) &

!$omp reduction (+ : q) <-- continued directive

!$omp do

do i = 1, n

x = (i - 1) * h

q = q + 1.0 / (1.0 + x * x)

end do

!$omp end do

!$omp end parallel

q = q / dble (n)

68 / 1

PI: Reduction Operations

Each variable in a parallel region is assumed to have a type.

The available types are:

shared, most variables;

private, for loop indices and temporary variables;

reduction, for sums, products and so on.

Unless a user declares the type of a variable in the parallel
directive, it is given the default type, which is usually shared.

In FORTRAN, the do loop index is private by default.

69 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

70 / 1

The MD Example: A Real Computation

The MD program simulates the behavior of a box full of particles.

The user chooses the number of particles and time steps.

The particles get random positions and velocities for time step 0.

To compute data for the next time step, we compute the force on
each particle from all the other particles.

This operation is completely parallelizable.

Because this is a large computation, you are much more likely to
see a speedup as you go from sequential to parallel execution.

71 / 1

MD: A Molecular Dynamics Simulation

Compute positions and velocities of N particles over time;
The particles exert a weak attractive force on each other.

72 / 1

The MD Example

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

d = 0.0;

for (k = 0; k < 3; k++) {

dif[k] = coord[k][i] - coord[k][j];

d = d + dif[k] * dif[k];

}

for (k = 0; k < 3; k++) {

f[k][i] = f[k][i] - dif[k] * pfun (d) / d;

}

}

}

73 / 1

The MD Example

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

74 / 1

The MD Example: Private/Shared/Reduction?

This example comes from a molecular dynamics (MD) program.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The array coord contains spatial coordinates; the force array f has
been initialized to 0.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

Which variables in this computation should be declared shared or
private or reduction?

Which variables are shared or private by default?

75 / 1

The MD Example: QUIZ

for (i = 0; i < n; i++) { <-- I? N?

for (j = 0; j < n; j++) { <-- J?

d = 0.0; <-- D?

for (k = 0; k < 3; k++) { <-- K?

dif[k] = coord[k][i] - coord[k][j]; <-- DIF?

d = d + dif[k] * dif[k]; COORD?

}

for (k = 0; k < 3; k++) {

f[k][i] = f[k][i] - dif[k] * pfun (d) / d;

} <-- F? PFUN?

}

}

76 / 1

The MD Example: QUIZ

do i = 1, n <-- I? N?

do j = 1, n <-- J?

d = 0.0 <-- D?

do k = 1, 3 <-- K

dif(k) = coord(k,i) - coord(k,j) <-- DIF?

d = d + dif(k) * dif(k) COORD?

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do <-- F?, PFUN?

end do

end do

77 / 1

The MD Example: Some Puzzling Cases

The variable D might look like a reduction variable.

But that would only be the case if the parallel loop index was K;
only in that case would the computation of the value D be carried
out by multiple workers.

It’s true that it is computed as a reduction operation, but it is not
a parallel reduction.

DIF is our first example of a private variable that is an array. The
clue that DIF must be private is that it is computed for
convenience, its value changes from one iteration to the next, and
we don’t have any need for its value afterwards.

78 / 1

The MD Example: OpenMP Version

#pragma omp parallel shared (coord, f, n) \

private (d, dif, i, j, k)

#pragma omp for

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

d = 0.0;

for (k = 0; k < 3; k++) {

dif[k] = coord[k][i] - coord[k][j];

d = d + dif[k] * dif[k];

}

for (k = 0; k < 3; k++) {

f[k][i] = f[k][i] - dif[k] * pfun (d) / d;

}

}

}

79 / 1

The MD Example: OpenMP Version

!$omp parallel shared (coord, f, n) &

!$omp private (d, dif, i, j, k)

!$omp do

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

!$omp end do

!$omp end parallel

80 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

81 / 1

DIRECTIVES

In a short class like this, it is only possible to discuss some of the
basic OpenMP directives. You should, however, know that there
are many more directives available to help you manage certain
common problems that arise in parallel programming.

We will mention some of the more useful ones, and then proceed
to a moderately complicated program which illustrates how a
number of these advanced directives can be useful.

82 / 1

DIRECTIVES: Scheduling

Scheduling is the way that the iterations of a parallel loop are
assigned to the available threads.

The default schedule is static; iterations are divided into
consecutive “chunks”; the first thread is assigned the first chunk,
and so on.

On the for or do directive, you can include the clause
schedule(static,10) to use static scheduling; now the iterations are
dealt out round robin, in groups of 10, into chunks; the first thread
then gets the first chunk, as before.

The schedule(dynamic,5) clause assigns chunks of 5 iterations to
each thread initially, and holds back all the remaining iterations.
As soon as a thread finishes, it is assigned another chunk of 5
more, until the work is done.

83 / 1

DIRECTIVES: Scheduling

You only need to worry about scheduling in situations where you
know that some iterations of the loop will take much more time
than others.

To give each thread the same number of iterations, but to shuffle
them up better, the static schedule, with a smaller chunk size, is
enough.

The dynamic option deals most effectively with unbalanced work,
but at the price of more checks and communication.

As an example where scheduling might help, consider a calculation
to count the number of primes.

84 / 1

DIRECTIVES: Scheduling

pragma omp parallel \

shared (n) \

private (i, j, prime) \

reduction (+ : total)

pragma omp for schedule (static, 20)

for (i = 2; i <= n; i++) {

prime = 1;

for (j = 2; j < i; j++) {

if (i % j == 0) {

prime = 0;

break;

}

}

total = total + prime;

} 85 / 1

DIRECTIVES: Critical

A critical region is a portion of a parallel region that may be
executed by all threads, but only one thread at a time.

y_max = -100.0; y_max = - 100.0

#pragma omp parallel for... !$omp parallel do ...

for (i = 0; i < n; i++){ do i = 1, n

y = sin (x[i]); y = sin (x(i))

#pragma omp critical !$omp critical

if (y_max < y) { if (y_max < y) then

y_max = y; y_max = y

i_max = i; i_max = i

} end if

} !$omp end critical

end do

!$omp end parallel do

(If we only needed y max, we could use a max
reduction in FORTRAN.)

86 / 1

DIRECTIVES: Barrier

A barrier is a position in a parallel region at which every thread
pauses execution, until all threads have reached that point.

#pragma omp parallel ... { !$omp parallel ...

id=omp_get_thread_num(); id=omp_get_thread_num()

if (id == 0) { if (id == 0) then

printf ("Enter X:\n"); print *, ’Enter X’

sscanf ("%f", &x); read (*, *) x

} end if

#pragma omp barrier !$omp barrier

printf("X+ID=%d\n",x+id); print *, ’X+ID=’, x+id

} !$omp end parallel

Some directives, such as the for or do directive, have an implicit
barrier at the loop termination; this can be cancelled by using the
nowait clause.

87 / 1

DIRECTIVES: the NOWAIT Clause

Some directives include an implicit barrier; the nowait clause
cancels this. You may insert an explicit barrier where you need it:

#pragma omp parallel ...{ !$omp parallel ...

#pragma omp for (nowait) !$omp do

for (i = 0; i < n; i++) a(i) = ...

a[i] = sqrt (x[i]); !$omp end do (nowait)

#pragma omp for (nowait) !$omp do

for (i = 0;i < n; i++) b(i) = ...

b[i] = cos (y[i]); !$omp end do (nowait)

#pragma barrier !$omp barrier

#pragma omp for !omp do

for (i = 0; i < n; i++) c(i) = ...

c[i] = a[i] + b[n-1-i]; !$omp end do

} !$omp end parallel

88 / 1

DIRECTIVES: Master and Single

The master directive: only the master thread (#0) executes this.

The single directive: only the first thread to get here executes this.

#pragma omp parallel ... { !$omp parallel ...

id=omp_get_thread_num(); id=omp_get_thread_num()

#pragma master { !$omp master

printf ("Enter X:\n"); print *, ’Enter X’

sscanf ("%f", &x); read (*, *) x

} !$omp end master

#pragma omp barrier !$omp barrier

printf("X+ID=%d\n",x+id); print *, ’X+ID=’, x+id

} !$omp end parallel

89 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

90 / 1

DISTANCE: A Classic Problem

Anyone doing highway traveling is familiar with the difficulty of
determining the shortest route between points A and B. From a
map, it’s easy to see the distance between neighboring cities, but
often the best route takes a lot of searching.

A graph is the abstract version of a network of cities. Some cities
are connected, and we know the length of the roads between them.
The cities are often called nodes or vertices and the roads are links
or edges. Whereas cities are described by maps, we will describe
our abstract graphs using a one-hop distance matrix, which is
simply the length of the direct road between two cities, if it exists.

91 / 1

DISTANCE: An Intercity Map

Here is a simple map of 6 cities with the intercity highway distance.

92 / 1

DISTANCE: An Intercity One-Hop Distance Matrix

Supposing we live in city A, our question is, “What is the shortest
possible distance from A to each city on the map?”

Instead of a map, we use a “one-hop distance” matrix OHD[I][J]:

A B C D E F

A 0 40 15 ∞ ∞ ∞
B 40 0 20 10 25 6
C 15 20 0 100 ∞ ∞
D ∞ 10 100 0 ∞ ∞
E ∞ 25 ∞ ∞ 0 8
F ∞ 6 ∞ ∞ 8 0

where ∞ means there’s no direct route between the two cities.

93 / 1

DISTANCE: The Shortest Distance

The map makes it clear that it’s possible to reach every city from
city A; we just have to take trips that are longer than “one hop”.
In fact, in this crazy world, it might also be possible to reach a city
faster by taking two hops rather than the direct route. (Look at
how to get from city A to city B, for instance!)

We want to use the information in the map or the matrix to come
up with a distance vector, that is, a record of the shortest possible
distance from city A to all other cities.

A method for doing this is known as Dijkstra’s algorithm.

94 / 1

DISTANCE: Dijkstra’s algorithm

Use two arrays, connected and distance.
Initialize connected to false except for A.
Initialize distance to the one-hop distance from A to each city.
Do N-1 iterations, to connect one more city at a time:

1 Find I, the unconnected city with minimum distance[I];

2 Connect I;

3 For each unconnected city J, see if the trip from A to I to J is
shorter than the current distance[J].

The check we make in step 3 is:
distance[J] = min (distance[J], distance[I] + ohd[I][J])

95 / 1

DISTANCE: A Sequential Code

connected[0] = true;

for (i = 1; i < n; i++){

connected[i] = false;

}

for (i = 0; i < n; i++){

distance[i] = ohd[0][i];

}

for (step = 1; step < n; step++)

{

find_nearest (distance, connected, &md, &mv);

connected[mv] = true;

update_distance (mv, connected, ohd, distance);

}

96 / 1

DISTANCE: Parallelization Concerns

The main program includes a loop, but it is not parallelizable!
Each iteration relies on the results of the previous one.

However, during each iteration, we also use loops to carry out the
following operations, which are expensive and parallelizable:

find nearest searches for the nearest unconnected node;

update distance checks the distance of each unconnected
node to see if it can be reduced.

These operations can be parallelized by using a parallel region. But
we will need to be careful to synchronize and combine
computations.

97 / 1

DISTANCE: Startup

When the parallel region begins, we can assign the cities S
through E to thread T.

pragma omp parallel private (...){

my_id = omp_get_thread_num ();

nth = omp_get_num_threads ();

my_s = (my_id * n) / nth;

my_e = ((my_id + 1) * n) / nth - 1;

pragma omp single {

cout << " Using " << nth << " threads.\n";

}

for (my_step = 1; my_step < n; my_step++)

{

---(we will fill this in next)---
}

}

98 / 1

DISTANCE: FIND NEAREST

Each thread T uses find nearest to search its range of cities for
the nearest unconnected one.

But now each thread will have returned such an answer. The
answer we want is the node that corresponds to the smallest
distance returned by the threads.

99 / 1

DISTANCE: FIND NEAREST

pragma omp single

{

md = 1000000;

mv = -1;

}

find_nearest (my_s, my_e, distance, connected,

&my_md, &my_mv);

pragma omp critical

{

if (my_md < md) {

md = my_md;

mv = my_mv;

}

}

pragma omp barrier

100 / 1

DISTANCE: UPDATE DISTANCE

We have found the nearest unconnected city.

We need to connect it.

Knowing the minimum distance to this city, we check whether this
decreases our estimated minimum distances to unconnected cities.

But we must make sure that we finish each step before moving on
to the next.

101 / 1

DISTANCE: UPDATE DISTANCE

pragma omp single

{

connected[mv] = true;

cout << "Connecting node " << mv << "\n";

}

pragma omp barrier

update_distance (my_s, my_e, mv, connected, ohd,

distance);

pragma omp barrier

102 / 1

DISTANCE: Comments

This example illustrates how many of the new directives we just
discussed can be used for a good purpose.

One reason this example seems more complicated is that we are
not using parallel loops, but are organizing all the actions
ourselves. A parallel loop will automatically pause at the end until
all threads have caught up, before proceeding. In this example, we
had to take care of that ourselves each time.

When we modified the sequential program, we had to introduce a
few shared variables and many private ones. To help distinguish
them, we tried to use the prefix my on the private variables, to
suggest that copies of this variable “belong” to each thread.

103 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

104 / 1

WHERE: Desktop?

The most important thing you need for parallel programming
with OpenMP is a machine with multiple cores.

(Of course you can run an OpenMP program on a one-core
machine. And it’s a good way to develop and check a program.
But when you pay for a sports car, you look for a long straight
road where you can drive fast!)

Manufacturers of PC’s, Mac’s and “Linux boxes” have been quietly
moving up to dual-core and quad-core machines, and it’s possible
to get an 8-core desktop.

105 / 1

WHERE: Desktop?

Even if you plan to do your main work on a cluster, a multi-core
desktop can be used for development. To do so, you need a
compiler for your language, and it must be recent enough to
support OpenMP.

The Intel family of compilers includes OpenMP support. They are
available for Windows, Linux and Mac OSX. They include the Intel
Math Kernel Library ”MKL”, a parallelized, highly optimized set of
mathematical functions. The compilers are not free, but are
heavily discounted to academic users.

The Gnu compilers are free, and come with OpenMP support.
These compilers expect a Unix-style command line interface, so a
PC user would have to install something like the Cygwin Unix
emulator.

106 / 1

WHERE: System X?

A cluster machine seems like the logical place to go for a lot of
cores. However, OpenMP also requires that the memory be shared,
addressable as a single logical unit.

Virginia Tech’s System X has 1100 nodes, each an Apple
PowerMac G5, with two cores sharing a memory chip. But memory
of separate nodes cannot be shared so an OpenMP program can
only run on one node, and use at most 2 cores.

107 / 1

WHERE: SGI: Inferno/Inferno2/Cauldron?

Virginia Tech’s SGI clusters have shareable memory.

Inferno has 20 cores, is designed for interactive work,
especially debugging, and users should ask for 2 to 4 cores.

Inferno2 has 128 cores, is accessible through a queuing
system. No more than 16 cores per job.

Cauldron has 64 cores, is accessible through a queueing
system. A program can get all 64 cores.

108 / 1

WHERE: Ithaca?

Virginia Tech’s IBM iDataplex Ithaca has 84 nodes, each of
which has 8 cores (= 672 cores). Unfortunately, only the memory
on a single node can be shared, so a maximum of 8 cores for
OpenMP programs.

109 / 1

WHERE: Ithaca Software

abaqus, version 6.9-2;

ansys, finite element analysis;

ASreml, maximum likelihood fit of mixed models;

atlas, ”automatically tuned linear algebra software”;

bwa, Burrows Wheeler sequence alignment;

CFX, computational fluid dynamics;

fftw, version 3.2.2, fast Fourier Transforms;

fluent, version 12.0.16, fluid dynamics;

gaussian, version 09, computational chemistry;

lapack, version 3.2.1, linear algebra;

mathematica, (no parallelism);

matlab, version R2010a, with Parallel Computing Toolbox;

R, version 2.11.0, the statistical package;

scalapack, linear algebra for parallel processing;

star-ccm, version 5.02, fluid dynamics.
110 / 1

Where: Getting an Account

Accounts on the Virginia Tech clusters are provided at no
charge. Go to the website http://www.arc.vt.edu/index.php.

Under the item Services & Support select User Accounts.
On the new page, you will see headings for

System X Allocation Requests

SGI Account Requests

Ithaca Account Requests

You’ll need to fill out the ARC Systems Account Request Form.

If you’re interested in an account simply to experiment with
OpenMP, say so. You do not have to make a lengthy description
of your research until you have found out whether OpenMP and
the cluster you’ve chosen will work for you.

111 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 Directives

8 The DISTANCE Example

9 Where Can You Run Parallel Programs?

10 Executing Jobs on the Clusters

11 Conclusion

112 / 1

BATCH: Typical Cluster

A cluster computer typically is divided into a few “head nodes”,
and lots of “compute nodes”.

113 / 1

BATCH: Typical Cluster

When you are given an account on the cluster, this means you
can log into the head node, and that you have file space there.
You can transfer files between your desktop and your head node
directory. You can compile programs on the head node, but you
should not run your program there!

The compute nodes are designed to do nothing but run big
programs. The only program that talks to the compute nodes is
the queueing system. When you want to execute a job on the
compute nodes, you log into the head node and send a message to
the queueing system describing your needs.

Transfer files using sftp or scp;
Log in using the ssh program or putty.

114 / 1

BATCH: Executing Jobs on the Clusters

To run a program on a cluster requires several steps:

transfer program text to an interactive “head node”;

log in to the interactive “head node”;

compile your program to make the executable;

execute your program indirectly, using a batch file, which
communicates with the “compute nodes”;

wait for your program to run, then examine the results.

115 / 1

BATCH: File Transfer, Login, Compilation

Transfer the file “hello.c” to the headnode:

sftp ithaca2.arc.vt.edu

cd project

put hello.c

quit

Login and make the executable program “hello”:

ssh ithaca2.arc.vt.edu

cd project

icc -openmp -parallel hello.c

mv a.out hello

116 / 1

BATCH: The Job Script File

To run the executable program hello on the cluster, you write a
“job script”, or “batch file”, which might be called hello.sh.

The job script includes two parts:

queue parameters, the account information, time limits, the
number of processors you want. These lines always begin with
#PBS

system commands, the same commands you would type if you
could execute the program interactively.

117 / 1

Batch jobs: Example Job Script File

#!/bin/bash

#PBS -l walltime=00:00:30

#PBS -l nodes=1:ppn=8

#PBS -W group_list=ithaca

#PBS -q ithaca_q

#PBS -A hpcb0001

#PBS -j oe

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=8

./hello

118 / 1

Batch jobs: Important items in job script file

!/bin/bash selects the shell (must be first line!);

-l walltime=00:00:30 requests hours:minutes:seconds time;

-l nodes=1:ppn=8 asks for 1 node, and all 8 processors;

-W group list=ithaca specifies your group;

-q ithaca q requests that the job run on the Ithaca queue;

-A hpcb0001 change this to your account number;

-j oe joins the output and error logs into one file;

cd $PBS O WORKDIR starts execution in the same
directory from which this batch file was submitted;

export OMP NUM THREADS=8 sets the number of
OpenMP threads;

./hello runs your program.

119 / 1

Batch jobs: Submit the job script

To run a job, you log into the head node. We’ll assume you’ve
moved to a directory containing your executable and the job script.

The qsub command asks the queueing system to process your job
script:

qsub hello.sh

The queueing system responds with a short message:

111484.queue.tcf-int.vt.edu

The important information here is your job’s ID 111484 which can
be used to determine the status of the job, to kill the job, and
which will also be used to name the output file of results.

120 / 1

Batch jobs: Wait for the script to run

Your job probably won’t execute immediately. If the system is
busy, or you’ve asked for a long execution time, you should
probably log out and check back later.

Some useful queue commands include:

showq status of all jobs and all queues for everyone
qstat -a status of all jobs for this machine’s queues
showq | grep burkardt status of my jobs
showq | grep 111484 status of job 111484
qdel 111484 kill job 111484
showstart 111484 estimated start time for job
qstat -f 111484 all information about job

Status is ”Q” for queued, ”R” for running, ”C” for completed.

121 / 1

Batch jobs: PBSTOP

The pbstop program on Ithaca can show the queue status.

122 / 1

Batch jobs: Output files

Your results are returned in a file named hello.o111484.

If your program failed unexpectedly, this file contains messages
explaining the sudden death of your program.

Otherwise, it contains all the data which would have appeared on
the screen if you’d run the program interactively.

Of course, if your program also writes data files, these simply
appear in the directory where the program ran.

123 / 1

Batch jobs: Examining the output

To see the output, type:

more hello.o111484

If you want a copy back on your desktop, you can use the sftp
program to retrieve a copy:

sftp ithaca2.arc.vt.edu

cd project <-- perhaps move to a subdirectory on Ithaca
get hello.o111484

quit

124 / 1

Batch jobs: Scrambled Output

Individual thread output lines may be “scrambled”:

Thread 3 says ‘Hello, world!’

Thread 1 says ‘Hello, world!’

Thread 0 says ‘Hello, world!’

Thread 2 says ‘Hello, world!’

In C++ programs, output characters can get shuffled!

This is proc This is process 2

ess 0

This is process 1

It’s probably a good idea to have just the master process do
printing, unless you’re trying to debug the program.

125 / 1

Parallel Programming With OpenMP

1 Introduction

2 Parallel Programming

3 The HELLO Example

4 The SAXPY Example

5 The COMPUTE PI Example

6 The MD Example

7 The DISTANCE Example

8 Where Can You Run Parallel Programs?

9 Executing Jobs on the Clusters

10 Conclusion

126 / 1

Conclusion: The Future, 2, 4, 8, ... 4096 cores

The potential performance improvement of an OpenMP depends
on hardware. Dual and quadcore shared-memory systems are
common, and 8 core systems are not hard to find.

Since CPU’s can’t run faster, the future will involve multicore
systems. The number of cores available on desktop systems is
expected to double about every two years, following the trends of
supercomputers.

For instance, SGI has announced a shared memory system called
Altix UV, allowing as many as 2,048 cores.

The Pittsburgh Supercomputing Center, which offers free
computing access to any researcher with an NSF grant, is about to
offer a 4,096 core Altix UV system.

127 / 1

Conclusion: Distributed vs Shared Memory

128 / 1

Conclusion: Example Programs

http://people.sc.fsu.edu/∼jburkardt/c src/c src.html
or
http://people.sc.fsu.edu/∼jburkardt/f src/f src.html

dijkstra open mp (minimum distance)

fft open mp (Fourier transform)

hello open mp (Hello, world!)

md open mp (molecular dynamics)

mxv open mp (matrix times vector)

open mp (compute pi, dot product, helmholtz)

prime open mp (count prime numbers)

quad open mp (estimate integral)

satisfy open mp (seek solutions to logical formula)

sgefa open mp (Gauss elimination)

ziggurat open mp (random numbers)
129 / 1

Conclusion: Exercises

This afternoon, we will have a hands-on session, in which you are
encouraged to try some exercises involving OpenMP programming.

If you have a multicore laptop, and a compiler that supports
OpenMP, you can do the work there instead of on Ithaca.

The exercises are described at:

http://people.sc.fsu.edu/∼jburkardt/vt2/bootcamp 2010.html

hello (Hello, world!)

quad2d (approximate integration in 2D)

heated plate (heat equation)

schedule (counting primes)

130 / 1

Conclusion: References

References:

1 Chandra, Parallel Programming in OpenMP

2 Chapman, Using OpenMP

3 Petersen, Arbenz, Introduction to Parallel Programming

4 Quinn, Parallel Programming in C with MPI and OpenMP

https://computing.llnl.gov/tutorials/openMP/

131 / 1

