
8: Using MPI

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Parallel Programming

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/

mpi part2 2008 vt.pdf

10-12 June 2008

1 / 1

Using MPI

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Matrix*Vector in Fortran77+MPI

Conclusion

2 / 1

Your First Six “Words” in MPI

You can write useful programs using the six fundamental routines:

MPI Init

MPI Finalize

MPI Comm Rank

MPI Comm Size

MPI Send

MPI Recv

3 / 1

MPI Language Lesson: MPI Init

MPI Init (&argc, &argv)

&argc, the address of the program argument counter;

&argv, the address of the program argument list

Must be the first MPI routine called.

4 / 1

MPI Language Lesson: MPI Finalize

MPI Finalize ()

Must be the last MPI routine called.

5 / 1

MPI Language Lesson: MPI Comm Rank

MPI Comm Rank (communicator, &id)

communicator, set this to MPI COMM WORLD;

&id, returns the MPI ID of this process.

This is how a processor figures out its ID.

6 / 1

MPI Language Lesson: MPI Comm Size

MPI Comm Size (communicator, &p)

communicator, set this to MPI COMM WORLD;

&p, returns the number of processors available.

This is how a processor finds out how many other processors there are.

7 / 1

MPI Language Lesson: MPI Send

MPI Send (data, count, type, to, tag, communicator)

data, the address of the data;

count, the number of data items;

type, the data type (MPI INT, MPI FLOAT...);

to, the processor ID to which data is sent;

tag, a message identifier (”0”, ”1”, ”1492” etc);

communicator, set this to MPI COMM WORLD;

8 / 1

MPI Language Lesson: MPI Recv

MPI Recv (data, count, type, from, tag, communicator, status)

data, the address of the data;

count, number of data items;

type, the data type (must match what is sent);

from, the processor ID from which data is received (must match the
sender, or if don’t care, MPI ANY SOURCE;

tag, the message identifier (must match what is sent, or, if don’t
care, MPI ANY TAG);

communicator, (must match what is sent);

status, (auxilliary diagnostic information).

9 / 1

How Messages Are Sent and Received

The main feature of MPI is the use of messages to send data between
processors.

There is a family of routines for sending messages, but the simplest is the
pair MPI Send and MPI Recv.

Two processors must be in a common ”communicator group” in order to
communicate. This is simply a way for the user to organize processors
into sub-groups. All processors can communicate in the shared group
known as MP COMM WORLD.

In order for data to be transferred by a message, there must be a sending
program that wants to send the data, and a receiving program that
expects to receive it.

10 / 1

How Messages Are Sent and Received

The sender calls MPI Send, specifying the data, as well as an identifier
for the message, and the name of the communicator group it is using.

On executing the call to MPI Send, the sending program pauses, the
message is transferred to a buffer on the receiving computer system and
the MPI system there prepares to deliver it to the receiving program.

The receiving program must be expecting to receive a message, that is, it
must execute a call to MPI Recv and be waiting for a response. The
message it receives must correspond in size, arithmetic precision, message
identifier, and communicator group.

Once the message is received, the receiving process can proceed.

The sending process gets a response that the message was received, and
it can proceed as well.

11 / 1

How Messages Are Sent and Received

If an error occurs during the message transfer, both the sender and
receiver return a nonzero flag value, either as the function value (in C
and C++) or in the final ierr argument in the FORTRAN version of the
MPI routines.

When the receiving program finishes the call to MPI Recv, the extra
parameter status includes information about the message transfer.

The status variable is not usually of interest with simple Send/Recv
pairs, but for other kinds of message transfers, it can contain important
information

12 / 1

How Messages Are Sent and Received

1 The sender program pauses at MPI SEND;

2 The message goes into a buffer on the receiver machine;

3 The receiver program does not receive the message until it reaches
the corresponding MPI RECV.

4 The receiver program pauses at MPI RECV until the message has
arrived.

5 Once the message has been received, the sender and receiver resume
execution

Excessive idle time caused while waiting to receive a message, or to get
confirmation that the message was received, can strongly affect the
performance of an MPI program.

13 / 1

How Messages Are Sent and Received

MPI_Send (data, count, type, to, tag, comm)

| | | |

MPI_Recv (data, count, type, from, tag, comm, status)

The MPI SEND and MPI RECV must match:

1 count, the number of data items, must match;

2 type, the type of the data, must match;

3 from, must be the process id of the sender, or the receiver may
specify MPI ANY SOURCE.

4 tag, a user-chosen ID for the message, must match, or the receiver
may specify MPI ANY TAG.

5 comm, the name of the communicator, must match (for us, this will
always be MPI COMM WORLD

14 / 1

How Messages Are Sent and Received

By the way, if the MPI RECV allows a “wildcard” source by specifying
MPI ANY SOURCE or a wildcard tab by specifying MPI ANY TAG,
then the actual value of the tag or source is included in the status
variable, and can be retrieved there.

source = status(MPI_SOURCE) FORTRAN

tag = status(MPI_TAG)

source = status.(MPI_SOURCE); C

tag = status.MPI_TAG);

source = status.Get_source (); C++

tag = status.Get_tag ();

15 / 1

The Prime Sum Example in MPI

Let’s do the PRIME SUM problem in MPI. Here we want to add up the
prime numbers from 2 to N.

Each of P processors will simply take about 1/P of the range of numbers
to check, and add up the primes it finds locally.

When it’s done, it will send the partial result to processor 0.

So processors 1 to P send a single message (simple) and processor 0 has
to expect any of P-1 messages total.

16 / 1

Prime Sum Example: Page 1

include <stdio.h>

include <stdlib.h>

include "mpi.h"

int main (int argc, char *argv[])

{

int i, id, j, master = 0, n = 1000, n_hi, n_lo;

int p, prime, total, total_local;

MPI_Status status;

double wtime;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &p);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

17 / 1

Prime Sum Example: Page 2

n_lo = ((p - id) * 1 + (id) * n) / p + 1;

n_hi = ((p - id - 1) * 1 + (id + 1) * n) / p;

wtime = MPI_Wtime ();

total_local = 0.0;

for (i = n_lo; i <= n_hi; i++) {

prime = 1;

for (j = 2; j < i; j++) {

if (i % j == 0) {

prime = 0;

break; } }

if (prime == 1) total_local = total_local + i;

}

wtime = MPI_Wtime () - wtime;

18 / 1

Prime Sum Example Page 3

if (id != master) {

MPI_Send (&total_local, 1, MPI_INT, master, 1,

MPI_COMM_WORLD); }

else {

total = total_local;

for (i = 1; i < p; i++) {

MPI_Recv (&total_local, 1, MPI_INT, MPI_ANY_SOURCE,

1, MPI_COMM_WORLD, &status);

total = total + total_local; } }

if (id == master) printf (" Total is %d\n", total);

MPI_Finalize ();

return 0;

}

19 / 1

Prime Sum Example: Output

n825(0): PRIME_SUM - Master process:

n825(0): Add up the prime numbers from 2 to 1000.

n825(0): Compiled on Apr 21 2008 at 14:44:07.

n825(0):

n825(0): The number of processes available is 4.

n825(0):

n825(0): P0 [2, 250] Total = 5830 Time = 0.000137

n826(2): P2 [501, 750] Total = 23147 Time = 0.000507

n826(2): P3 [751, 1000] Total = 31444 Time = 0.000708

n825(0): P1 [251, 500] Total = 15706 Time = 0.000367

n825(0):

n825(0): The total sum is 76127

All nodes terminated successfully.

20 / 1

The Prime Sum Example in MPI

Having all the processors compute partial results, which then have to be
collected together is another example of a reduction operation.

Just as with OpenMP, MPI recognizes this common operation, and has a
special function call which can replace all the sending and receiving code
we just saw.

21 / 1

Prime Sum Example Page 3 REVISED

MPI_Reduce (&total_local, &total, 1, MPI_INT, MPI_SUM,

master, MPI_COMM_WORLD);

if (id == master) printf (" Total is %d\n", total);

MPI_Finalize ();

return 0;

22 / 1

MPI Language Lesson: MPI REDUCE

MPI Reduce (local data, reduced value, count, type, operation, to,
communicator)

local data, the address of the local data;

reduced value, the address of the variable to hold the result;

count, number of data items;

type, the data type;

operation, the reduction operation MPI SUM, MPI PROD,
MPI MAX...;

to, the processor ID which collects the local data into the reduced
data;

communicator;

23 / 1

Matrix * Vector Example

We will now consider an example in which matrix multiplication is carried
out using MPI.

This is an artificial example, so don’t worry about why we’re going to
divide the task up. Concentrate on how we do it.

We are going to compute A ∗ x = b.

We start with the entire matrix A and vector X sitting on the “master
processor” (whichever processor has lucky number 0).

We need to send some of this data to other processors, they carry out
their part of the task, and processor 0 collects the results back

24 / 1

Matrix * Vector Example

Because one processor will be special, directing the work, this program
will be an example of the “master-workers” model.

Entry bi is the dot product of row i of the matrix with x :

bi =
N∑
j=1

Aijxj

So if there were N workers available, then each one could do one entry of
b.

There are only P processors available, and only P-1 can be workers, so
we’ll have to do the job in batches.

25 / 1

Matrix * Vector Example

Give all the workers a copy of x .

Then send row i of A to processor i .

When processor i returns bi , send the next available row of A,

The way we are setting up this algorithm allows processors to finish their
work in any order. This approach is flexible.

In consequence, the master process doesn’t know which processor will be
sending a response. It has to keep careful track of what data comes in,
and when everything is done.

26 / 1

Matrix * Vector Example

In a master-worker model, you can really see how an MPI program, which
is supposed to be a single program running on all machines, can end up
looking more like two programs.

27 / 1

Matrix * Vector: Master Pseudocode

If I am the master:

SEND N to all workers.

SEND X to all workers.

SEND out first batch of rows.

While (any entries of B not returned)

RECEIVE message, entry ? of B, from processor ?.

If (any rows of A not sent)

SEND row ? of A to processor ?.

else

SEND "FINALIZE" message to processor ?.

end

end

FINALIZE

28 / 1

Matrix * Vector: Worker Pseudocode

else if I am a worker

RECEIVE N.

RECEIVE X.

do

RECEIVE message.

if (message is "FINALIZE") then

FINALIZE

else

it’s a row of A, so compute dot product with X.

SEND result to master.

end

end

end

29 / 1

Matrix * Vector: Using BROADCAST

In some cases, the communication that is to be carried out doesn’t
involve a pair of processors talking to each other, but rather one
processor “announcing” some information to all the others.

This is often the case when the program is written using the
master/worker model, in which case one processor, (usually the one with
ID 0) is put in charge. It takes care of interacting with the user, doing
I/O, collecting results from the other processors, handling reduction
operations and so on.

There is a “broadcast” function in MPI that makes it easy for the master
process to send information to all other processors.

In this case, the same function is used both for the sending and receiving!

30 / 1

MPI Language Lesson: MPI Bcast

MPI Bcast (data, count, type, from, communicator)

data, the address of the data;

count, number of data items;

type, the data type;

from, the processor ID which sends the data;

communicator;

31 / 1

Matrix * Vector: An example algorithm

Compute A ∗ x = b.

a ”task” is to multiply one row of A times x ;

we can assign one task to each processor. Whenever a processor is
done, give it another task.

each processor needs a copy of x at all times; for each task, it needs
a copy of the corresponding row of A.

processor 0 will do no tasks; instead, it will pass out tasks and
accept results.

32 / 1

Matrix * Vector in FORTRAN77 (Page 1)

i f (my id == master)

numsent = 0
c
c BROADCAST X to a l l the worke r s .
c

c a l l MPI BCAST (x , c o l s , MPI DOUBLE PRECISION , master ,
& MPI COMM WORLD, i e r r)

c
c SEND row I to worker p r o c e s s I ; tag the message wi th the row number .
c

do i = 1 , min (num procs−1, rows)

do j = 1 , c o l s
b u f f e r (j) = a (i , j)

end do

c a l l MPI SEND (bu f f e r , c o l s , MPI DOUBLE PRECISION , i ,
& i , MPI COMM WORLD, i e r r)

numsent = numsent + 1

end do

33 / 1

Matrix * Vector in FORTRAN77 (Page 2)

c
c Wait to r e c e i v e a r e s u l t back from any p r o c e s s o r ;
c I f more rows to do , send the next one back to t ha t p r o c e s s o r .
c

do i = 1 , rows

c a l l MPI RECV (ans , 1 , MPI DOUBLE PRECISION ,
& MPI ANY SOURCE , MPI ANY TAG ,
& MPI COMM WORLD, s t a t u s , i e r r)

s ende r = s t a t u s (MPI SOURCE)
ans t ype = s t a t u s (MPI TAG)
b (ans t ype) = ans

i f (numsent . l t . rows) then

numsent = numsent + 1

do j = 1 , c o l s
b u f f e r (j) = a (numsent , j)

end do

c a l l MPI SEND (bu f f e r , c o l s , MPI DOUBLE PRECISION ,
& sender , numsent , MPI COMM WORLD, i e r r)

e l s e

c a l l MPI SEND (MPI BOTTOM, 0 , MPI DOUBLE PRECISION ,
& sender , 0 , MPI COMM WORLD, i e r r)

end i f

end do

34 / 1

Matrix * Vector in FORTRAN77 (Page 3)

c
c Workers r e c e i v e X, then compute dot p roduc t s u n t i l
c done message r e c e i v e d
c

e l s e

c a l l MPI BCAST (x , c o l s , MPI DOUBLE PRECISION , master ,
& MPI COMM WORLD, i e r r)

90 c o n t i n u e

c a l l MPI RECV (bu f f e r , c o l s , MPI DOUBLE PRECISION , master ,
& MPI ANY TAG , MPI COMM WORLD, s t a t u s , i e r r)

i f (s t a t u s (MPI TAG) . eq . 0) then
go to 200

end i f

row = s t a t u s (MPI TAG)

ans = 0 .0
do i = 1 , c o l s

ans = ans + b u f f e r (i) * x (i)
end do

c a l l MPI SEND (ans , 1 , MPI DOUBLE PRECISION , master ,
& row , MPI COMM WORLD, i e r r)

go to 90

200 c o n t i n u e

end i f

35 / 1

Matrix * Vector: An example algorithm

Compute A ∗ x = b.

a ”task” is to multiply one row of A times x ;

we can assign one task to each processor. Whenever a processor is
done, give it another task.

each processor needs a copy of x at all times; for each task, it needs
a copy of the corresponding row of A.

processor 0 will do no tasks; instead, it will pass out tasks and
accept results.

36 / 1

Non-Blocking Message Passing

Using MPI Send and MPI Recv forces the sender and receiver to pause
until the message has been sent and received.

In some cases, you may be able to improve efficiency by letting the
sender send the message and proceed immediately to more computations.

On the receiver side, you might also want to declare the receiver ready,
but then go immediately to computation while waiting to actually receive.

The non-blocking MPI Isend and MPI Irecv allow you to do this.
However, the sending routine must not change the data in the array
being sent until the data has actually been successfully transmitted. The
receiver cannot try to use the data until it has been received.

This is done by calling MPI Test or MPI Wait.

37 / 1

Nonblocking Send/Receive Pseudocode

if I am the boss

{

Isend (X(1:100) to worker 1, req1)

Isend (X(101:200) to worker 2, req2)

Isend (X(201:300) to worker 3, req3)

Irecv (fx1 from worker1, req4)

Irecv (fx2 from worker2, req5)

Irecv (fx3 from worker3, req6)

while (1) {

if (Test (req1) && Test (req2) &&

Test (req3) && Test (req4) &&

Test (req5) && Test (req6))

break

}

}

38 / 1

Nonblocking Send/Receive Pseudocode

else if I am a worker

{

Irecv (X, from boss, req) <-- Ready to receive

set up tables <-- work while waiting

Wait (req) <-- pause til data here.

Compute fx = fun(X) <-- X here, go to it.

Isend (fx to boss, req)

}

39 / 1

MPI Language Lesson: MPI Irecv

MPI Irecv (data, count, type, from, tag, comm, req)

data, the address of the data;

count, number of data items;

type, the data type;

from, the processor ID from which data is received;

tag, the message identifier;

comm, the communicator;

req, the request array or structure.

40 / 1

MPI Language Lesson: MPI Test

MPI Test (req, flag, status)

MPI Test reports whether the message associated with req has been
sent and received.

req, the address of the data;

flag, is returned as TRUE if the sent message was received;

status, the status array or structure.

41 / 1

MPI Language Lesson: MPI Wait

MPI Wait (req, status)

MPI Wait waits until the message associated with req has been sent
and received.

req, the address of the data;

status, the status array or structure.

42 / 1

Conclusion

One of MPI’s strongest features is that it is well suited to modern
clusters of 100 or 1,000 processors.

In most cases, an MPI implementation of an algorithm is quite different
from the serial implementation.

In MPI, communication is explicit, and you have to take care of it. This
means you have more control; you also have new kinds of errors and
inefficiencies to watch out for.

MPI can be difficult to use when you want tasks of different kinds to be
going on.

MPI and OpenMP can be used together; for instance, on a cluster of
multicore servers.

43 / 1

References: Books

Gropp, Using MPI;

Mascagni, Srinavasan, Algorithm 806: SPRNG: a scalable library
for pseudorandom number generation, ACM Transactions on
Mathematical Software

Openshaw, High Performance Computing;

Pacheco, Parallel Programming with MPI ;

Petersen, Introduction to Parallel Computing;

Quinn, Parallel Programming in C with MPI and OpenMP;

Snir, MPI: The Complete Reference;

44 / 1

