
7: Introductory MPI

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Parallel Programming

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/

mpi1 2008 vt.pdf

10-12 June 2008

1 / 1

Introductory MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

2 / 1

MPI: Why, Where, How?

In 1917, Richardson’s first efforts to compute a weather prediction were
simplistic and mysteriously inaccurate.

Over time, it became clear that weather could be predicted, but that
accuracy required huge amounts of data.

Soon there was so much data that making a prediction 24 hours in
advance could take...24 hours of computer time.

Weather events like Hurricane Wilma ($30 billion in damage) meant
accurate weather prediction was worth paying for.

3 / 1

Richardson’s Weather Computation for 1917

4 / 1

Predicting the Path of Hurricane Wilma, 2005

5 / 1

MPI: Why, Where, How?

In the 1990’s, the design and maintenance of specially designed
supercomputers became unacceptably high.

It also seemed to be the case that the performance of commodity chips
was not improving fast enough.

However, inter-computer communication had gotten faster and cheaper.

It seemed possible to imagine that an “orchestra” of low-cost machines
could work together and outperform supercomputers, in speed and cost.

But where was the conductor?

6 / 1

Cheap, Ugly, Effective

7 / 1

MPI: Why, Where, How?

MPI (the Message Passing Interface) manages a parallel computation on
a distributed memory system.

MPI is told the number of computers available, and the program to be
run.

MPI then

distributes a copy of the program to each computer,

assigns each computer a process id,

synchronizes the start of the programs,

transfers messages between the processors.

8 / 1

MPI: Why, Where, How?

Suppose a user has written a C program myprog.c that includes the
necessary MPI calls (we’ll worry about what those are later!)

The program must be compiled and loaded into an executable program.
This is usually done on a special compile node of the cluster, which is
available for just this kind of interactive use.

mpicc -o myprog myprog.c

9 / 1

MPI: Why, Where, How?

On some systems, the executable can be run interactively, with the
mpirun command. Here, we request that 4 processors be used in the
execution:

mpirun -np 4 myprog > output.txt

10 / 1

MPI: Why, Where, How?

Interactive execution may be ruled out if you want to run for a long time,
or with a lot of processors.

In that case, you write a job script that describes time limits, input files,
and the program to be run.

You submit the job to a batch system, perhaps like this:

qsub myprog.sh

When your job is completed, you will be able to access the output file as
well as a log file describing how the job ran, on any one of the compute
nodes.

11 / 1

MPI: Why, Where, How?

Since your program ran on N computers, you might have some natural
concerns:

Q: How do we avoid doing the exact same thing N times?

A: MPI gives each computer a unique ID, and that’s enough.

Q: Do we end up with N separate output files?

A: No, MPI collects them all together for you.

12 / 1

Overview of an MPI Computation

We’ll begin with a discussion of MPI computation ”without MPI”.

That is, we’ll hold off on the details of the MPI language, but we will go
through the motions of re-implementing a sequential algorithm using the
capabilities of MPI.

The algorithm we have chosen is a simple example of domain
decomposition, the time dependent heat equation on a wire (a one
dimensional region).

13 / 1

Overview of an MPI Computation: DE-HEAT

Determine the values of H(x , t) over a range t0 <= t <= t1 and space
x0 <= x <= x1, given an initial value H(x , t0), boundary conditions, a
heat source function f (x , t), and a partial differential equation

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

14 / 1

Overview of an MPI Computation: DE-HEAT

The discrete version of the differential equation is:

h(i , j + 1) − h(i , j)

dt
− k

h(i − 1, j) − 2h(i , j) + h(i + 1, j)

dx2
= f (i , j)

We have the values of h(i , j) for 0 <= i <= N and a particular “time” j .
We seek value of h at the “next time”, j + 1.

Boundary conditions give us h(0, j + 1) and h(N, j + 1), and we use the
discrete equation to get the values of h for the remaining spatial indices
0 < i < N.

15 / 1

Overview of an MPI Computation: DE-HEAT

16 / 1

Overview of an MPI Computation: DE-HEAT

At a high level of abstraction, it’s easy to see how this computation could
be done by three processors, which we can call red, green and blue, or
perhaps “0”, “1”, and “2”.

Each processor has a part of the h array.

The red processor, for instance, updates h(0) using boundary conditions,
and h(1) through h(6) using the differential equation.

Because red and green are neighbors, they will also need to exchange
messages containing the values of h(6) and h(7) at the nodes that are
touching.

17 / 1

One Program Binds Them All

At the next level of abstraction, we have to address the issue of writing
one program that all the processors can carry out.

This is going to sound like a Twilight Zone episode.

You’ve just woken up, and been told to help on the HEAT problem.

You know there are P processors on the job.

You look in your wallet and realize your ID number is ID (ID numbers
run from 0 to P-1.

Who do you need to talk to? What do you do?

18 / 1

Overview of an MPI Computation: DE-HEAT

Who do you need to talk to?

If your ID is 0, you will need to share some information with your right
handneighbor, processor 1.

If your ID is P-1, you’ll share information with your lefthand neighbor,
processor P-2.

Otherwise, talk to both ID-1 and ID+1.

In the communication, you “trade” information about the current value
of your solution that touches the border with your neighbor.

You need your neighbor’s border value in order to complete the stencil
that lets you compute the next set of data.

19 / 1

Overview of an MPI Computation: DE-HEAT

What do you do?

We’ll redefine N to be the number of nodes in our own single program,
so that the total number of nodes is P*N.

We’ll store our data in entries H[1] through H[N].

We include two extra locations, H[0] and H[N+1], for values copied
from neighbors. These are sometimes called “ghost values”.

We can figure out our range of X values as [ID∗N
P∗N−1 ,

(ID+1)∗N−1
P∗N−1];

To do our share of the work, we must update H[1] through H[N].

To update H[1], if ID=0, use the boundary condition, else a stencil that
includes H[0] copied from lefthand neighbor.

To update H[N], if ID=P-1, use the boundary condition, else a stencil
that includes H[N+1] copied from righthand neighbor.

20 / 1

Overview of an MPI Computation: DE-HEAT

Some things to notice from our overview.

This program would be considered a good use of MPI, since the problem
is easy to break up into cooperating programs.

The amount of communication between processors is small, and the
pattern of communication is very regular.

The data for this problem is truly distributed. No single processor has
access to the whole solution.

In this case, the individual program that runs on one computer looks a
lot like the sequential program that would solve the whole problem.
That’s not always how it works, though!

21 / 1

How to Say it in MPI: Initialize and Finalize

include <stdlib.h>

include <stdio.h>

include "mpi.h"

int main (int argc, char *argv[])

{

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

Here’s where the good stuff goes!

MPI_Finalize ();

return 0;

}

22 / 1

How to Say it in MPI: The “Good Stuff”

As we begin our calculation, processes 1 through P-1 must send what
they call h[1] “to the left”.

Processes 0 through P-2 must receive these values, storing them in the
ghost value slot h[n+1].

Similarly, h[n] gets tossed ”to the right” into the ghost slot h[0] of the
next higher processor.

Sending this data is done with matching calls to MPI Send and
MPI Recv. The details of the call are more complicated than I am
showing here!

23 / 1

How to Say it in MPI: The “Good Stuff”

if (0 < id)

MPI_Send (h[1] => id-1)

if (id < p-1)

MPI_Recv (h[n+1] <= id+1)

if (id < p-1)

MPI_Send (h[n] => id+1)

if (0 < id)

MPI_Recv (h[0] <= id-1)

24 / 1

How to Say it in MPI: The “Good Stuff”

Our communication scheme is defective however. It comes very close to
deadlock.

Remember deadlock? when a process waits for access to a device, or
data or a message that will never arrive.

The problem here is that by default, an MPI process that sends a
message won’t continue until that message has been received.

If you think about the implications, it’s almost surprising that the code I
have describe will work at all.

It will, but more slowly than it should!

Don’t worry about this fact right now, but realize that with MPI you
must also consider these communication issues.

25 / 1

How to Say it in MPI: The “Good Stuff”

All processes can use the four node stencil now to compute the updated
value of h.

Actually, hnew[1] in the first process, and hnew[n] in the last one, need
to be computed by boundary conditions.

But it’s easier to treat them all the same way, and then correct the two
special cases afterwards.

26 / 1

How to Say it in MPI: The “Good Stuff”

for (i = 1; i <= n; i++)

hnew[i] = h[i] + dt * (

+ k * (h[i-1] - 2 * h[i] + h[i+1]) /dx/dx

+ f (x[i], t));

* Process 0 sets left node by BC *\

* Process P-1 sets right node by BC *\

if (0 == id) hnew[1] = bc (x[1], t);

if (id == p-1) hnew[n] = bc (x[n], t);

* Replace old H by new. *\

for (i = 1; i <= n; i++) h[i] = hnew[i]

27 / 1

THE SOURCE CODE

Here is almost all the source code for a working version of the heat
equation solver.

I’ve chopped it up a bit and compressed it, but I wanted you to see how
things really look.

This example is also available in a FORTRAN77 version. We will be able
to send copies of these examples to an MPI machine for processing later.

28 / 1

Heat Equation Source Code (Page 1)

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>
inc l u d e <math . h>
inc l u d e ”mpi . h”

i n t main (i n t argc , char *a rgv [])
{

i n t id , p ;
double wtime ;

MP I I n i t (&argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &i d) ;
MPI Comm size (MPI COMM WORLD, &p) ;

update (id , p) ;

MP I F i n a l i z e () ;

r e t u r n 0 ;
}

29 / 1

Heat Equation Source Code (Page 2)

double bounda r y c ond i t i o n (double x , double t ime)

/* BOUNDARY CONDITION r e t u r n s H(0 ,T) or H(1 ,T) , any t ime . */
{

i f (x < 0 .5)
{

r e t u r n (100 .0 + 10 .0 * s i n (t ime)) ;
}
e l s e
{

r e t u r n (75 .0) ;
}
}
double i n i t i a l c o n d i t i o n (double x , double t ime)

/* INITIAL CONDITION r e t u r n s H(X,T) f o r i n i t i a l t ime . */
{

r e t u r n 9 5 . 0 ;
}
double r h s (double x , double t ime)

/* RHS r e t u r n s r i g h t hand s i d e f u n c t i o n f (x , t) . */
{

r e t u r n 0 . 0 ;
}

30 / 1

Heat Equation Source Code (Page 3)

/* Set the X c o o r d i n a t e s o f the N nodes . */

x = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;

f o r (i = 0 ; i <= n + 1 ; i++)
{

x [i] = ((double) (i d * n + i − 1) * x max
+ (double) (p * n − i d * n − i) * x min)
/ (double) (p * n − 1) ;

}
/* Set the v a l u e s o f H at the i n i t i a l t ime . */

t ime = t ime min ;
h = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;
h new = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;
h [0] = 0 . 0 ;
f o r (i = 1 ; i <= n ; i++)
{

h [i] = i n i t i a l c o n d i t i o n (x [i] , t ime) ;
}
h [n+1] = 0 . 0 ;

t im e d e l t a = (time max − t ime min) / (double) (j max − j m i n) ;
x d e l t a = (x max − x min) / (double) (p * n − 1) ;

31 / 1

Heat Equation Source Code (Page 4)

f o r (j = 1 ; j <= j max ; j++) {
t ime new = j * t im e d e l t a ;

/* Send H[1] to ID−1. */

i f (0 < i d) {
tag = 1 ;
MPI Send (&h [1] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[N+1] from ID+1. */

i f (i d < p−1) {
tag = 1 ;
MPI Recv (&h [n+1] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD, &s t a t u s) ;

}
/* Send H[N] to ID+1. */

i f (i d < p−1) {
tag = 2 ;
MPI Send (&h [n] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[0] from ID−1. */

i f (0 < i d) {
tag = 2 ;
MPI Recv (&h [0] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD, &s t a t u s) ;

}

32 / 1

Heat Equation Source Code (Page 5)

/* Update the t empe ra tu r e based on the f o u r p o i n t s t e n c i l . */

f o r (i = 1 ; i <= n ; i++)
{

h new [i] = h [i]
+ (t im e d e l t a * k / x d e l t a / x d e l t a) * (h [i−1] − 2 .0 * h [i] + h [i +1])
+ t im e d e l t a * r h s (x [i] , t ime) ;
}

/* Co r r e c t s e t t i n g s o f f i r s t H i n f i r s t i n t e r v a l , l a s t H i n l a s t i n t e r v a l . */

i f (0 == i d) h new [1] = bounda r y c ond i t i o n (x [1] , t ime new) ;

i f (i d == p − 1) h new [n] = bounda r y c ond i t i o n (x [n] , t ime new) ;

/* Update t ime and tempe ra tu r e . */

t ime = time new ;

f o r (i = 1 ; i <= n ; i++) h [i] = h new [i] ;

/* End o f t ime loop . */
}

33 / 1

COMPILING, Linking, Running

Now that we have a source code file, let’s go through the process of
using it.

The first step is to compile the program.

On the MPI machine, a special version of the compiler automatically
knows how to include MPI:

mpicc -c myprog.c

Compiling on your laptop can be a convenient check for syntax errors.
But you may need to find a copy of mpi.h for C/C++ or mpif.h for
FORTRAN and place that in the directory.

gcc -c myprog.c

34 / 1

Compiling, LINKING, Running

We can only link on a machine that has the MPI libraries. So let’s
assume we’re on the MPI machine now.

To compile and link in one step:

mpicc myprog.c

To link a compiled code:

mpicc myprog.o

Either command creates the MPI executable a.out.

35 / 1

Compiling, Linking, RUNNING

Sometimes it is legal to run your program interactively on an MPI
machine, if your program is small in time and memory.

Let’s give our executable a more memorable name:

mv a.out myprog

To run interactively with 4 processors:

mpirun -np 4 ./myprog

36 / 1

Compiling, Linking, RUNNING

Most jobs on an MPI system go through a batch system. That means
you copy a script file, change a few parameters including the name of the
program, and submit it.

Here is a script file for System X, called myprog.sh

37 / 1

Compiling, Linking, RUNNING

#!/bin/bash

#PBS -lwalltime=00:00:30

#PBS -lnodes=2:ppn=2

#PBS -W group_list=???

#PBS -q production_q

#PBS -A $$$

NUM_NODES=‘/bin/cat $PBS_NODEFILE | /usr/bin/wc -l \

| /usr/bin/sed "s/ //g"‘

cd $PBS_O_WORKDIR

export PATH=/nfs/software/bin:$PATH

jmdrun -printhostname \

-np $NUM_NODES \

-hostfile $PBS_NODEFILE \

./myprog &> myprog.txt

exit;

38 / 1

Compiling, Linking, RUNNING

If you look, you can spot the most important line in this file, which says
to run myprog and put the output into myprog.txt.

The command -lnodes=2:ppn=2 says to use two nodes, and to use that
there are two processors on each node, for a total of four processors.
(System X uses dual core chips).

39 / 1

Compiling, Linking, RUNNING

So to use the batch system, you first compile your program, then send
the job to be processed:

qsub myprog.sh

The system will accept your job, and report to you a queueing number
that can be used to locate the job while it is waiting, and which will be
part of the name of the log files at the end.

If your output does not show up in a reasonable time, you can issue the
command qstat to see its status.

40 / 1

Compiling, Linking, RUNNING

So to use the batch system, you first compile your program, then send
the job to be processed:

qsub myprog.sh

The system will accept your job, and report to you a queueing number
that can be used to locate the job while it is waiting, and which will be
part of the name of the log files at the end.

If your output does not show up in a reasonable time, you can issue the
command qstat to see its status.

41 / 1

Exercise

As a classroom exercise, we will try to put together a SIMPLE program
to do numerical quadrature. To keep it even simpler, we’ll do a Monte
Carlo estimation, so there’s little need to coordinate the efforts of
multiple processors.

Here’s the problem:

Estimate the integral of 3 ∗ x2 between 0 and 1.

Start by writing a sequential program, in which the computation is all in
a separate function.

42 / 1

Exercise

Choose a value for N

Pick a seed for random number generator.

Set Q to 0

Do N times:

Pick a random X in [0,1].

Q = Q + 3 X^2

end iteration

Estimate is Q / N

43 / 1

Exercise

Once the sequential program is written, running, and running correctly,
how much work do we need to do to turn it into a parallel program using
MPI?

If we use the master-worker model, then the master process can collect
all the estimates and average them for a final best estimate. Since this is
very little work, we can let the master participate in the computation, as
well.

So in the main program, we can isolate ALL the MPI work of
initialization, communication (send N, return partial estimate of Q) and
wrap up.

This helps to make it clear that an MPI program is really a sequential
program...that somehow can communicate with other sequential
programs.

44 / 1

