
Distributed Memory Programming With MPI

Computer Lab Exercises

Advanced Computational Science II
John Burkardt

Department of Scientific Computing
Florida State University

https://people.sc.fsu.edu/∼jburkardt/presentations/...
mpi exercises 2012 acs2.pdf

23 October 2012

This lab introduces MPI, which can be used to write parallel programs on distributed memory systems.
Although MPI is typically used on clusters, most of our lab exercises will be carried out directly on the

lab machines, and in fact, each person will be using a single machine. In this case, the parallelism will
come from regarding each core on the machine as a separate process with its own memory. Our last in-class
exercise, however, will use the HPC cluster for comparison.

The lab exercises include:

1. bashrc: add MPI to your .bashrc file;

2. hello: compile and run a simple program;

3. quad: estimate an integral using quadrature;

4. prime: count the prime numbers from 2 to N;

5. prime hpc: run prime on the FSU HPC;

6. heat: the 1D heat equation for distributed memory.

7. search: your assignment, search for solutions to an integer equation.

For most of the exercises, there is a source code program from which you can start. The source code
is generally available in a C, C++, FORTRAN77 and FORTRAN90 version, so you can stick with your
favorite language.

At the end of these exercises, you are to work on an assignment to be handed in by next Tuesday.

1 BASHRC: Add MPI to Your .bashrc File

In order to use MPI on the lab machines, we need to issue a command that defines which version of MPI we
want to use and the names and locations of various useful files and programs. The command is the usual
horrible impossible-to-remember string:

module load openmpi-x86_64

You have to issue this command every time you log onto a lab machine and want to use MPI.
A better solution is to copy this command into your .bashrc file, because the computer can do a much

better job of remembering the command. That way, it will automatically set up MPI for you every time you
log in.

1

To do this, be sure you are in your main directory. Use your favorite editor to update or create the
.bashrc file, and insert the necessary line:

gedit .bashrc

(insert the line "module load openmpi-x86_64")

(then save and exit)

The .bashrc file only gets referenced when you log in, so the new definitions won’t automatically take
effect until next login. To force them to go into effect now, type

source .bashrc

The main thing this will do is define the MPI versions of the compilers, including:

mpicc

mpic++

mpif77

mpif90

To check that the compilers have been defined, try a command like

which mpicc

If the system knows how to find the MPI C compiler, it will print out its location. If not, it will print
nothing. (If your which command comes back empty-handed, let me know!)

Assuming this has been done, we’ve at least made it easy to invoke MPI on the lab machines!

2 HELLO: Compile and run a simple program

Get a copy of the hello program. One location is:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2012/mpi/hello/hello.html

This program doesn’t do any parallel processing, but it does call MPI functions, so it’s a simple starting
example. It shows:

� the invocation of the “include” file;

� the initialization call;

� how you find out how many processes are available;

� how you find out the ID of your process;

� how the process ID can be used to control your actions;

� the finalization or termination call.

Although the program is written in legal C or FORTRAN, you cannot compile it with the basic C or
FORTRAN compiler, because the include file is not in the default location. In other words, a command like

gcc hello.c

will produce lots of error messages! Instead, we want to compile with the appropriate MPI compiler.
Once you’ve created an executable file called a.out, rename it to hello:

mv a.out hello

2

Where can we run this program? By great luck, our lab machines are dual processor quad core systems,
which means there are eight cores available. An MPI program can run on eight cores on one computer just
as well as on one core on each of eight computers. So let’s use the lab machines!

How do we run the program in parallel? Remember, we want to run several copies, we want them to
know how to communicate with each other, we want them to be assigned distinct MPI ID’s. Simply typing
./hello is not going to do this! Instead, we need to use a command that can take care of all these details.
Since we are running all the copies on one machine, the only missing information we need to specify is how
many copies are to be run. The command we need is called mpirun and it works like this:

mpirun -np 2 ./hello

The -np 2 switch tells mpirun how many synchronized copies of the program are to be run. Since we didn’t
specify any information about where they are to run, they will run on the local machine. Notice that, with
this command, you get a hello from two separate copies of the program, as you should expect!

3 QUAD: Using More Processes

Get a copy of the quad program. One location is:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2012/mpi/quad/quad.html

This program estimates an integral
∫ b

a
f(x) dx using an average of function values at n equally spaced

points. This is a natural application for parallel processing. Each process can evaluate the function at a
subset of the points, and at the end the partial sums can be added together to get the integral estimate.

3.1 Run QUAD, varying the number of processes

Right now, we’re not interested in the answer from the program, but in how long it takes to get that answer.
So we set the value of n high enough that we can expect the program to at least roughly a second to run.

The quad program expects you to enter the number n. You can enter it on the command line:

quad 1000

or else it will ask for you input at run time:

quad

Enter N, the number of intervals: 1000

What is the exact mpirun command that will run your program with 8 processes and set the value of
n to 1000? (If you can’t figure this out, please ask!)

mpirun ____ ____ ____ ____

Try running the program with an increasing number of processes p, and a fixed number n=10,000 of
intervals. Remember not to use a comma when you input the value of n to the program!

p Time

-- ------

1 ______

2 ______

4 ______

8 ______

16 ______

Can you make any conclusions from these results?

3

3.2 Run QUAD, varying the amount of work

Fix the number of processes to 8, and vary the number of intervals. Make a series of runs with increasing
values of n, the number of evaluation points. What is the behavior of the error? In particular, as we multiply
n by 10, what happens to the error? Decide this by taking the ratio of the error E to the error E1000 we
see on the first calculation.

n E E / E1000

---- ------ ----------

1,000 ______ 1.00_____

2,000 ______ _________

4,000 ______ _________

8,000 ______ _________

16,000 ______ _________

We might expect that if we double n, the error will decrease by a factor of 1/2 (”everything is linear”)
or 1/4 (”sometimes, numerical analysis pays off”). Roughly what pattern do you see?

4 PRIME: Count the prime numbers from 2 to N

In this exercise, you are given a working sequential program that is very close to being an MPI program.
You’ll try to convert it to MPI. The program counts the primes between 2 and 100,000.

Get a copy of the prime program. One location is:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2012/mpi/prime/prime.html

4.1 Run PRIME sequentially

Compile and run prime sequentially, that is, use the regular gnu compilers to compile, and do not use
mpirun to run. The code breaks up the interval [2,100000] into equal parts, and uses a loop to examine
each subinterval separately. At the end, the results are summed up to get the final answer.

You can estimate the time that the program takes to run by using the time command. For instance:

gcc prime.c

mv a.out prime

time ./prime

(program output appears)

real 0m1.650s <-- 1.65 seconds

user 0m1.648s

sys 0m0.001s

Record the time it took for the program to run:

Serial program ran in __________ seconds.

4.2 Make an MPI version of PRIME

Because the program has already been broken up into chunks, we can try to make a parallel version in which
each chunk is done by a separate process.

Taking slow and careful steps, convert the program so that it uses MPI. What follows is one way to
organize your work:
We always have to do these simple things:

4

� invoke the MPI include file;

� call MPI Initalize(), MPI Comm size() and MPI Comm rank() before stuff happens;

� call MPI Finalize() after stuff happens.

Clean up the print statements:

� Before the loop, there are some print statements. Only process 0 should print these;

� Inside the loop, there is a print statement. Let it stay as it is;

� After the loop, there are some print statements. Only process 0 should print these;

Remove the loop, and use MPI Reduce to collect the results:

� Remove the beginning and ending of the loop which used to define id; the value of id is now set by
the call to MPI Comm rank();

� an MPI Reduce() command should collect the partial sum to process 0;

Compute the time:

� Before the loop begins, process 0 prints some stuff. Include a call to MPI Wtime() there, to start
the timer;

� After the loop, process 0 prints some stuff. Call MPI Wtime() again, to update the time, and then
print it.

Once you think you’ve gotten the program converted to MPI, try to run it again with 4 and 8 processes.
How does your time compare with the serial run?

serial __________

4 processes __________

8 processes __________

Have we solved the PRIME problem? Here are some things to think about:

� If we increase the top number from 100,000 to 1,000,000, does the problem get 10 times harder, and
take 10 times as long? (No, it takes much longer!);

� Since each process has to check roughly the same number of potential primes, does this mean they all
have about the same amount of work? (No, the last process works much harder than the first one!)

5 PRIME HPC: Run PRIME on the FSU HPC

Assuming there is time, and assuming the HPC is available, we can try to run our prime programs on the
HPC cluster.

Copy the file “prime batch.sh” from the same directory where you got the prime program.
To work on the cluster, you must have an account on the FSU HPC system. Moreover, you must know

how to use sftp to transfer files up there, and ssh to set up an interactive login session. Because I prefer
to edit files on my home system, I usually have both an ssh and sftp window open at the same time. If
anything’s wrong with a file on the HPC, I get it back to the home system, edit it on my local friendly editor,
and then put the updated copy back.

Open sftp and ssh windows, and connect them both to the HPC system. My HPC account
is on sc.hpc.fsu.edu. Copy your prime program, and the prime batch.sh file to the HPC.

Once you’re logged in, you want to compile your program. The FSU HPC system includes several
choices for the compiler, and several “flavors” of MPI. For our work, we will choose the GNU compilers, and
OpenMPI. To do this, we must issue the following command on the HPC, every time we plan to do some
MPI work:

5

module load gnu-openmpi

(You could stick this command into the .bashrc file on the HPC, just like we did for the lab machines.)
Now compile your copy of the prime program using the appropriate command:

mpicc prime.c

mpiCC prime.cpp

mpif77 prime.f

mpif90 prime.f90

This will create an executable called a.out, which you should rename to prime:

mv a.out prime

The HPC login node is not supposed to be used for computation. It is shared by all the people who are
trying to work on the cluster. While we could issue an mpirun command now, it would inconvenience all
the other people who are logged in and doing editing and other tasks. Instead, we need to submit our job
to the queueing system, which will sent it to a computational node instead.

Take a look at the script. There is probably nothing you have to change. The lines of text beginning
with #MOAB are commands to the queueing system, specifying a time limit, number of processors, a job
name and so on.

The commands that don’t begin with a # are the commands that we can imagine entering interactively.
In particular:

� module load gnu-openmpi sets up OpenMP with gnu compilers;

� cd $PBS O WORKDIR runs the job from “this” directory;

� mpirun -np 8 ./prime > prime output.txt runs our program.

The number of processors requested by the ppn=8 statement should match the number of MPI processes
requested by the mpirun -np 8 statement!

Note that the HPC cluster we are using in the classroom queue has 32 cores on each node, so you can
run up to 32 MPI processes here.

Submit the script on the HPC using the command:

msub prime_batch.sh

To see the status of your job, you can issue one of the commands:

showq

showq -u your-username-here

showq | grep your-username-here

If your program has run successfully, the output will come back as a file with a name like prime batch.o12345.

6 HEAT: The 1D Heat Equation

Insert MPI calls into a version of the heat program, so that the resulting coded runs using distributed
memory.

Get a copy of the heat program. One location is:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2012/mpi/heat/heat.html

6

The program estimates the heat function h(x, t), which is defined on the spatial interval 0 <= x <= 1
and the time interval 0 <= t <= 10.

Our version of the heat equation has the form

∂h

∂t
− ∂2h

∂x2
= 0. (1)

with initial condition
h(x, 0) = 95.0 (2)

and boundary conditions

h(0, t) = 100 + 10 ∗ sin(t) (3)

h(1, t) = 75 (4)

For the sequential code, we discretize the problem so that in space we have n + 2=12 nodes, and in the
time direction 101 time values.

For the parallel version, each process will use n+2= 12 spatial nodes. Each process will identify its values
as h(0) through h(n+ 1). As we discussed in class, entries 0 and n+1 are “special”, that is, the process does
not compute them, but gets them from neighboring processes, or using boundary conditions.

If there are p processes, then there will be a total of p*n+2 nodes, if we ignore overlap. The extra two
nodes are the nodes at the left and right endpoints.

As we discussed in class, at each step, a process computes the new value of h(i) based on the current
values of h(i−1), h(i), and h(i+1). To complete the calculation, the process must “borrow” updated copies
of h(0) and h(n + 1) from its left and right neighbors.

The program is almost completely written for MPI. However, in the routine heat part, where the actual
computation takes place, three lines are missing. These lines carry out the second step in the exchange of
data, in which processes 1 through p-1 send their values of h(1) to the left, and processes 0 through p-2
receive these values into the variable h(n + 1).

Run the program using 8 processes.

7 SEARCH: search for solutions to an integer equation.

We are given a function f(i), defined only for positive integer inputs. We want to search the integers a ≤ i ≤ b
seeking a value j such that f(j) = c. We believe there is exactly one solution. This is a perfect opportunity
for parallel programming.

Get a copy of the search program. One location is:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2012/mpi/search/search.html

You should be able to compile and run this program sequentially. It prints out an estimate of the running
time for you as well. You might want to record this value.

Your assignment: Modify a copy of the search program so that it will run in parallel under MPI. It
should also print out the wall clock time, as measured by MPI Wtime();

To get credit for this lab, turn in three files to Heng Dai by Tuesday, 30 October 2012:

1. your revised source code;

2. the output from a run using 1 process;

3. the output from a run using 8 processes.

7

