MATMUL: An Interactive Matrix Multiplication
Benchmark

https://people.sc.fsu.edu/~jburkardt /presentations/matmul 1995_psc.pdf

John Burkardt and Paul Puglielli
Pittsburgh Supercomputing Center
Pittsburgh, Pennsylvania, 15213

10 July 1995

Contents
1 Introduction 1
2 The Experimental Program MATMUL 2

3 How Fast Do Different Computers Solve the Same Problem? 3

4 How Much Does Vectorization Help on the Cray? 4
5 What Happens When Problems Get Larger? 4
6 When Does a Computer Reach its Peak Rate? 5
7 How does the Cray Solve a Series of Larger Problems? 7
8 Six Simple Ways to Multiply Matrices 7
9 Advanced Algorithms to Multiply Matrices 8
10 Testing Loop Unrolling 9
11 How Much Harder is Complex Arithmetic? 10
12 What is the Cost of Double Precision Arithmetic? 11
13 Integer Arithmetic Should be Faster than Real 11

14 Parallel Processing on the Cray 12

15 Comparing C to FORTRAN 13

15.1 C calling FORTRAN: Case differences: 14
15.2 C Calling FORTRAN: Passing Variables by Value or Reference: . 14
15.3 C Calling FORTRAN: Passing Constants 14
15.4 C Calling FORTRAN: Passing Arrays 15
15.5 C Calling FORTRAN: Putting it all together 16
16 Using Pointers to Speed Up Array Access 17
17 Multitasking in C on the Cray 19
18 Conclusions 19
A Notes 20
B The MATMUL results tables 20
C Explanations of terms 22
D The FORTRAN Algorithms 24
E The C algorithms 30
Abstract

This technical report describes an interactive program called M AT-
MUL. The MATMUL program can be used to make a variety of simple
benchmark comparisons involving matrix multiplication. In particular,
the user can easily vary the size of the matrix, the leading storage dimen-
sion, and the algorithm employed. The program reports the performance
of each algorith in a table.

1 Introduction

The Cray can seem like a wonderful, even magical machine. We’re told, for
instance, that it can add two numbers faster than light can travel six feet. Talk
like that is fine for the sales brochure, but it’s not a sensible way to think about
computers!

Perhaps the idea is right, and it’s simply the units of measurement that are
inappropriate. Adding two numbers is too small a task, and the distance light
travels is too whimsical a measurement.

In this paper, we will try to get to know a computer by doing simple “exper-
iments” on it. We aren’t primarily interested in getting a performance rating
for computers. We do want to find and explore any unusual behavior we come
across.

We’ve developed a program called MATMUL to use as our exploratory tool.
We tried to make the program as flexible as possible, so that it was easy to add

new pieces or change the way the program worked when we found something
we hadn’t expected.

The most complicated part of the program is the interactive part, which
helps the user choose the algorithm and problem size. The simple part of the
program carries out the assigned piece of work, and reports the time it took.

Using this approach, we were able to verify some simple facts, such as that a
Cray YMP is faster than an IBM PC. (We could also say how much faster, and
whether there were some problems the PC could do faster). We were able to
see effects we had been trained to expect, such as memory bank conflicts, and
the strong influence of index ordering in nested DO loops. But we were also
intrigued to stumble across behaviors we didn’t know much about, including the
power of loop unrolling, the cost of “unusual” arithmetic, and the comparative
speeds of C and FORTRAN.

Most of our work was done on the Cray YMP. Some of the behavior we
found can be explained only by knowing architectural details of the Cray. But
we didn’t have to read a Cray manual to find this behavior; we saw it happen
to a problem we were interested in.

The program we wrote left many loose ends, but we saw no need to be
complete. Our purpose was to do enjoyable “experimental” computer science.
We present our methods and results here.

2 The Experimental Program MATMUL

The MATMUL program sets up and solves matrix multiplication problems.
There were many reasons for choosing matrix multiplication:

e It’s a simple problem that has a lot in common with the big scientific
programs that are usually run on the Cray.

e It’s easy to make problems of any size.

e It’s easy to compute the amount of work the computer will need to carry
out to solve the problem.

e There are a lot of algorithms that have been proposed to carry out the
solution.

We did NOT want to use Gaussian elimination as the model problem. First
of all, there is already a LINPACK benchmark program in wide use. Secondly,
the Gaussian elimination problem is much more involved. It’s harder to see the
computer’s behavior, because the coding is so dense.

We don’t really care about the actual answer that is computed by MATMUL.
(We do check a single value of the answer, just to make sure the work is getting
done!). What we want to know is how long it took THIS computer to solve
THIS problem using THIS method.

Even a single timing result from MATMUL is not very interesting. After
all, we’re probably not sure how long it should take for a particular problem.

But the fun begins when MATMUL is used to make comparisons, when we run
MATMUL several different ways. For instance, MATMUL can be used to:

e solve the same problem on different computers;

e compare different methods of solving the problem:;

investigate the cost of higher precision, or complex arithmetic;
e find the “cruising rate” for the computer;
e test programming methods of speeding up an algorithm;

e compare different languages.

Each study can produce unexpected results. But often there is a pattern in
these results that suggests an explanation. MATMUL can easily be used to test
whether this explanation holds on new problems.

3 How Fast Do Different Computers Solve the
Same Problem?

Perhaps the simplest use of MATMUL is as a “stopwatch” program, that allows
us to stage a race between different computers.

It’s not to hard to get a copy of MATMUL running on different computers.
Once we’ve done that, we simply run MATMUL on each machine, solve the
same size problem, and note the time taken. We did this using a simple triple
DO loop method, called “IJK”, on a small problem of size N=64, and got the
following results:

Table 1:

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
1JK 513 64 0.003509 524288 149.4199 64.0000 Cray YMP Fortran
IJK 100 64 0.187488 524288 2.7964 64.0000 DECstation Fortran
IJK 300 64 0.429000 524288 1.2221 64.0000 VAX/VMS Fortran
IJK 65 64 266.9004 524288 0.0020 64.0000 IBM PC Fortran
1JK 65 64 468.5000 524288 0.0011 64.0000 Macintosh Fortran

There are only two columns of this table that concern us right now: the
“Time” and the “Machine” columns. (See Appendix 2 for a complete explana-
tion of the format of these tables). MATMUL reports the number of seconds
that it took to solve the chosen problem. We can see that the amount of time
required varies by a factor of more than 100,000 between the slowest and the
fastest machines!

These results should suggest why the Cray is called a “supercomputer”. It
really does work faster than others. The rest of our experiments will take place
on the Cray, with the VAX/VMS used for comparison. This is mainly to simplify
our report; also, we didn’t have to wait forever for results!

4 How Much Does Vectorization Help on the
Cray?

The Cray is a fast machine. The hardware includes fast processor chips; there
is also a software technique called “vectorization” which tries to hurry up the
solution of problems involving operations on large lists of data. In FORTRAN
programs, this vectorization occurs only for statements inside DO loops, while
C programs can achieve vectorization in FOR loops.

Without understanding much about vectorization, we can use MATMUL to
investigate how much of the Cray’s speed comes from hardware, and how much
from software.

We have already seen that if we run the IJK method on a problem of size
64, we achieve a speed of 150 MegaFLOPS. How much of this speed comes from
vectorization? Because vectorization is done through software, we can turn it
“on” or “off” easily. So to test how much vectorization helps us, we can rerun
the same problem with vectorization turned off.

Vectorization can be turned off in a FORTRAN program by inserting the
statement

CDIR$ NEXTSCALAR

just before the DO loop that we want the Cray NOT to vectorize. MATMUL
includes just such a loop, and calls the resulting method “SIJK”. If we run SIJK
on the same problem, we achieve a rate of about 10 MegaFLOPS instead of 170:

Table 2: Comparison of vectorized and scalar IJK loops.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 513 150 0.038936 6750000 173.3608 150.0000 Cray YMP Fortran
SIJK 513 150 0.719396 6750000 9.3829 150.0000 Cray YMP Fortran

Remember that a VAX/VMS system seems to solve these problems at a rate
of about 1 MegaFLOP. Our new results suggests that the Cray’s high speed,
as compared with a VAX/VMS, derives in roughly equal parts from its fast
processor (10 fold speedup) and from vectorization (15 to 30 fold speedup).

5 What Happens When Problems Get Larger?

A big computer like the Cray attracts users with big problems. Most big prob-
lems “grew” out of small ones, and the program that solved the small problem
is easily modified to solve the large one. Unfortunately, big problems are dif-
ferent than smaller ones. They’re typically much harder. An algorithm that is
appropriate to solve a small problem on a microcomputer or even a mainframe,
may break down when a big version of the problem is tried on a supercomputer.

The problem, which is common to most scientific problems, is that the hard-
ness of the problem is not a “linear” function of the size of the problem. In plain
words, if we try to solve a problem that is twice as large, it takes more than
twice the amount of work.

For instance, if we measure the “size” of a sorting problem by N, the length of
the list of numbers we are sorting, it is well known that the bubble sort method
takes roughly N*N/2 steps to sort the list. That means that a list of 200 numbers
is 4 times harder to sort than a list of 100 numbers. This is a “quadratic”
increase in difficulty. Solving a linear system using Gaussian elimination, or
multiplying two square matrices, are both problems which increase “cubically”
in difficulty. That is, the number of operations is roughly related to N*N*N,
and hence doubling the problem size causes an eight-fold increase in work.

Frequently, there may be a choice of several methods to use to solve a prob-
lem. For small problems, a user may prefer the a simple though inefficient
method (a bubble sort), rather than a complicated, efficient one (the Quick-
sort). For small problems, the advantage of efficiency is not obvious. But when
the user tries to solve a large problem with the same simple method, a great
deal of computer time will be wasted.

So it’s important to be able to estimate the behavior of an algorithm for
large problems, and to know about other algorithms that may have better per-
formance. We will see that there is at least one way to multiply two matrices
(Strassen’s algorithm) that is very much more efficient than the standard ways,
in this sense.

6 When Does a Computer Reach its Peak Rate?

Whenever a computer solves a problem, there is a certain amount of work that
is done that is not directly related to computing the answer. Such work includes
the opening of files, the printing of information to the user, the transfer of control
to a subroutine, the collection of data from memory, the control of iterations,
and so on. This work is sometimes called “overhead”.

When MATMUL solves a small problem, the overhead can be a very signif-
icant portion of the computation. This can make the computer achieve a much
lower MegaFLOP rate than it is capable of. We would expect, however, that for
larger problems, the overhead will become relatively less significant, although it
will never go away. For larger problems, we would expect to see the computer
reach a typical, limiting speed for floating point calculations.

This is somewhat like the behavior of a sports car traveling between two
points. When the points are too close (say, 1000 feet), the car spends most
of the travel time accelerating, and then decelerating. The average speed is
disappointingly low. But on a longer journey, we can expect the car to spend
most of the journey traveling at top speed. Therefore, we could estimate that top
speed by dividing distance by time. The corresponding estimate for a computer
would be made by dividing the amount of arithmetic work by the required time,
to get a “computational rate”.

Let’s look at the computational rates for a few computers.

This rate is

typically measured in “MegaFLOPS” (millions of floating point operations per
second), which is listed in the table as “MFLOPS”. First, we will see how the
Cray’s rate changes as we increase the problem size:

Table 3: IJK on the Cray, for increasing problem size.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 513 1 0.4074E-05 2 0.4909 1.0000 Cray YMP Fortran
1JK 513 2 0.5682E-05 16 2.8159 2.0000 Cray YMP Fortran
IJK 513 4 0.1231E-04 128 10.3964 4.0000 Cray YMP Fortran
IJK 513 8 0.3757E-04 1024 27.2587 8.0000 Cray YMP Fortran
IJK 513 16 0.1424E-03 8192 57.5265 16.0000 Cray YMP Fortran
IJK 513 32 0.6377E-03 65536 102.7648 32.0000 Cray YMP Fortran
IJK 513 64 0.3401E-02 524288 154.1430 64.0000 Cray YMP Fortran
IJK 513 128 0.2445E-01 4194304 171.5394 128.0000 Cray YMP Fortran
IJK 513 256 0.1654 33554432 202.8544 256.0000 Cray YMP Fortran
IJK 513 512 1.232 268435456 217.8186 512.0000 Cray YMP Fortran

Here, we're only starting to level off at a speed of 200 MegaFLOPS as the
problem size reaches 256.

Now we're not talking about the fact that it takes longer to solve bigger
problems. That’s obvious. What we’re saying is that we solve bigger problems
more efficiently than smaller ones.

This effect is more pronounced on powerful machines. Their power is wasted
on small problems. Compare the above results with the behavior of the VAX/VMS
system for the same set of problems.

Table 4: 1IJK on the VAX/VMS, for increasing problem size.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 300 1 0.001000 2 0.0020 1.0000 VAX/VMS Fortran
IJK 300 2 0.001000 16 0.0160 2.0000 VAX/VMS Fortran
IJK 300 4 0.001000 128 0.1280 4.0000 VAX/VMS Fortran
IJK 300 8 0.001000 1024 1.0240 8.0000 VAX/VMS Fortran
IJK 300 16 0.001000 8192 8.1920 16.0000 VAX/VMS Fortran
IJK 300 32 0.050000 65536 1.3107 32.0000 VAX/VMS Fortran
IJK 300 64 0.450000 524288 1.1651 64.0000 VAX/VMS Fortran
IJK 300 128 4.020000 4194304 1.0434 128.0000 VAX/VMS Fortran
IJK 300 256 34.719997 33554432 0.9664 256.000 VAX/VMS Fortran

The first strange thing is the behavior of the time. It’s stuck at 0.001 seconds
from N=1 to N=16. Sadly, this is because the VAX timer is not very accurate,
and was going to return a timing of 0.0! We’ve stuck in a line that forces it to
return a value of 0.001 in that case. There’s also a “goofy” result at N=16, where
we get a MegaFLOP rating of 8, which is probably also part of the inaccuracy

of the clock.

Once the problem is large enough that the clock returns values greater than
0.001, we can have some confidence in the results. And what we see is that the
VAX is actually SLOWING DOWN for large problems!

It turns out that the VAX was not designed to solve big problems well. Its
top computational speed may be about 1 MegaFLOP, but other factors, such
as accessing elements of the matrices from paged memory, are slowing it down!

7 How does the Cray Solve a Series of Larger
Problems?

If we solve a sequence of problems of increasing size, we will notice another
interesting feature of the Cray. For instance, here are the timing results (in
ten-thousandths of a second) for a sequence of tests:

Table 5: Problem size versus Cray execution time (0.0001 seconds)
N 60 61 62 63 64 65 66 67
Time 30 31 32 34 35 46 48 49

Here, the jump from N=64 to 65 is very noticeable. We can see similar
jumps after N=128, 192, 256 and so on. This is actually caused by the way the
special “vectorization” feature of the Cray works.

The Cray is processing our problem in batches of 64. Each time the problem
size goes up by 64, the Cray has to introduce a “pause” while it pulls in new
data. This “pause” is costly. We can see that 20% of the cost of solving a
problem of size 65 is spent handling the very last iteration! So there’s a reason
to be glad that the C90, the next version of the Cray, will use a vector size of
128!

8 Six Simple Ways to Multiply Matrices

Up to now, we've only used one version of the triple DO loop algorithm. But
in a sense, most programs to do matrix multiplication are a variation on the
following theme on a triple DO loop:

A(I,K) = A(I,K) + B(I,J) * C(J,K)

There are six ways to order the loops, even though the actual formula they
control remains the same. Surprisingly, the order matters a lot. For a problem
of size N=150, the Cray MegaFLOP rates were 170 for four of the orderings,
but only 80 for two, the orderings which treat matrix multiplication like a dot
product.

We haven'’t really figured out a good reason for these results. We do know
that the dot product calculation might not vectorize as well. Each execution of

Table 6:

Six basic algorithms, for N = 150, on the Cray.

ORDER

LDA

N

Time

Ops MFLOPS

ANN)

Machine

Language

IJK
IKJ
JIK
JKI
KI1J
KJI

513
513
513
513
513
513

150
150
150
150
150
150

0.038936
0.083022
0.038396
0.037936
0.082910
0.038279

6750000 173.3608
6750000 81.3042
6750000 175.8016
6750000 177.9294
6750000 81.4137
6750000 176.3374

150.0000
150.0000
150.0000
150.0000
150.0000
150.0000

Cray YMP
Cray YMP
Cray YMP
Cray YMP
Cray YMP
Cray YMP

Fortran
Fortran
Fortran
Fortran
Fortran
Fortran

the dot product loop requires all the partial products to be added to the same
quantity, rather than to separate quantities.

9 Advanced Algorithms to Multiply Matrices

Using MATMUL, we can examine advanced multiplication methods that use
standard software. We should ask a simple question: do we get a significant
speedup in return for the cost of calling a subroutine to do our work? After all,
the IJK method is simple, short, and reasonably efficient.

The level 1 Basic Linear Algebra Subprograms (BLAS) are vector oriented
routines used as building blocks for packages like LINPACK. The authors hoped
that optimized versions of these routines would be developed for all computers,
and that programs using them would therefore get high performance.

We can start with the IKJ triple DO loop, and replace the innermost loop
with a call to the BLAS routine SDOT. MATMUL contains a copy of the BLAS
routine SDOT, but calls it “TDOT” instead. There is also an optimized version
of SDOT available in the Cray scientific library, SCILIB. Thus, it would make
sense to compare the performance of IKJ, TDOT and SDOT:

Table 7: Compare IKJ, TDOT, and SDOT.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine

Language

IKJ 513 150 0.8367E-01 6750000 80.6726 150.0000 Cray YMP
TDOT 513 150 0.1160 6750000 58.2123 150.0000 Cray YMP
SDOT 513 150 0.9449E-01 6750000 71.4346 150.0000 Cray YMP

Fortran
Fortran
Fortran

The message here might be that the optimization available in SDOT and
TDOT is outweighed by the cost of transferring control back and forth between
the main routine and the subroutine.

Similar results were discovered for the “equivalent” codes JKI, TAXPYC,
and SAXPYC, as well as the group IJK, TAXPYR and SAXPYR. Whether
we used our own FORTRAN copies, or the optimized SCILIB copies, programs
using the BLAS routines were slower than the straightforward triple loops.

The designers of the BLAS were themselves disappointed with the resulting
performance. However, they guessed that methods involving double and triple

loops might benefit from unrolling the outer loops, not the inner one! Hence
they augmented the original level 1 BLAS with level 2 (vector-matrix) and level
3 (matrix-matrix) BLAS.

In particular, they wrote a routine SGEMM that carries out matrix multipli-
cation. Since the SGEMM routine in effect contains the entire triple DO loop,
the designers had more opportunities for optimization on the Cray. The design-
ers also used special “block-oriented” techniques to try to reduce the number of
times that each data item was read from memory.

The improvements to SGEMM are very clear when we test it with MAT-
MUL. The standard SGEMM routine, here called “TGEMM”, runs at a good
rate, while the SCILIB optimized version of SGEMM runs at 300 MegaFLOPS!
There’s also a ”super-optimized” version ("SGEMMS”) that doesn’t perform
as well on small problems, but which can seem to run at 400 MegaFLOPS
or more on larger problems, which is technically impossible! See Breaking the
MegaFLOP barrier, PSC News, May 1991.

Table 8: Compare TGEMM, SGEMM, SGEMMS.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language

TGEMM 513 150 0.043700 6750000 154.4621 150.0000 Cray YMP Fortran
SGEMM 513 150 0.022272 6750000 303.0741 150.0000 Cray YMP Fortran
SGEMMS 513 150 0.023564 6750000 286.4551 150.0000 Cray YMP Fortran

10 Testing Loop Unrolling

MATMUL allows you to examine loop unrolling performed on the simple IJK
method. (Loop unrolling is explained in Appendix 3.

DO loops were supposed to make it possible to replace many statements by
one. Why would we want to reverse the process? It turns out that in many
cases, a “slightly” unrolled loop will execute more quickly than a more natural
version of the same loop. The reasons vary, depending on the computer, and on
the actual loop being unrolled.

In matrix multiplication, it is possible to unroll any (or all) of the three
loops. MATMUL provides three versions of the IJK loop, with each version
unrolling just one of the I, J or K loops to a depth of 4. The three versions
are named UIJK, TUJK, and IJUK, with the letter “U” in the name placed just
before the name of the unrolled index. “IUJK”, for instance, means that the
middle “J” loop actually reads “do j=1,n,4”. To see exactly what’s going on,
take a look at the source code for these routines in Appendix 5

When we run these three routines on the Cray, it is interesting to note that
unrolling either of the two outer loops dramatically improves performance, to
240 MegaFLOPS. But unrolling the inner, vectorized, loop reduces performance
to 95 MegaFLOPS. This effect persisted for a wide range of problem sizes.

This suggests that unrolling should be done on outer loops, and that a small

10

depth of unrolling can make a noticeable improvement, at least when the “body”
of the loop was originally just one or two statements.

Table 9: IJK, and three unrolled versions of it.

ORDER

LDA

N

Time

Ops

MFLOPS

ANN)

Machine

Language

IJK
UIJK
IUJK
IJUK

513
513
513
513

150
150
150
150

0.038936
0.028064
0.027154
0.071486

6750000
6750000
6750000
6750000

173.3608
240.5252
248.5824

94.4239

150.0000
150.0000
150.0000
150.0000

Cray YMP
Cray YMP
Cray YMP
Cray YMP

Fortran
Fortran
Fortran
Fortran

11 How Much Harder is Complex Arithmetic?

Scientific calculations often involve the use of the complex number system. In
that system, a complex number is a pair of real numbers, one of which is called
the “real” part of the complex number, and the second of which is called the

“imaginary” part. In printed text, a complex number is often written in a form
like “7 + 2 i”. Here, the pair of real numbers is 7 and 2, and the “i”
that 2 is the imaginary part of the number.

Complex numbers can be added and multiplied, in a similar way to real
numbers. The rules for multiplication of two complex numbers are:

(a+bi)*(c+di)=(axc—bxd)+ (axd+bx*c)i

Thus, there are two obvious costs in working with complex numbers:

tells us

(1)

e Every complex number takes twice as much storage as a real number;

e Multiplying two complex numbers takes 4 multiplications of real numbers,
and two additions, for a total of 6 floating point operations.

Thus, we might expect that MATMUL would take 6 times as long to solve
a complex problem as a real one. But since the Cray can do two floating point
operations on every step, maybe a better guess would be roughly 3 times as

long.

MATMUL includes a single complex algorithm, CIJK, which is simply the
IJK method using complex arithmetic. Let’s compare the speeds of IJK and
CILJK for the same size problem:

Table 10: Comparing real and complex IJK, on Vax and Cray.

ORDER

LDA

N

Time

Ops

MFLOPS

ANN)

Machine

Language

1JK
CIJK

300
300

150
150

6.720
11.79

6750000
6750000

1.0045
0.5725

150.0000
150.0000

VAX/VMS
VAX/VMS

Fortran
Fortran

IJK
CIJK

513
513

150
150

0.3964E-01
0.1386

6750000
6750000

170.2971
48.7096

150.0000
150.0000

Cray YMP
Cray YMP

Fortran
Fortran

11

Notice that the VAX/VMS performance does not decrease as much as we
might have guessed. On the other hand, the Cray suffered a more significant
drop, of more than a factor of 3.

12 What is the Cost of Double Precision Arith-
metic?

We strongly urge our users to avoid double precision computations on the Cray.
The Cray’s single precision real data type uses a 64 bit word, which provides
similar accuracy to double precision on a 32 bit machine. Specifying double
precision on the Cray requests 128 bits of storage, and gives very high accuracy.
Unfortunately, double precision Cray computations are extremely slow!

To see why, ask MATMUL to run the double precision implementation of
the IJK algorithm. The Cray’s MegaFLOP rate plummets to 3! This is 50
times slower than a typical IJK run. In fact, a DO loop containing double
precision computations does not vectorize. So it behaves at least as slowly as
an unvectorized loop. The fact that the unvectorized calculations also have to
be twice as precise accounts for the further slowdown from 10 to 3 MegaFLOPS.

Meanwhile, the VAX is able to produce double precision results almost as
fast as the single precision.

Table 11: Comparing real (single precision) and double precision IJK, on Vax

and Cray.
ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
1JK 300 150 5.719 6750000 1.1803 150.0000 VAX/VMS Fortran
DIJK 300 150 6.819000 6750000 0.9899 150.0000 VAX/VMS Fortran
IJK 513 150 0.038936 6750000 173.3608 150.0000 Cray YMP Fortran
DIJK 513 150 1.993497 6750000 3.3860 150.0000 Cray YMP Fortran

13 Integer Arithmetic Should be Faster than
Real

We can ask MATMUL to carry out the problem using INTEGER arithmetic.
This is done by requesting the “NIJK” method. It’s natural to assume that
this would always be faster. Integer arithmetic is so much simpler than real
arithmetic: no decimal points to worry about, no exponents to align. What
happens if we solve the same size problem with real and integer arithmetic?

The VAX results are only mildly surprising. The integer calculations are not
very much faster at all. Perhaps we can’t very well judge what’s harder for a
computer.

The Cray results are harder to explain. It seems to be HARDER for the
Cray to deal with integers than with real numbers. Note that the Cray has

12

Table 12: Comparing real and integer (and 46 bit integer) IJK, on Vax and

Cray.
ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 300 150 7.500000 6750000 0.9000 150.0000 VAX/VMS Fortran
NIJK 300 150 6.600002 6750000 1.0227 150.0000 VAX/VMS Fortran
IJK 513 150 0.038936 6750000 173.3608 150.0000 Cray YMP Fortran
NIJK46 513 150 0.090224 6750000 74.8139 150.0000 Cray YMP Fortran
NIJK 513 150 0.212544 6750000 31.7582 150.0000 Cray YMP Fortran

two options for storing and operating on integers, full 64 bit integers, or 46 bit
integers. Even the 46 bit option (used by NIJK46) is about twice as slow as
using real numbers, and the 64 bit option (used by NIJK), is six times slower.

That’s very puzzling. What it suggests is that if we had an integer problem
to solve, we could simply store it as a real problem, and have the answer faster!
This is in fact true. The Cray is not expecting to have to solve integer problems
fast. We can actually slow it down by giving it a “simple” problem!

14 Parallel Processing on the Cray

The Cray YMP 8-32 has 8 processors. Normally, the processors operate inde-
pendently, and do not share tasks or memory. However, the Cray allows a user
to insert directives into a program that request that the entire program, or parts
of the program, be considered for parallel execution, with portions of the task
being assigned to other, cooperating processors.

Fortunately for us, matrix multiplication is ideal for parallel execution. We
have implemented a routine “MIJK” which runs the IJK method this way.

We had to make the following changes to do this:

e The program had to be compiled with the compiler option “-Zu”. This
warns the compiler that parallel processing is being requested. Our com-
pile statement looks like this now:

cf77 -Zu matmuluni.f

e The triple DO loop in MIJK is preceded by the Cray compiler directive:
CMIC$ DO GLOBAL

which offers the loops as a candidate for parallel execution. Actually, the

parallel execution will affect the way the I and J loops are handled. For

any values of I and J, the inner K loop will be executed completely by just
one processor.

13

e The timing call to SECOND had to be replaced by a call to TIMEF.
SECOND computes the elapsed CPU time, whereas TIMEF computes the
elapsed wallclock time. MIJK splits the work up among several processors,
but the actual amount of work stays the same (or even increases slightly!).
The benefit of parallel processing will only be evident in the way that the
elapsed wallclock time decreases.

Once we made those changes, we were very pleased to see that we were able
to get good speedups for the MIJK algorithm. We ran this program on the
Cray during regular production time; we did not reserve the entire machine to
ourselves to make these tests.

The maximum MegaFLOP rate we could get would be 2,666, which would
occur if all 8 processors were executing at top speed on our problem. We al-
ready know that the IJK algorithm, as we have implemented it, does not achieve
the top theoretical speed of 333 MegaFLOPS for a single processor, but rather
something like 175 MegaFLOPS. So we can even predict a more realistic max-
imum possible rate for our multitasked version: 8 * 175 = 1,400 MegaFLOPS.
And that’s assuming we get all 8 processors, which is unlikely during production
time.

Here is the result of running IJK once, and MIJK three times in a row. Notice
that MIJK seems to have picked up 1, 2 and 8 processors. When you request
multitasking on the Cray during production time, you're competing with all the
other users. You’re sure to get one processor, but you only get more processors
if they happen to be idle at the moment your program requests them. And they
can come and go during the program’s run.

Table 13: Comparing sequential IJK, and 3 runs of multitasked IJK, on the

Cray.
ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 513 150 0.038936 6750000 173.3608 150.0000 Cray YMP Fortran
MIJK 513 150 0.040757 6750000 165.6168 150.0000 Cray YMP Fortran
MIJK 513 150 0.026393 6750000 255.7466 150.0000 Cray YMP Fortran
MIJK 513 150 0.003949 6750000 1709.2017 150.0000 Cray YMP Fortran

15 Comparing C to FORTRAN

Many of our users prefer C to FORTRAN. But how good is the C compiler
at using the Cray’s power? In particular, do C programs vectorize well? Can
they call SCILIB routines? Can they use multitasking? What are the costs of
unusual arithmetics? All of the questions that arose with FORTRAN had to be
investigated for C as well.

A version of MATMUL was prepared in C to answer these questions. The
results show that the best C code ran just as fast as the best FORTRAN, but

14

that C versions of some algorithms ran significantly worse than the correspond-
ing FORTRAN. This suggests that C programmers need to be cautious about
the structure of nested loops if they want to achieve good performance.

FORTRAN programmers can call a pool of highly optimized routines on the
Cray from the SCILIB library. C programmers can also access this or any other
FORTRAN library. In order to use FORTRAN libraries, though, a C code must
adjust to some special FORTRAN conventions for subroutine calls.

15.1 C calling FORTRAN: Case differences:

The first basic difference is that C allows for case differences in identifiers and
FORTRAN does not. This means that in C, a variable called 'x’ is different
than a variable called "X’ but in FORTRAN they are the same. This not only
applies for variables but also for function or subroutine calls. The FORTRAN
compiler behaves as though the user’s shift-lock key was held down. That means
that when a C program calls a FORTRAN routine, it must capitalize the name
of that routine.

15.2 C Calling FORTRAN: Passing Variables by Value or
Reference:

The next difference we must be aware of is that FORTRAN passes all variables
by reference (or address). In other words, any parameter that is passed to a
routine can have its value changed and have that change be in effect outside
of that routine. Furthermore, the called routine is expecting an address to be
passed to it, not a value.

In C all variables are (by default) passed by value (except pointer variables).
This means that for every parameter passed to a routine, a new ’local’ variable
is created inside of the routine which contains the value that was passed. If a
change is made to any parameter, that change is not propagated to the original
copy of the variable in the calling routine.

So if a FORTRAN routine is expecting an address and C passes a value, you
can guess that there will be some confusion. We can however pass a parameter
from a C routine to a FORTRAN routine by address, simply by prepending the
&’ operator in front of the variable name in the parameter list. The ’&’ tells
the compiler to pass the address of our variable to this routine, not the value,
which is what a FORTRAN subroutine or function is expecting.

15.3 C Calling FORTRAN: Passing Constants

This can get tricky when it comes to passing constants. For example in the
following FORTRAN call we are passing a constant 15.

call some_routine (a, b, ¢, 15)

15

Even though 15 is a constant, SOME_ROUTINE() is expecting an address,
not a value. The FORTRAN compiler creates a temporary variable with the
value 15 and passes that to the routine.

How do we pass an address of a constant in C? The easiest way is to create
a variable and set it to the constant value and pass the address of the new
variable, as the following shows:

int x=15;
some_routine (&a, &b, &c, &x);

15.4 C Calling FORTRAN: Passing Arrays

The last and most important difference is the way arrays are handled in C and
FORTRAN. There are three important differences to be aware of:

First, C starts indices at 0 and goes to N-1, whereas FORTRAN starts at 1
and goes to N. This is a simple difference to cope with.

Secondly, in FORTRAN a two dimensional array is stored as a vector (single
dimension array). This is because FORTRAN passes only by reference, so only
the start point (first element address) is passed to the routine. We can pass this
address in C rather simply. For example if we have the following declaration of
‘a’ in effect:

float a[100] [100];

7

Then we can pass the start address of this array as “&a[0][0]

The last subtle difference between arrays in C and FORTRAN is the way
the arrays are stored in memory. Remember that arrays are passed as a vectors
in FORTRAN, so if we give the address of the first element, where is the second
element? If we have the following 2 dimensional array in FORTRAN:

a(l1,1)=
a(1,2)=
a(2,1)

0.0
1.0
2.0
a(2,2)=3.0

the address of A(1,1) is passed and A(2,1) is the next value, then A(1,2)
followed by A(2,2). Now say we have the same array in C:

a[0] [0]=0.0
alol[1]1=1.0
a[11[0]=2.0
al1][1]1=3.0

16

We would expect the same as in FORTRAN, but in reality the order is
AJ0][0], A[O][1], A[1][0] and A[1][1l]. So we see that arrays are orientated in
columns FORTRAN but by rows in C. This is important when the routine we
are calling wants to know the distance between each element. In FORTRAN
the distance would be 1, but in C it would be N (where N is the first dimension
of the array).

15.5 C Calling FORTRAN: Putting it all together

We used the methods mentioned above and called the SCILIB routines SDOT(),
MXMA(), SGEMM(), and SGEMMS() on the Cray. Here is a sample of the
results obtained:

Table 14: Comparing SDOT, MXMA, SGEMM and SGEMMS on the Cray.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
SDOT 512 256 0.743565 33554432 45.126446 256.000 Cray YMP C
MXMA 512 256 0.108822 33554432 308.343700 256.000 Cray YMP C
SGEMM 512 256 0.110025 33554432 304.970830 256.000 Cray YMP C
SGEMMS 512 256 0.094922 33554432 353.493474 256.000 Cray YMP C
Code for calling the SGEMM() routine follows,
void TGEMM()
{
/*
Declare local variables to use to pass to SGEMMS call instead of
constant values. This is done because we must pass the address
of all parameters to the SGEMMS call.
*/
int LDA = LENA;
float alpha = 1.0;
float beta = 1.0;
char transa = ’N’;
char transb = ’N’;
TSTARTQ) ;
SGEMM (&transa, &transb, &n, &n, &n, &alpha, &c, &LDA, &b, &LDA, &beta, &a, &LDA);
TSTOP () ;

The code for calling SDOT(), MXMA() and SGEMMS() is in the Appendix
7.

17

16 Using Pointers to Speed Up Array Access

One of the features of the C language is the fact that anything can be accessed
by a pointer. You can access everything from integers to functions with them.
However, is it faster to use pointers to access arrays rather than subscript?

We were expecting pointer referencing to be faster than normal subscripting,
but we wanted to know how much faster. The speed up would come from the
fact that with pointers we would be telling the computer the exact location
in memory that we wanted to access, rather than giving the computer a start
point and subscripts and telling it to figure the location out for itself. It would
seem logical that because we are decreasing the work the computer must do, we
would also decrease time.

Two versions of the IJK() algorithm were created to test this theory. They
are PIJKA() and PIJKP(). PIJKA() (shown below) accesses the arrays “b” and
“c” through pointers, but accesses the array “a” through normal subscripting.

void PIJKAQ)
{
int i,j,k;
float *bptr,*cptr,;
float *bp = \&b[0] [0],*cp = \&c[0][0];

TSTART() ;
for (bptr=bp, i=0; i<n; i++, bptr=bp+LENA)
{
for(cptr=cp, j=0; j<n; j++,bptr++,cptr=cp+LENA)
{
for (k=0; k<n; k++, cptr++)
{
alil k] = alil[k] + (*bptr) * (kcptr);
}
}
}
TSTOP() ;

PIJKP() differs from PIJKA() in that it access all three arrays through
pointers. Here is the C code for PIJKP():

void PIJKP()

{
int i,j,k;
float *bptr,*cptr,*bp = &b[0] [0],*cp = &c[0] [0],*aptr;
float *ap = &a[0] [0];

TSTART() ;

18

for (bptr=bp, i=0; i<n; i++, bptr=bp+LENA, ap+=LENA)
{
for (cptr=cp, j=0;j<n;j++,bptr++,cptr=cp+LENA)
{
for (aptr=ap, k=0; k<n; k++, cptr++, aptr++)
xaptr=(*aptr)+(*¥bptr) * (*cptr) ;
}
}
TSTOP Q) ;
}

Here is a sample of the output we received on a DEC Station 5000:

Table 15: Comparing IJK and pointer versions on the DEC Station.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language

IJK 256 256 14.050943 33554432 2.388056 256.000 DEC Station C
PIJKA 256 256 11.039225 33554432 3.039564 256.000 DEC Station C
PIJKP 256 256 12.316536 33554432 2.724340 256.000 DEC Station C

On this scalar machine, we see better performance with both pointer algo-
rithms; with PIJKA() being the better of the two. This suggests that pointer
access of arrays IS faster than ordinary subscripting.

If pointer access is faster, why then is PIJKP() slower than PIJKA()? Look-
ing at the text of the two algorithms (above), we see that by adding the pointer
to 7a” in PIJKP(), we have also added an extra increment to the very inner
loop. Not only is the variable “k” incremented, but so are “cptr” and “aptr”.
However, in the PIJKA() version, only “k” and “cptr” need to be incremented.
By adding the pointer to the “a” array we have added “N*N*N” more pointer
increments to our algorithm, thereby slowing it down.

Similar results can be seen on the Cray:

Table 16: Comparing IJK and pointer versions, on the Cray.
ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 512 256 0.167008 33554432 200.915469 256.000 Cray YMP C
PIJKA 512 256 0.166260 33554432 201.819438 256.000 Cray YMP C
PIJKP 512 256 0.207254 33554432 161.900150 256.000 Cray YMP C

IJK() and PIJKA() give the same performance, but PLJKP() is 40 MFLOPS
slower, why? As we said above, we added N*N*N operations. So the overall
performance with pointers is at best equal to the performance we could obtain
by just using subscripts on the Cray.

It is important to point out that the extra programming difficulty incurred
when using pointers, may not net any performance reward; even on scalar ma-
chines. The simpler method of loop unrolling (see the routines ULJK(), TUJK()

19

and IJUK() in Appendix 7) may be a better path to follow when doing nu-
merical work on a computer. Pointer operations are still very useful for string
manipulation but the performance increase they yield in numerical work is neg-
ligible.

17 Multitasking in C on the Cray

A version of the IJK() algorithm was prepared in C and was multitasked. The
result was the MIJK() routine. The text of MIJK() is the same as IJK() except
that we had to add one compiler directive, which was:

#pragma taskloop defaults

This directive was placed before the first (outer most loop) of the routine.
This line tells the compiler that the next loop should be multitasked, using the
default rules that apply to accessing variables in parrallel.

We also had to change the timing call from cpused() to IRTC(). cpused()
returns the total CPU time used, whereas IRTC() returns “wallclock” time.
With multitasked code, we are no longer interested in just CPU time, but rather
total execution time. Our routine should use the same amouont of CPU time,
but spread over up to 8 CPUs simultateously. This will result in total wallclock
time decreasing drastically.

You should note however that you will not always get 8 CPU’s. You will
receive as many that are free when you need them. Even if you get more than
1 CPU during a run, they can be taken away if the system needs them for
other purposes. For this reason, a multitasked job run several times, will almost
certainly produce a wide range of different times.

Here IJK and MIJK are compared:

Table 17: Comparing IJK and MIJK on the Cray.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine

Language

IJK 512 512 1.285164 268435456 208.872482 512.000 Cray YMP C
MIJK 512 512 0.174091 268435456 1541.92517 512.000 Cray YMP C

(MIJK() received 8 CPU’s in the above example.)

18 Conclusions

We hope we have shown you a few things about the Cray. But more impor-
tantly, we hope we have shown you a way to think about the Cray, or any other
computer. You don’t have to believe the manufacturer’s brochure, you don’t
have to know how fast the clock ticks, or how many instructions per second
the machine can process. You can judge a computer by its effectiveness on a

20

problem you choose, and if you pay attention to the results, you can learn more
about how to solve the problems you want to solve.

We use these machines to study the world, doing science on computers. We
shouldn’t hesitate to study computers like we study the rest of the world, doing
science TO computers!

A Notes

The MATMUL program was developed at the Pittsburgh Supercomputing Cen-
ter. Both FORTRAN and C versions are available. The program can be run
on many different machines, including the Cray YMP, VAX/VMS, DECstation,
IBM PC, and Macintosh. Since the source code is available, you may try to
recompile the program for use on other machines as well.

If you have access to the Internet, you can send mail to “remarks@psc.edu” to
get a copy of the program, or its documentation, which is in an online document
called MATMUL.DOC. Otherwise, send mail to:

Consultant

Pittsburgh Supercomputing Center
4400 Fifth Avenue

Pittsburgh, PA, 15213

The PSC newsletter article mentioned above (”Breaking the MegaFLOP
Barrier”) is available online on all PSC systems by typing the “newsletter”
command. If you are not a user of the PSC, you can request a copy of the
article by sending mail to

Documentation Coordinator
Pittsburgh Supercomputing Center
4400 Fifth Avenue

Pittsburgh, PA, 15213

B The MATMUL results tables

Throughout this discussion, we have presented the results of using MATMUL
in the form of a table. This is, in fact, how MATMUL prints out its results as
it is running. And we have simply incorporated those reports into the text.

Fach line of the table is the record of one problem solution. The line is
labeled with the following headings:

ORDER LDA N Time Ops MFLOPS A(N,N) Machine

and a typical line might read:

21

Language

IJK 513 64 0.003509 524288 149.4199 64.0000 Cray YMP

The meaning of each of the items is as follows:

ORDER This is the method that the user has chosen, by which to solve the
problem. This is done interactively; in this case, the command “OR-
DER=IJK” had been issued.

LDA The matrices used in MATMUL are stored in two dimensional FORTRAN
arrays. These arrays must be at least large enough to hold the matrices,
but may be larger. The value of LDA is the “leading” or “first” dimension
of the arrays used. On the Cray, there are cases where memory access can
be speeded up by a careful choice of LDA.

N This is the size of the problem to be solved. The three matrices, A, B, and
C are each set to be N rows by N columns. (They will be stored in LDA
by N FORTRAN arrays).

Time This is the amount of time it took to solve the problem, in seconds. On
computers that use timesharing, this quantity is the elapsed CPU time.
On personal computers, this quantity is simply the elapsed time. When
measuring the speed of the MIJK routine on the Cray (a multitasking
routine), we report elapsed time, rather than elapsed CPU time.

On some computers, particularly the VAX/VMS, it was not easy to get
accurate timings, because the timer routine had limited accuracy (1/60 of
a second, for VAX/VMS). This means that timings less than 0.02 may be
meaningless, and timings less than 0.10 may be highly inaccurate.

Ops This is the number of floating point operations carried out. It is assumed
that multiplying two N by N matrices requires exactly 2*N*N floating
point operations. No allowance is made for the fact that the Cray uses 64
bit arithmetic, versus the 32 bit arithmetic used on most other machines.
When reporting results for complex, double precision, and integer compu-
tations, no allowance is made for the fact that more (or less) work might
be required for those arithmetics. And finally, no allowance is made for
the fact that some algorithms can compute the result in less than 2*N*N
operations!

MFLOPS This is the “speed” at which the computer solved the problem. This
speed is measured in “Millions of Floating Point Operations Per Second”,
and can be computed from “Ops” and “Time” as follows:

MFLOPS = (OPS/1,000,000)/Time (2)

A(N,N) This quantity is the value of the entry in the N-th row and N-th
column of the result matrix. It should always be equal to N, since B and
C are both matrices whose entries are all 1.

22

Fortran

Machine This records the computer on which MATMUL was run.

Language This records the language that MATMUL was written in. Currently,
there are only FORTRAN and C versions to choose from.

C Explanations of terms

Floating Point Operations For scientific computing, it is necessary to esti-
mate the amount of work represented by an algorithm. One way to mea-
sure such work is to count the number of additions and multiplications
that are to be carried out on real numbers (also called “floating point”
numbers). For simple algorithms, this quantity can easily be computed.
For instance, in matrix multiplication, every entry of the result matrix
is computed by multiplying N pairs of values, and adding each result to
a running sum, costing N multiplications and N additions, or 2*N float-
ing point operations. There are N*N such entries to compute, so matrix
multiplication will normally cost 2¥*N*N*N floating point operations.

MegaFLOPS The rate at which a computer carries out a scientific computa-
tion is measured in floating point operations per second. Actually, com-
puters are so fast that the measurement is usually made in MILLIONS of
floating point operations per second, which is abbreviated as MegaFLOPS
or MFLOPS. We have seen that a VAX/VMS system runs at roughly 1
MegaFLOP, a Cray YMP can reach several hundred MegaFLOPS, and
simple Macintosh and IBM PC systems run at much lower rates.

Unrolling To unroll a loop means to rewrite it in such a way that several steps
of the old loop are carried out in one step of the new loop. Normally, the
unrolled loop is “logically” identical to the original loop, in the sense that
the same sequence of operations is being carried out, in the same order.
Unrolling can also be done on nested loops, in which case the operations
may be carried out in a slightly different order.

For instance, the following two loops represent the exact same sequence
of operations, but the second loop has been unrolled. Whereas the first
loop has a single statement that is repeated 30 times, the second has three
statements repeated 10 times. Because the statements in the new loop are
carried out three at a time, the loop is said to be unrolled to a “depth” of
three.

sum = 0.0
doi=1, 30

sum = sum + x(i)
end do

sum = 0.0
doi=1, 30, 3

23

sum = sum + x(i) + x(i+1) + x(i+2)
end do

Vectorization Scientific computing often involves carrying out the same oper-
ations on each element of a long list of data. Such a list is often called a
“vector”. As scientific problems became larger and more time consuming,
methods were developed to speed up the solution of such problems on
“vectorizing” computers. Through a combination of hardware and soft-
ware, it became possible to compute certain results much more quickly if
the same operations were to be carried out on each item in a vector. Such
an operation would usually be represented in a FORTRAN program by a
DO loop, whose statements involved addition or multiplication of entries
in an array. Matrix multiplication is an example of such an operation.

A vectorizing computer typically has two characteristic speeds: the “scalar”
speed, which represents the speed of operation when no vectorizing occurs,
and the “vector” speed, when the machine is processing vectors, and op-
erating at a very high rate. Most programs will run at an overall rate that
lies between these two values. On the Cray, the scalar speed is roughly 10
MegaFLOPS, and the vector speed is 333 MegaFLOPS.

Memory traffic Once, the reason computers were slow was because their cen-
tral processors were slow. As faster processors were developed, a new
bottleneck was found. It takes a “long” time to fetch data from memory
to the processor. Thus, on a given computer, a fast processor will often
be sitting idle, waiting for new numbers to be read in from memory.

The movement of data from memory to the processor, and of results back
from the processor to memory, is called “memory traffic”. Often this
traffic represents wasted effort, since a particular number may be moved
back and forth between memory and the processor many times.

In some cases, this traffic can be reduced by rewriting the program. For
instance, one reason loop unrolling can speed up a program is because
it can reduce memory traffic. As a simple example, look at the text of
the IUJK routine in the appendix. If you think about it, you should see
that each entry A(LK) is fetched from memory and written back just one
fourth as often as in the standard IJK method. Similarly, in the ULJK
method, the value C(J,K) must only be read one time from memory to
be used in all four of the statements in the inner loop. Thus, again, each
entry of C is only read one fourth as often.

Why then isn’t the IJUK method on the Cray more efficient also? It turns
out that the IJUK method does better on memory traffic, but worse on
vectorization, and the net result is a loss in performance.

24

D The FORTRAN Algorithms

The current FORTRAN version of MATMUL includes a number of algorithms.

Table 18: List of FORTRAN Algorithms.

ORDER Description

IJK The DO loop method, with indices I, J, K.

IKJ The DO loop method, with indices I, K, J.

JIK The DO loop method, with indices J, I, K.

JKI The DO loop method, with indices J, K, 1.

KIJ The DO loop method, with indices K, 1, J.

KJI The DO loop method, with indices K, J, I.

CIJK Complex arithmetic, IJK method.

DIJK Double precision arithmetic, IJK method.

MIJK “Multitasked” IJK method, executing in parallel on Cray.
NIJK Integer arithmetic, IJK method.

NIJK46 Integer arithmetic, IJK method, Cray 46 bit integer option.
SIJK “Scalar” IJK method. Cray vectorization turned off.
UIJK 1JK loop, with the outer I loop unrolled to a depth of 4.
TUJK 1JK loop, with the middle J loop unrolled to a depth of 4.
TJUK 1JK loop, with the inner K loop unrolled to a depth of 4.

TAXPYC BLAS calls to TAXPY on columns of matrices.
TAXPYR BLAS calls to TAXPY on rows of matrices.

TDOT BLAS dot product routine.

TGEMM Blas matrix*matrix routine.

MXMA Cray SCILIB MXMA routine.

SAXPYC Cray SCILIB copy of SAXPY on columns of matrices.
SAXPYR Cray SCILIB copy of SAXPY on rows of matrices.

SDOT Cray SCILIB dot product routine.

SGEMM Cray SCILIB matrix*matrix routine.

SGEMMS Cray SCILIB matrix*matrix routine, with Strassen’s algorithm.

Here is the FORTRAN source code for the routine that implements the IJK
method:

subroutine ijk (a, acheck, b, c, lda, n, ttime)

integer lda
integer n

real a(lda,n)
real acheck
real b(lda,n)
real c(1lda,n)
integer i

25

integer j
integer k
real timel
real time2
real ttime

do j 1, n
a(i,j) = 0.0
b(i,j) = 1.0
c(i,j) 1.0

end do

end do

= a(i,k) + b(i,j) * c(§,k)

call second (time2)
ttime = time2 - timel
acheck = a(n,n)

return
end

The five other basic DO loop methods differ only in the order of the three
loops. Here, for instance, is the heart of the code for “KIJ”:

subroutine kij (a, acheck, b, c, lda, n, ttime)

dok=1, n
doi=1,n
do j=1,n
a(i,k) = a(i,k) + b(i,j) * c(j,k)
end do
end do
end do

26

The CIJK, DIJK and NIJK algorithms are identical to IJK, except that the
matrix variables are declared COMPLEX, DOUBLE PRECISION, or INTE-
GER, respectively. NIJK46 is the same as NIJK, but is compiled on the Cray
in such a way that it uses 46 bit integers.

SIJK is the same as IJK, but is compiled on the Cray in such a way that it
is executed without vectorization.

doi=1, n
do j =1, n
CDIR$ NEXTSCALAR
dok=1, n
a(i,k) = a(i,k) + b(i,j) * c(j,k)
end do
end do
end do

MIJK uses a Cray directive to run the triple loop using multitasking. The
benefit of such a directive depends on the algorithm and the load on the machine.

Except on the Cray, this routine should not be used, and in particular, the
call to TIMEF should be commented out.

In order for parallel processing to occur, this routine must be compiled on
the Cray with the directive “-Zu”; moreover, the user must set the environment
variable NCPUS to the number of processors the user would like. For instance,
a C shell user would type:

setenv NCPUS 8

while a Bourne shell user would type

NCPUS = 8
export NCPUS

cmic$ do global
doi=1,n
do j=1,n
dok =1, n
a(i,k) = a(i,k) + b(i,j) * c(j,k)
end do
end do
end do

IJUK multiplies A=B*C using index order IJK. The K loop is unrolled to a
depth of NROLL=4.

27

khi = (n / nroll) * nroll
doi=1,n
do j=1,n
do k = 1, khi, nroll
a(i,k) = a(i,k) +
a(i,k+1) = a(i,k+1) +
a(i,k+2) = a(i,k+2) +
a(i,k+3) = a(i,k+3) +
end do
end do
end do

! Take care of the few cases we missed if

=

khi+l, n
)

b(i,7)
b(i,])
b(i,j)
b(i,j)

c(j,k)

c(j,k+1)
c(j,k+2)
c(j,k+3)

¥ ¥ ¥ %

N is not a multiple of 4.

a(i,k) + b(i,j) * c(§,k)

IUJK multiplies A=B*C using index order IJK. The J loop is unrolled to a

depth of NROLL=4.

jhi = (n / nroll) * nroll
doi=1,n

do j = 1, jhi, nroll
dok=1,n

1
[o) =
a(i,k)

a(i,k) +
+
+

+

b(i,
b(i,
b(i,
b(i,

&

end do
end do

end do
|

! Take care of the few cases

28

oo
j+1) *
j+2) *
j+3) *

c(j,k)

c(j+1,k)
c(j+2,k)
c(j+3,k)

we missed if N is not a multiple of 4.

b(i,j) * c(j,k)

end do

UILJK multiplies A=B*C using index order IJK. The I loop is unrolled to a

depth of NROLL=4.

ihi = (n / nroll) * nroll

do i =1, ihi, nroll
do j=1,n
dok=1, n
a(i,k) = a(i,k) +
a(i+1,k) = a(i+1,k) +
a(i+2,k) = a(i+2,k) +
a(i+3,k) = a(i+3,k) +
end do
end do
end do

! Take care of the few cases we missed if

!
do i = ihi+l, n
do j=1,n
dok=1, n

a(i,k) = a(i,k) + b(i,j) * c(j,k)

end do
end do
end do

b(i,j)

b(i+1,j)
b(i+2,j)
b(i+3,j)

L R

N

c(j,k)
c(j,k)
c(j,k)
c(j,k)

is not

a multiple of 4.

MXMA multiplies A=B*C using the Cray SCILIB routine MXMA.

call mxma (b, 1, 1lda, ¢, 1, 1lda, a, 1, 1lda, n, n, n)

TAXPYC uses a source code copy TAXPY of the BLAS routine SAXPY to

carry out the multiplication columnwise:

do j=1, n
dok=1, n

call taxpy (n, c(j,k), b(1,j), 1, a(l,k), 1)

end do
end do

TAXPYR uses a source code copy TAXPY of the BLAS routine SAXPY to

carry out the multiplication rowwise:

29

doi=1, n

do j=1,n
call taxpy (n, b(i,j), c(j,1), lda, a(i,1), lda)
end do
end do

SAXPYC references the vendor’s optimized version of the BLAS routine
SAXPY to carry out the multiplication columnwise:

do j=1, n
do k=1, n
call saxpy (n, c(j,k), b(1,j), 1, a(1,k), 1)
end do
end do

SAXPYR references the vendor’s optimized version of the BLAS routine
SAXPY to carry out the multiplication rowwise:

doi=1, n

do j=1,n
call saxpy (n, b(i,j), c(j,1), lda, a(i,1), lda)
end do
end do

TDOT uses a source code copy TDOT of the BLAS routine SDOT to carry
out the multiplication:

= tdot (n, b(i,1), 1lda, c(1,k), 1)

SDOT references the vendor’s optimized version of the BLAS routine SDOT
to carry out the multiplication rowwise:

= sdot (n, b(i,1), 1lda, c(1,k), 1)

TGEMM uses a source code copy TGEMM of the BLAS3 routine SGEMM.

30

call tgemm (’n’, ’n’, n, n, n, 1.0, b, 1lda, ¢, lda, 0.0, a, lda)

SGEMM references the vendor’s optimized version of the BLAS routine
SGEMM to carry out the multiplication:

call sgemm (’n’, ’n’, n, n, n, 1.0, b, 1lda, c, lda, 0.0, a, lda)

SGEMMS references the Cray SCILIB version of the BLAS routine SGEMM
that has been modified to carry out Strassen’s algorithm:

call sgemms (’n’, ’n’, n, n, n, 1.0, b, lda, ¢, 1lda, 0.0, a, lda, work)

E The C algorithms

The current C version of MATMUL includes a subset of the algorithms available
in the FORTRAN version.
IJK uses index order IJK.

void IJK()
{

int i,j,k;

TSTART() ;
for (i=0;i < nj;i++)
for (j=0; j < n; j++)
for (k=0; k < n; k++)
alil [k]=alil [k1+b[i] [j1*c[j][k];
TSTOP() ;
}

For the next “for” loop methods only the kernel of code is shown:
IKJ uses index order IKJ.
for (i=0;i < n;i++)
for (k=0; k < n; k++)

for (j=0; j < n; j++)
alil [k1=alil [k]+b[il [j1*c[j][k];

JIK uses index order JIK.

31

Table 19: List of C Algorithms.

ORDER Description

IJK The for loop method, with indices I, J, K

1IKJ The for loop method, with indices I, K, J.

JIK The for loop method, with indices J, I, K

JKI The for loop method, with indices J, K, I.

K1J The for loop method, with indices K, I, J.

KJI The for loop method, with indices K, J, I.

DIJK Double precision arithmetic, IJK method.

MIJK “Multitasked” IJK method, executing in parallel on Cray.
NIJK Integer arithmetic, IJK method.

SIJK “Scalar” IJK method. Cray vectorization turned off.
UIJK IJK loop, with the outer I loop unrolled to a depth of 4.
TUJK 1JK loop, with the middle J loop unrolled to a depth of 4.
IJUK 1JK loop, with the inner K loop unrolled to a depth of 4.

PIJKA 1JK loop with pointer used to access arrays B and C.
PIJKP 1JK loop with pointers to arrays A, B and C.

TAXPYC BLAS calls to TAXPY on columns of matrices.
TAXPYR BLAS calls to TAXPY on rows of matrices.
TDOT BLAS dot product routine.

TGEMM Blas matrix*matrix routine.

MXMA Cray SCILIB MXMA routine.

SAXPYC Cray SCILIB copy of SAXPY on columns of matrices.
SAXPYR Cray SCILIB copy of SAXPY on rows of matrices.

SDOT Cray SCILIB dot product routine.

SGEMM Cray SCILIB matrix*matrix routine.

SGEMMS Cray SCILIB matrix*matrix routine, with Strassen’s algorithm.

for (j=0; j < n; j++)
for (i=0;i < n;i++)
for (k=0; k < n; k++)
ali] [k]=ali] [k]+b[i] [jI*c[j] [k];

JKI uses index order JKI.
for (j=0; j < m; j++)
for (k=0; k <n; k++)
for (i=0;i < n;i++)
ali] [k]=ali] [k]+b[i] [jI*c[j] [k];
KI1J uses index order KIJ.

for (k=0; k < n; k++)

32

for (i=0; i < n; i++)
for (j=0; j < n; j++)
ali] [k]=ali] [k]1+b[i] [j]1*c[j][k];

KJI uses index order KJI.

for (k=0; k < n; k++)
for (j=0; j < n; j++)
for (i=0;i < n;i++)

alil [k]l=alil [k]1+b[i] [j1*c[j] [k];

SIJK uses index order IJK with Cray vectorization turned off.

#pragma novector
for (i=0;i < n;i++)
#pragma novector
for (j=0; j < m; j++)
#pragma novector
for (k=0; k < n; k++)
alil [k]=ali] [k]1+b[i] [j]1*c[j] [k];

MIJK uses a Cray directive to run the triple loop with multitasking, using
IJK order. The benefit of such a directive depends on the algorithm and the
load on the machine.

We had to make a new timer call (TMSTART() and TMSTOP()). We
needed to get wallclock time instead of CPU time. This is beacuse wallclock
time will go down with multitasking, but CPU time should remain the same.

In order for parallel processing to occur, you must set the enviroment variable
NCPUS to the number of processors the you would like. For instance, in the C
shell you would type:

setenv NCPUS 8

while in the Bourne shell you would type

NCPUS=8
export NCPUS

#pragma _CRI taskloop defaults
for (i=0;i < n;i++)
for (j=0; j < n; j++)
for (k=0; k < n; k++)
alil [k]l=alil [k]+b[i] [j1*c[j] [k];

33

NIJK multiplies A=B*C using index order IJK with integers

for (i=0;i < n;i++)
for (j=0; j < n; j++)
for (k=0; k < n; k++)
iali] [k]=iali] [k]+ib[i] [j1*ic[j] [k];

The entire text of DIJK is shown so that you can see the difference between
Cray double precision and double precision on other computers.

DIJK multiplies A=B*C using index order IJK with double precision. A
double on the Cray is the same as a float, so we must declare “long double”
arrays to try double precision on the Cray.

void DIJK()
{

int i,j,k;
#if (MACHINE == CRAY)

long double
#else

double
#tendif

da[LENA] [LENA] ,db[LENA] [LENA] ,dc [LENA] [LENA];

for(i=0;i<n;i++)
for(j=0;j<n;j++)
{

dal[i] [§1=0.0;

db[i] [j1=1.0;

dcl[i] [j1=1.0;
}
TSTART() ;
for (i=0;i < n;i++)

for (j=0; j < m; j++)

for (k=0; k < n; k++)
dali] [k]=dali] [k]+db[i] [jI1*dc[j] [k];

TSTOP() ;
a[n-1] [n-1]=(float)da[n-1] [n-1];

IUJK multiplies A=B*C using index order IJK. The J loop is unrolled to a
depth of NROLL = 4

jhi=(n/NROLL)*NROLL;
jhi-—;

34

TSTARTQ) ;
for (i=0;i <n; i++)
for (j=0; j < jhi;j+=NROLL)
for (k=0; k < n; k++)
{
alil [k]=alil [k1+b[i] [j1*c[j][k];
alil [k]=ali] [(k]1+b[i] [j+1]*c[j+1] [k];
alil [k]=ali] [k]+b[i] [j+2]*c[j+2] [k];
alil [k]1=alil [k]+b[i] [j+3]*c[j+3] [k];
}
for (i=0; i < n; i++)
for (j=jhi+1;j < n;j++)
for (k=0; k < n; k++)
alil [k]=ali] [k]+b[i] [j1*c[j] [k];

IJUK multiplies A=B*C using index order IJK. The K loop is unrolled to a
depth of NROLL = 4

for (i=0;i < n; i++)
for (j=0; j < n; j++)

for (k=0; k <khi;k+=NROLL)

{
ali] [k]=ali] [k]1+b[i] [j]1*c[j] [k];
ali] [k+1]=ali] [k+11+b[i] [j1*c[j] [k+1];
ali] [k+2]=ali] [k+2]+b[i] [j1*c[j] [k+2];
ali] [k+3]=ali] [k+3]+b[i] [j1*c[j] [k+3];

}

for (i=0; i < n; i++)
for (j=0; j < n; j++)
for (k=khi+1;k < n;k++)
alil [k]=alil [k1+b[i] [j1*c[j][k];

UIJK multiplies A=B*C using index order IJK. The I loop is unrolled to a
depth of NROLL = 4

for (i=0;i < iroll;i+=NROLL)
for (j=0; j < m; j++)

for (k=0; k < n; k++)

{
alil [k]=ali] [k]+b[i] [j1*c[j][k];
ali+1] [k]=al[i+1] [k]+b[i+1] [j1*c[j] [k];
ali+2] [kl=a[i+2] [k]1+b[i+2] [jI1*c[j] [k];
ali+3] [k]=a[i+3] [k]+b[i+3] [j1*c[j] [k];

35

}

for (i=iroll+1l;i < n;i++)
for (j=0; j < n; j++)
for (k=0; k < n; k++)
alil [k]=ali]l [k1+b[i] [j1*c[j][k];

PIJKA multiplies A=B*C using index order IJK. Arrays b and ¢ are accessed
through pointers, but array a is accessed through normal subscripting.

for (bptr=bp,i=0;i<n;i++,bptr=bp+LENA)
for(cptr=cp, j=0;j<n;j++,bptr++,cptr=cp+LENA)
for (k=0;k<n;k++,cptr++)
alil [k]=a[i] [k]+(xbptr)* (*cptr);

PIJKP multiplies A=B*C using index order IJK. All the arrays (a,b, and c)
are accessed via pointers

for (bptr=bp,i=0;i<n;i++,bptr=bp+LENA,ap+=LENA)
for(cptr=cp,j=0;j<n; j++,bptr++,cptr=cp+LENA)
for(aptr=ap,k=0;k<n;k++,cptr++,aptr++)
xaptr=(*aptr)+(*xbptr) * (*cptr) ;

SAXPYC multiplies A=B*C using the vendors copy of the BLAS routine
SAXPY. The multiplication is done “columnwise”.

for (j=0; j < n; j++)
for (k=0;k < n;k++)
SAXPY (&n, &c[jl[k], &b[0][j], &LDA, &al0][k], &LDA);

SAXPYR multiplies A=B*C using the vendors copy of the BLAS routine
SAXPY. The multiplication is done “rowwise”.

for (i=0;i < n;i++)

for (j=0; j < mn; j++)
SAXPY (&n, &b[il[j], &c[jl1[0], &one, &al[i] [0], &one);

TAXPYC multiplies A=B*C using a C version of SAXPY. The multiplica-

tion is done columnwise.

36

for (j=0; j < n; j++)
for (k=0;k < n;k++)
taxpy (n, &c[jl[k], &b[0][j], LDA, &a[0][k], LDA);

TAXPYR multiplies A=B*C using a C version of SAXPY. The multiplica-
tion is done rowwise.
for (i=0;i < n;i++)

for (j=0; j < mn; j++)
taxpy (n, &b[i]l[j], &c[jl1[0], one, &a[i]l[0], one);

SGEMMS multiplies A=B*C using the Cray SCILIB routine SGEMMS.
(BLAS SGEMM modified to use Strassen’s algorithm.)

SGEMMS (&transa, &transb, &n, &n, &n, &alpha, &c, &LDA, &b, &LDA, &beta, &a, &LDA, &wo:

MXMA multiplies A=B*C using the Cray SCILIB routine MXMA.
MXMA (&b, &alpha, &LDA, &c, &beta, &LDA, &a, &beta, &LDA, &n, &n, &n);
SGEMM multiplies A=B*C using the vendor’s version of the BLAS routine
SGEMM.
SGEMM (&transa, &transb, &n, &n, &n, &alpha, &c, &LDA, &b, &LDA, &beta, &a, &LDA);
SDOT multiplies A=B*C using the vendor’s version of the BLAS routine
SDOT.
for (i=0;i < n;i++)
for (j=0; j < m; j++)
alil[j] = SDOT (&n, &b[i] [0], &one, &c[0][j], &LDA);
TDOT multiplies A=B*C using a C version of the BLAS routine SDOT.
for (i=0;i < mj;i++)

for (j=0; j < m; j++)
alil[j] = tdot (n, &b[i][0], one, &c[0][j]l, LDA);

The C version of MATMUL was run on a number of machines, and the
timings were recorded in tables.

37

Table 20: C Timings on the Cray.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
IJK 512 256 0.166946 33554432 200.989151 256.000 Cray YMP C
IJK 512 150 0.037771 6750000 178.708524 150.000 Cray YMP C
IKJ 512 256 0.702382 33554432 47772341 256.000 Cray YMP C
JKI 512 256 1.077998 33554432 31.126614 256.000 Cray YMP C
UIJK 512 256 0.127904 33554432 262.340194 256.000 Cray YMP C
PIJKA 512 256 0.175116 33554432 191.612777 256.000 Cray YMP C
PIJKP 512 256 0.210091 33554432 159.713780 256.000 Cray YMP C
DIJK 512 256 9.487608 33554432 3.536659 256.000 Cray YMP C
NIJK 512 256 1.009979 33554432 33.222915 256.000 Cray YMP C
SIJK 512 256 1.823611 33554432 18.399991 256.000 Cray YMP C
TAXPYC 512 256 1.203183 33554432 27.888058 256.000 Cray YMP C
SAXPYC 512 256 2.118891 33554432 15.835850 256.000 Cray YMP C
TAXPYR 512 256 0.291817 33554432 114.984412 256.000 Cray YMP C
SAXPYR 512 256 0.212205 33554432 158.122569 256.000 Cray YMP C
TDOT 512 256 1.445889 33554432 23.206776 256.000 Cray YMP C
SDOT 512 256 0.690061 33554432 48.625338 256.000 Cray YMP C
MXMA 512 256 0.108822 33554432 308.343700 256.000 Cray YMP C
SGEMM 512 256 0.108031 33554432 310.601389 256.000 Cray YMP C
SGEMMS 512 256 0.094318 33554432 355.757787 256.000 Cray YMP C
MIJK 512 256 0.022923 33554432 1463.79728 256.000 Cray YMP C

References

[1] Bailey, Lee, and Simon, Using Strassen’s Algorithm to Accelerate the Solu-
tion of Linear Systems, The Journal of Supercomputing, Volume 4, pages
357-371, 1990

[2] Cray Research, Incorporated UNICOS Math and Scientific Library Refer-
ence Manual, SR-2081 6.0, January 1991.

[3] Dongarra, Moler,

Bunch, Stewart,

Philadelphia, 1979 ISBN: 0-89871-172-X

LINPACK User’s Guide,

SIAM,

[4] Press, Flannery, Teukolsky, and Vetterling, Numerical Recipes, Cambridge
University Press, New York, 1986. ISBN: 0-521-30811-9

[5] Strassen, Gaussian Elimination is Not Optimal, Numerische Mathematik,

Volume 13, pages 354-356, 1969.

[6] Tony Warnock, Small Steps Toward Great Performance, Cray Channels,
Summer 1988, pages 28-31.

38

Table 21: C Timings on the IBM RS600.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
1JK 256 256 3.670000 33554432 9.142897 256.000 IBM RS6000 C
IJK 256 150 0.770000 6750000 8.766234 150.000 IBM RS6000 C
IKJ 256 256 11.830000 33554432 2.836385 256.000 IBM RS6000 C
JKI 256 256 27.719999 33554432 1.210477 256.000 IBM RS6000 C

UILJK 256 256 3.480000 33554432 9.642078 256.000 IBM RS6000 C
PIJKA 256 256 4.740000 33554432 7.078994 256.000 IBM RS6000 C
PIJKP 256 256 8.880000 33554432 3.778652 256.000 IBM RS6000 C

DIJK 256 256 3.670000 33554432 9.142897 256.000 IBM RS6000 C

NIJK 256 256 6.560000 33554432 5.115005 256.000 IBM RS6000 C

Table 22: C Timings on the HP7000.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
1JK 512 256 4.568690 33554432 7.344432 256.000 HP 7000 C
IJK 512 150 0.795392 6750000 8.486382 150.000 HP 7000 C
IKJ 512 256 17.169846 33554432 1.954265 256.000 HP 7000 C
JKI 512 256 30.263432 33554432 1.108745 256.000 HP 7000 C

UILJK 512 256 2.053937 33554432 16.336641 256.000 HP 7000 C
PIJKA 512 256 3.596893 33554432 9.328727 256.000 HP 7000 C
PIJKP 512 256 5.585764 33554432 6.007134 256.000 HP 7000 C

DIJK 512 256 5.600321 33554432 5.991519 256.000 HP 7000 C

NIJK 512 256 5.876466 33554432 5.709968 256.000 HP 7000 C

Table 23: C Timings on the DEC Station.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language
1JK 256 256 13.980605 33554432 2.400070 256.000 DEC Station C
1JK 256 150 3.031293 6750000 2.226773 150.000 DEC Station C
IKJ 256 256 19.914200 33554432 1.684950 256.000 DEC Station C
JKI 256 256 34.273766 33554432 0.979012 256.000 DEC Station C

UJK 256 256 9.832177 33554432 3.412716 256.000 DEC Station C
PIJKA 256 256 10.914139 33554432 3.074400 256.000 DEC Station C
PIJKP 256 256 12.511806 33554432 2.681822 256.000 DEC Station C

DIJK 256 256 19.621279 33554432 1.710104 256.000 DEC Station C

NIJK 256 256 17.945496 33554432 1.869797 256.000 DEC Station C

39

Table 24: C Timings on a VAX/VMS system.

ORDER LDA N Time Ops MFLOPS A(N,N) Machine Language

IJK 256 256 28.750000 33554432 1.167111 256.000 VAX/VMS
IJK 256 150 5.580000 6750000 1.209677 150.000 VAX/VMS
IKJ 256 256 43.119999 33554432 0.778164 256.000 VAX/VMS
JKI 256 256 56.930000 33554432 0.589398 256.000 VAX/VMS
UIJK 256 256 26.719999 33554432 1.255780 256.000 VAX/VMS
PIJKA 256 256 25.879999 33554432 1.296539 256.000 VAX/VMS
DIJK 256 256 20.549999 33554432 1.632819 256.000 VAX/VMS
NIJK 256 256 13.140000 33554432 2.553610 256.000 VAX/VMS

oloNoNeoNoNONON@)

40

