
Parallel MATLAB:
Task Computing

John Burkardt (ARC/ICAM) & Gene Cliff (AOE/ICAM)
3pm - 4pm, Friday, 02 July 2010,

3060 Torgersen Hall
..........

ARC: Advanced Research Computing
AOE: Department of Aerospace and Ocean Engineering
ICAM: Interdisciplinary Center for Applied Mathematics

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab tasks 2010 vt.pdf

1 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

2 / 1

Task Computing: not PARFOR or SPMD

In the lecture about the parfor command, (June 4th), a single
program and a single set of data were involved. When the“client”
reached a parallel loop, extra “workers” would assist.

In the lecture about spmd programs, (June 25th), we have seen
separate commands to the client and to the workers (in one
program) and separate memory spaces. Moving data between the
client and workers required explicit commands.

Despite their differences, programming with parfor and spmd have
something in common; the client and the workers are
simultaneously executing one program.

3 / 1

Task Computing: Description

Today, we will consider a third technique, task computing, in
which a big job is divided into very independent tasks;

For simplicity, assume each task will be carried out by the same
MATLAB function.

Each task runs on a single core (although there’s no need to rule
out parallelism) and has its own memory.

Tasks do not communicate while running; they start with input,
they return results upon completion.

When all the tasks are completed, it is possible to gather, analyze
and plot the combined results.

4 / 1

Task Computing: Description

You could set up 100 tasks, and request 4 workers, for instance.

MATLAB ensures each task receives its input, gets executed
somewhere, sometime, and stores the output for later review.

Task computing is a handy way of filling up spare computer time
with “bite sized” pieces of a computation whose final result can be
determined once all the pieces have been completed.

Tasks can run on your desktop or on a cluster.

5 / 1

Task Computing: Examples

Task computing examples:

search: if the search space can be divided up into subregions
identified numerically;

Monte Carlo: if each task can be sure of generating a
separate stream of random numbers;

summation: any task involving multiple summation,
multiplication, or other operations (quadrature)

image processing: operations that can be carried out over
parts of the image; ray tracing;

6 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

7 / 1

QUAD: Approximate integration

Here we use evenly spaced sample points and equal weights.
Other schemes vary the spacing or weights, or randomize abscissas.

8 / 1

QUAD: Approximate integration

We recall our “favorite” problem, the approximation of an integral
by a weighted sum of function values:

I =

∫ b

a
f (x) dx ≈ Q =

N∑
i=1

wi f (xi)

We could easily regard this computation as, say, 4 tasks:

Q = Q1 + Q2 + Q3 + Q4

where each Qi could be computed independently. The only
communication required would come at the end, when the Qi ’s
must be combined to form Q.

9 / 1

QUAD: Tasks and Jobs

Our basic task estimates the integral over a subinterval [ai , bi]
using ni points. We can write a MATLAB function to do this:

qi = quad_fun (ni, ai, bi)

Then our job is made up of four tasks (assume [a, b] = [0,1]!):

task 1 integrates from 0/4 to 1/4

task 2 integrates from 1/4 to 2/4

task 3 integrates from 2/4 to 3/4

task 4 integrates from 3/4 to 4/4

Each task can be expressed by specifying the appropriate input
arguments to quad task.

10 / 1

QUAD: Tasks and Jobs

So we simply “create” a job, define its tasks, and submit it:

job = createJob (’configuration’, ’local’);

n = 100001;

ni = 25001;

for task = 1 : 4

ai = (task - 1) / 4;

bi = task / 4;

task_id = createTask (job, ...

@quad_task, 1, { ni, ai, bi })

end

submit (job);

wait (job);

(The third argument to createTask, (“1”), reports the number of
outputs produced by quad task).

11 / 1

QUAD: Collecting Results

Our final integral estimate Q is the sum of the individual results.

If qi is the name of the output from the quad task function, the
load command can return a cell array containing the value of qi
returned by each task;

qi = load (job, ’qi’);

qi = cell2mat (qi);

q = sum (qi);

12 / 1

QUAD: Running on the Ithaca Cluster

To run on Ithaca, we only modify the createJob command:

job = createJob (’configuration’, ’ithaca_2009b’);

Unfortunately, running on Ithaca is not as efficient (from Ithaca’s
point of view) as it could be. Each task is treated as a single
queue submission; when an Ithaca node becomes available, just
one task runs on it at a time, even though the node has 8 cores.

13 / 1

QUAD: Our simplest example

QUAD demonstrates the features of task programming.

The calculation is thought of as a job.

The job is thought of as multiple tasks, with each task executed by
the same task function, using different inputs.

The job collects the output from each task function. The user can
load all these output variables, or select a particular variable.

Once loaded, the output can be analyzed, manipulated, or plotted.

14 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

15 / 1

KNAPSACK: Problem Definition

In the classical problem, the objects have both weights and values.
For our problem, we’ll just worry about the weights!

16 / 1

KNAPSACK: Problem Definition

Suppose we have a knapsack with a limited capacity, and a
number of objects of varying weights. We want to find a subset of
the objects which exactly meets the capacity of the knapsack.

(This is sometimes called the greedy burglar’s problem!)

Symbolically, we are given a target value t, and a set W of n
weights. We want a subset S ⊂W so that:

t =
∑
s∈S

s

We don’t know if a given problem has 0, 1, or many solutions.

17 / 1

KNAPSACK: Encoding

A solution of the problem is a subset S ⊂W. Each n-digit binary
string from 0 to 2n − 1 is a code for a possible solution.

For weights W={15,11,10,8,3}, target t=24, we have:

Code Binary Code Indices S
∑

s

0 00000 {} {} 0
1 00001 {1} {3} 3
2 00010 {2} {8} 8
3 00011 {2,1} {8,3} 11
4 00100 {3} {10} 10
5 00101 {3,1} {10,3} 13
6 00110 {3,2} {10,8} 18

...
31 11111 {5,4,3,2,1} {15,11,10,8,3} 47

18 / 1

KNAPSACK: Algorithm

A simple search scheme chooses a value of code in the range 0 to
2n − 1, decodes the subset S, adds the weights, and compares to t.

On the 23rd step of the search, we have a code of 22 = binary
10110 = subset {5,3,2}, so a weight of 15+10+8=33, too high.

The process of checking one code is completely independent of
checking any other.

One program could check all codes, or we could subdivide the
range, and check the subranges in any order and at any time.

19 / 1

KNAPSACK: Program to do ALL Codes

function [code, indices] = knapsack_all (w, t)

n = length (w);

for code = 0 : 2^n-1

binary = bitget (code, 1:n);

indices = find (binary);

if (sum (w(indices)) == t)

return

end

end

return

end 20 / 1

KNAPSACK: A Couple Mysterious MATLAB Functions

The MATLAB function bitget returns a vector of 0’s and 1’s for
positions 1 to n in code. This creates the binary string that
describes the subset.

The function find returns the indices of the 1’s in the binary string.

It is exactly this string of indices that we need to use to index W
and determine the sum of weights.

As soon as we find any solution, we return. We are not trying to
find all solutions.

21 / 1

KNAPSACK: The Calculation is “Divisible”

It’s easy to see that we could divide this problem up into smaller
problems that are worked on independently.

For this problem, it’s clear that the key is to take the original range
of code, from 0 to 2n − 1, and break it into subranges.

A single function can work on the problem over the restricted
subrange. In fact, we only have to slighly modify our original code
to make this new version.

22 / 1

KNAPSACK: Task Program to do SOME Codes

function [code, indices] = knapsack_task (w, t, range)

n = length (w);

for code = range(1) : range(2)

binary = bitget (code, 1:n);

indices = find (binary);

if (sum (w(indices)) == t)

return

end

end

return

end 23 / 1

KNAPSACK: Define the Job and its Tasks

Once we’ve broken our calculation into pieces, we need to tell
MATLAB what the original calculation was, and what the pieces
are that constitute it.

We need to tell MATLAB we want to define a job that is going to
carry out a computation. This is the createJob command.

We need to tell MATLAB that the job consists of a certain number
of tasks; that each task is executed by a particular function, with
particular input. This is done with the createTask command.

24 / 1

KNAPSACK: Define the Job and its Tasks

job = createJob (’configuration’, ’local’, ...

’FileDependencies’, { ’knapsack_task’ });

w = [518533, 1037066, (more), 1259008];

t = 2463098;

i2 = -1;

for task = 1 : 4

i1 = i2 + 1;

i2 = floor ((2^n - 1) * task / 4);

createTask (job, @knapsack_task, ...

2, { w, t, [i1, i2] });

end

25 / 1

KNAPSACK: Submit the Job

With the following commands, we submit the job, and then
pause our interactive MATLAB session until the job is finished.

We then retrieve the output arguments from each task, in a cell
array we call results.

submit (job); <-- Sends the job

wait (job); <-- Waits for completion.

results = getAllOutputArguments (job);

or

results = load (job);

or

code = load (job, ’code’); <-- only load CODE

destroy (job); <-- Clean up

26 / 1

KNAPSACK: Examine the results

Because the job involved multiple tasks, the output must be
returned in a cell array. To see output result 2 from task 3, refer to
results{3,2}.

for task = 1 : 4

if (isempty (results{task,1}))

fprintf (1, ’Task %d found no solutions.\n’, task);

else

disp (’Weights:’);

disp (results{task,1});

disp (’Weight Values:’);

disp (results{task,2});

end

end

27 / 1

KNAPSACK: Examine the results

There are technical reasons why MATLAB uses cell arrays for
many of the objects in parallel computing.

If the stuff in the cell array is all of one numeric type, it can be
converted to a normal MATLAB array, on which we can do the
usual kinds of indexing and arithmetic and so forth:

results = load (job);

numbers = cell2mat (results);

(numbers is now a (4,2) numeric array)
c = numbers(4,1) + numbers(4,2);

integral = sum (numbers(:,1));

plot (numbers(:,1), numbers(:.2));

28 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

29 / 1

CELLS: Problem Definition

Medical researchers can film small groups of biological cells.

In some cases, an enormous number of such records are created.
Rather than having a lab worker view each frame of film, it is
possible to automatically process the images and, for most part,
detect the cells, determine the position of any given cell over a
sequence of images, and monitor the area, shape and average
separation of the cells.

We will look at a simple application in which it is desired to
identify cells by surrounding each one with a white boundary.

If we have 100 image files, each image can be processed
independently.

30 / 1

CELLS: A Typical Image

31 / 1

CELLS: A Typical Image with Cells Identified

32 / 1

CELLS: Problem Definition

In the KNAPSACK problem, the input and output for each task
was a short list of numbers.

For the CELLS problem, the input is really a graphics file, and the
output is a transformed graphics file.

This means that each task, when it runs, has to be able to
determine which unique file it should open; it needs to be able to
find that file; and it needs to know how to name the output file
and where to place it.

So while the KNAPSACK tasks used the input and output
arguments of the MATLAB function for their communication, the
CELLS example will almost entirely be dealing with external files.

33 / 1

CELLS: File Names

Our input files are indexed in a natural way, starting with
AT3 1m4 01.tif and running up to AT3 1m4 99.tif.

The output files will follow a similar convention, but their names
will start with BT3.

The input filename for a given task can be computed:

filename_input = sprintf (’AT3_1m4_%02d.tif’, task);

Using the format %02d means that small integers will be
left-padded with zeros.

34 / 1

CELLS: The Task Function

For this problem, the task function will have a simple interface:

function cell_task (task)

It only needs to know the index of the file it should open, and it
doesn’t return any output - at least, not via output arguments.
So the body of this function will be:

generate input filename based on task number

open input file

process data

generate output filename based on task number

write output file

and we won’t worry about the details of processing the data!

35 / 1

CELLS: Initializing the Job

Now we need to create a job that sets up all the tasks.

Each task will need a copy of the task function, so that goes into
our file dependencies.

Each task also needs a particular input file. Do we want to list all
99 of them? Let’s try not to! Instead, we’ll ensure that each task
begins execution in the directory containing the input files.

This means we initialize the job with this simple statement:

job = createJob (...

’configuration’, ’local’, ...

’FileDependencies’, { ’cell_task’ });

36 / 1

CELLS: Defining the Tasks

Now we must load up our job with tasks. But for this example,
that’s extremely simple!

for task = 1 : 99

task_id = ...

createTask (job, @cell_task, 0, { task });

end

Remember, the 0 indicates there are 0 output arguments,
and { task } is the single input argument to the given task.

37 / 1

CELLS: Defining the Tasks

To run this job, we can simply type:

submit (job);

wait (job);

(no need for load (job); because there’s no output!)

destroy (job);

Assuming things went OK, the output files are in our directory!

38 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

39 / 1

WALKS: Problem Definition

The classic example of a random walk places a person at the
origin. The person then flips a coin, and takes one step to the left
or right, repeating this process as long as desired.

Surprisingingly, random walks are models of many physical
processes, and their simulation and analysis can give insight to
situations where there are no exact methods available.

A variation of this problem is the self avoiding walk in 2D, in
which the person is allowed to move over a 2D lattice, but can
never visit the same place twice.

Because the path never crosses, this walk can be thought of as a
simple model of a protein folding. Self avoiding walks of a fixed
length could represent possible shapes of the protein.

40 / 1

WALKS: A Self Avoiding Walk / Abstract Protein

41 / 1

WALKS: Sampling a Huge, Unruly Space

Our idea is to generate lots of different self avoiding walks. Since
the set is extremely large, we rely on the random number generator
to make our choices. A different initial seed should almost always
give a different walk. The actual number of possible walks can
easily exceed the number of possible seeds!

Our samples might give us

an estimate for the typical distance between the start and end;

the typical distance of the starting point to the “boundary”;

number of empty lattice points in the convex hull of the walk;

the likelihood a walk will terminate early;

42 / 1

WALKS: The Task Code

function [step_num, dist] = walk_task (step_max, seed)

The task uses seed to initialize rand() by:

rand (’twister’, seed);

Then it tries taking step max self-avoiding steps from the origin.

The walk terminates early if all four neighbors have already been
visited. Otherwise, we move to a random unvisited neighbor.

The function returns the actual number of steps taken, and the
final distance from the origin.

43 / 1

WALKS: The Job Code (1)

The job code must decide how many walks are to be generated,
and how many steps they are to take. It chooses random number
seeds for each task, so there is no repetition of computation.

walk num = 100;

step max = 200;

for task = 1 : walk num

seed = 123456789 + task;

task id = createTask (job, ...

@walk task, 2, { step max, seed });

end

The value 2 indicates each task returns 2 output arguments.

44 / 1

WALKS: The Job Code (2)

The job code submits the job, and waits for it to finish and
collects the results:

results = getAllOutputArguments (job);

Now we want to plot the results. This is tricky, because results is a
100 x 2 cell array. We’ll convert it into a standard MATLAB array:

results = cell2mat (results);

Once results is a normal numeric array, we can do a scatter plot of
steps versus distance, or even a least squares fit to the data.

45 / 1

WALKS: The Job Code (3)

46 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

47 / 1

CONCLUSION: Summary of Examples

Our examples suggest the computations suitable for task
programming.

QUAD is so simple we have used it with parfor, spmd and tasks.

In KNAPSACK, we had to figure out an encoding, and we gave
each task a subrange of the full problem. We had thousands of
codes to check, but we assigned a large subrange of codes to each
task (rather than generating thousands of tiny tasks!)

In CELL, each task worked on a file, and there was no input or
output, except that each task knew its index.

In RANDOM WALK, we had to ensure that each task received a
unique random seed, and we had to gather the data up at the end
and plot it.

48 / 1

CONCLUSION: Summary of Task Computing

This kind of parallel programming is quite different from the
usual kinds. Each task is assigned to a single processor. Tasks
could run sequentially on the same processor, simultaneously on
different processors, or in many other combinations.

Tasks do not communicate, except that they receive an initial
input from the job, and send their output results back to it.

In our examples, every task had the same “signature”, but a job
could include tasks with different task functions, different numbers
and types of input and output. That’s why a cell array is necessary
to deal with arbitrary output!

It’s even possible for any task to use parfor and run in parallel on
several processors, but that’s well beyond our concerns right now!

49 / 1

Conclusion: Desktop Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, which include the Parallel Computing Toolbox.

This is one way you can test parallel MATLAB on your desktop
machine.

If you don’t have a multicore machine, you won’t see any speedup,
but you may still be able to run some “parallel” programs.

50 / 1

Conclusion: Cluster Experiments

If you want to work with parallel MATLAB on Ithaca, you must
first get an account, by going to this website:

http://www.arc.vt.edu/index.php

Under the item Services & Support select User Accounts.

On the new page, under Ithaca Account Requests, select ARC
Systems Account Request Form. Fill in the information and
submit it. Although you’re asked to describe the research you want
the account for, you can say that this account is to experiment
with Ithaca to see if it is suitable for your work.

51 / 1

Conclusion: Desktop-to-Cluster Submission

If you want to use parallel MATLAB regularly, you may want to set
up a way to submit jobs from your desktop to Ithaca, without
logging in directly.

This requires defining a configuration file on your desktop, adding
some scripts to your MATLAB directory, and setting up a secure
connection to Ithaca.

The steps for doing this are described in the document:

https://portal.arc.vt.edu/matlab/...

RemoteMatlabSubmission.pdf

We will be available to help you with this process.

52 / 1

Conclusion: VT MATLAB LISTSERV

There is a local LISTSERV for people interested in MATLAB on
the Virginia Tech campus. We try not to post messages here
unless we really consider them of importance!

Important messages include information about workshops, special
MATLAB events, and other issues affecting MATLAB users.

To subscribe to the mathworks listserver, send email to:

listserv@listserv.vt.edu.

The body of the message should simply be:

subscribe mathworks firstname lastname

53 / 1

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 4.3
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼jburkardt/m src/m src.html

quad tasks
knapsack tasks
cell detection tasks
random walk 2d avoid tasks

54 / 1

