Satisfiability Example

E.M. Cliff \& J. V. Burkardt
Interdisciplinary Center for Applied Mathematics
Virginia Tech

May 2009

Configuration

This logical formula $y=f\left(x_{1}, x_{2}, x_{3}\right)$ is satisfied by input values such as (TRUE,TRUE,FALSE) which produce a result of TRUE.

Model Problem

Our model formula uses 31 clauses in 23 variables, and begins:

$$
y=\left(x_{1} \vee x_{2}\right) \wedge\left(-x_{2} \vee-x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge \ldots
$$

There are 2^{23} different choices for the X values. Just 15 of these choices result in a value of TRUE.

Finding all such inputs is the satisfiability problem.
Our solution method is an exhaustive search: generate and test every possible input.

If multiple workers are available, they can search in parallel.

Code Fragment

```
n = 23;
solution_num = 0;
parfor i = 0: 2^n - 1
    % Binary value of I yields logical input X;
    x = i4_to_bvec ( i, n );
    value = circuit_value ( n, x );
    if ( value == 1 )
    solution_num = solution_num + 1;
    print_bvec ( x );
    end
end
```


Timing Results: Intel Nehalem

References

Report:

- Burkardt, Cliff, Snow, MATLAB Parallel Programming:
Some Timing Results on an Intel Nehalem Cluster, http://people.sc.fsu.edu/~burkardt/pdf/nehalem_matlab.pdf.

Source code:

- http://people.sc.fsu.edu/~burkardt/m_src/ md_parallel/md_parallel.html
- http://people.sc.fsu.edu/~burkardt/m_src/ satisfiability_parallel/satisfiability_parallel.html.

