
Parallel MATLAB at FSU:
Parallel FOR Loops

John Burkardt
Virginia Tech

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab parfor 2010 fsu.pdf

12 April 2010

1 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

2 / 1

INTRO: Parallel MATLAB

Parallel MATLAB is an extension of MATLAB that takes
advantage of multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and
can take advantage of up to 8 cores there. Parallel programs can
be run interactively or in batch.

The Distributed Computing Server controls parallel execution of
MATLAB on a cluster with tens or hundreds of cores.

3 / 1

INTRO: Local and Remote MATLAB Workers

4 / 1

INTRO: PARFOR: Parallel FOR Loops

Today’s Lecture (PARFOR)

The simplest path to parallelism is the parfor statement, which
indicates that a given for loop can be executed in parallel.

When the “client” MATLAB reaches such a loop, the iterations of
the loop are automatically divided up among the workers, and the
results gathered back onto the client.

Using parfor requires that the iterations are completely
independent; there are also some restrictions on data access.

Using parfor is similar to OpenMP.

5 / 1

INTRO: ”SPMD” Single Program Multiple Data

Tuesday’s Lecture (SPMD and...)

MATLAB can also work in a simplified kind of MPI model.

There is always a special “client” process.

Each worker process has its own memory and separate ID.

There is a single program, but it is divided into client and worker
sections by special spmd statements.

Workers can “see” the client’s data; the client can see and change
worker data.

The workers can also send messages to other workers.

6 / 1

INTRO: ”SPMD” Distributed Arrays

Tuesday’s Lecture (...and Distributed Arrays)

SPMD programming includes distributed arrays.

A distributed array is logically one array, and a large set of
MATLAB commands can treat it that way.

However, portions of the array are scattered across multiple
processors. This means such an array can be really large.

The local part of a distributed array can be operated on by that
processor very quickly.

A distributed array can be operated on by explicit commands to
the SPMD workers that “own” pieces of the array, or implicitly by
commands at the global or client level.

7 / 1

INTRO: ”TASK” Computing

Friday’s Lecture (Tasks)

MATLAB can generate and manage a computation which has been
divided up into many independent tasks.

Typically, these tasks can be though of as evaluating the same
MATLAB function, but using different input.

The tasks are presumed to be executable in any order, at any time,
on any available processor.

Once all the tasks are completed, the results are available as a
single output object.

8 / 1

INTRO: Direct Execution for PARFOR/SPMD

Parallel MATLAB jobs can be run directly, that is, interactively.

The matlabpool command is used to reserve a given number of
workers on the local (or perhaps remote) machine.

Once these workers are available, the user can type commands, run
scripts, or evaluate functions, which containing parfor or spmd
statements. The workers will cooperate in producing results.

Interactive parallel execution is great for desktop debugging of
short jobs.

It’s an inefficient way to work on a cluster, though, because no one
else can use the workers until you release them!

9 / 1

INTRO: Indirect Execution for PARFOR/SPMD

Parallel (PARFOR and SPMD) MATLAB jobs can be run indirectly.

The batch command is used to specify a MATLAB script to be
executed, to indicate any files that will be needed, and how many
workers are requested.

The batch command starts the computation in the background.
The user can work on other things, and collect the results when
the job is completed.

The batch command works on the desktop, and can be set up to
access clusters.

(FSU HPC cluster access is not done with the batch command!)

10 / 1

INTRO: Indirect Execution for TASKS

Parallel (TASK) MATLAB jobs can be run indirectly.

The create job command defines a job, which is then filled up
with tasks, by the create task command.

Once all the tasks have been defined, a submit command sends
the job to be run indirectly.

These commands work on the desktop, and can be set up to
access clusters.

(FSU HPC cluster access is not done with the submit command!)

11 / 1

INTRO: FSU Cluster PARFOR/SPMD/TASKS Execution

To submit a parallel MATLAB job to the FSU HPC cluster, you
start a MATLAB session on one of the login nodes, and after
you’ve set up any necessary data, you issue the command

results = fsuClusterMatlab(*, *, *, * , *, *, *);

The stars will be explained later. They specify the MATLAB
function to run, the kind of job (PARFOR/SPMD/TASKS), where
the output should go, and how many workers are requested.

Once you issue this command on the login node, your job is placed
in a queue on the cluster, executed, and the results are returned.

You can wait for your results, or log in later and examine them.

12 / 1

INTRO: Parallel MATLAB on the FSU HPC Cluster

FSU’s Department of Scientific Computing maintains an HPC
cluster on which parallel MATLAB is available.

There are 10 login nodes, each with 2 PCT licenses. So as many as
20 people could be “talking” parallel MATLAB at the same time.

The computing cluster has 128 nodes with dual socket dual core
AMD’s, and 256 nodes with dual socket quad core AMD’S:

128 * (2 * 2) + 256 * (2 * 4) = 2,560 cores.

The HPC cluster has 16 DCS licenses, which means no job can get
more than 16-fold parallelism, and those 20 potential users must
contend for the 16 processors. One thing the fsuClusterMatlab
command does is try to manage this contention.

13 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

14 / 1

QUAD: Estimating an Integral

15 / 1

QUAD: The QUAD Function

f u n c t i o n q = quad (n , a , b)

q = 0 . 0 ;
w = (b − a) / n ;

f o r i = 1 : n
x = ((n − i) * a + (i − 1) * b) / (n − 1) ;
f x = b e s s e l y (4 . 5 , x) ;
q = q + w * f x ;

end

r e t u r n
end

16 / 1

QUAD: Comments

The function quad estimates the integral of a particular function
over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.

17 / 1

QUAD: The QUAD FUN Function

f u n c t i o n q = quad fun (n , a , b)

q = 0 . 0 ;
w = (b − a) / n ;

p a r f o r i = 1 : n
x = ((n − i) * a + (i − 1) * b) / (n − 1) ;
f x = b e s s e l y (4 . 5 , x) ;
q = q + w * f x ;

end

r e t u r n
end

18 / 1

QUAD: Comments

quad fun does the same calculation as quad.

The parfor statement changes how this program does the
calculation. It asserts that all the iterations of the loop are
independent, and can be done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor
loop is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop
is completed, the client resumes control of the execution.

MATLAB ensures that the results are the same whether the
program is executed sequentially, or with the help of workers.

The user can wait until execution time to specify how many
workers are actually available.

19 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

20 / 1

EXECUTION: What Do You Need?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...

2 Your MATLAB must be version 2008a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox:

To list all your toolboxes, type the MATLAB command ver.

21 / 1

EXECUTION: Three Ways to Run

A parfor program needs MATLAB to gather “workers” to
cooperate on the program.

On a desktop, we issue an interactive matlabpool request:

matlabpool open local 4

q = quad_fun (n, a, b);

or the batch command with a script and a matlabpool argument:

batch (’quad_script’, ’matlabpool’, 4)

or, on the FSU HPC cluster:

fsuClusterMatlab([],[],’p’,’w’,4,...

@quad_fun, { n, a, b })

22 / 1

EXECUTION: Interactive MATLABPOOL

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0; b = 1;

matlabpool open local 4

q = quad_fun (n, a, b);

matlabpool close

The word local is choosing the local configuration, that is, the
cores assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can
be up to 8 on a local machine. It does not have to match the
number of cores you have.

23 / 1

EXECUTION: Indirect BATCH

The batch command, for indirect execution, only accepts scripts.
We can make a suitable script called quad script.m:

n = 10000; a = 0; b = 1;

q = quad_fun (n, a, b)

Now we create a job:

job = batch (’quad_script’, ’matlabpool’, 4, ...

’FileDependencies’, { ’quad_fun’ })

The following commands send the job for execution, wait for it to
finish, gather the results, and clear out the job information:

submit (job);

wait (job);

load (job);

destroy (job);

24 / 1

EXECUTION: fsuClusterMatlab

On the HPC cluster, we could run the program by the command

n = 10000; a = 0; b = 1;

fsuClusterMatlab([],[],’p’,’w’,4,...

@quad_fun, { n, a, b })

[] allows us to specify an output directory;

[] allows us to specify queue arguments;

’p’ means this is a “pool” (parfor) job;

’w’ means our MATLAB session pauses til the job has run;

4 is the number of workers we request;

@quad fun names the function to evaluate;

{ n, a, b} holds the input arguments to quad fun.

25 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

26 / 1

MD: The Molecular Dynamics Example

The MD program runs a simple molecular dynamics simulation.

N counts the number of molecules being simulated.

The program runs a long time; a parallel version would run faster.

There are many for loops in the program that we might replace by
parfor, but it is a mistake to try to parallelize everything!

MATLAB has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.

27 / 1

MD: Run MATLAB’s Profiler

>> profile on

>> md

>> profile viewer

Step Potential Kinetic (P+K-E0)/E0

Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00

2 498108.113974 0.000009 1.794265e-11

...

9 498108.111972 0.002011 1.794078e-11

10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.

Wall time = 378.828021 seconds.

28 / 1

MD: Profile Results
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM

29 / 1

MD: The COMPUTE Function

f u n c t i o n [f , pot , k i n] = compute (np , nd , pos , v e l , mass)

f = z e r o s (nd , np) ;
pot = 0 . 0 ;

f o r i = 1 : np
f o r j = 1 : np

i f (i ˜= j)
r i j (1 : nd) = pos (1 : d , i) − pos (1 : nd , j) ;
d = s q r t (sum (r i j (1 : nd) . ˆ 2)) ;
d2 = min (d , p i / 2 .0) ;
pot = pot + 0 .5 * s i n (d2) * s i n (d2) ;
f (1 : nd , i) = f (1 : nd , i) − r i j (1 : nd) * s i n (2 . 0 * d2) / d ;

end
end

end

k i n = 0 .5 * mass * sum (v e l (1 : nd , 1 : np) . ˆ 2) ;
r e t u r n

end

30 / 1

MD: Speedup

In the compute function, the important quantity is the force f.
For each particle i, f(i) is computed by determining the distance to
all other particles, squaring, truncating, and taking the sine.

Notice that the computation for each particle is independent. We
could compute each value on a separate worker, at the same time.

The MATLAB command parfor will distribute the iterations of this
loop across the available workers.

Tricky question: Could we parallelize J instead? Both loops?

Tricky question: Could we parallelize both I and J loops?

31 / 1

MD: Speedup

Replacing for i by parfor i, here is our speedup:

32 / 1

MD: Speedup

Parallel execution gives a huge improvement in this example.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop
is encountered. So we should not simply try to replace every for
loop with parfor.

That’s why we first searched for the function that was using most
of the execution time.

The parfor command is the simplest way to make a parallel
program, but we will see some alternatives as well.

33 / 1

MD: PARFOR is Particular

We were only able to parallelize the loop because the iterations
were independent, that is, the results did not depend on the order
in which the iterations were carried out.

In fact, to use MATLAB’s parfor in this case requires some extra
conditions, which are discussed in the PCT User’s Guide. Briefly,
parfor is usable when vectors and arrays that are modified in the
calculation can be divided up into distinct slices, so that each slice
is only needed for one iteration.

This is a stronger requirement than independence of order!

Trick question: How come the scalar value POT was acceptable?

34 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

35 / 1

PRIME: The Prime Number Example

For our next example, we want a simple computation involving a
loop which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N makes the run time increase by a factor of 4.

36 / 1

PRIME: The Sieve of Erastosthenes

37 / 1

PRIME: Program Text

f u n c t i o n t o t a l = pr ime number (n)

%% PRIME NUMBER r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f (mod (i , j) == 0)

pr ime = 0 ;
end

end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end

38 / 1

PRIME: We can run this in parallel

We can parallelize the loop whose index is i, replacing for by
parfor. The computations for different values of i are independent.

There is one variable that is not independent of the loops, namely
total. This is simply computing a running sum (a reduction
variable), and we only care about the final result. MATLAB is
smart enough to be able to handle this summation in parallel.

To make the program parallel, we replace for by parfor. That’s all!

39 / 1

PRIME: Execution Commands

mat labpoo l (’ open ’ , ’ l o c a l ’ , 4)

n = 50 ;

w h i l e (n <= 500000)
p r imes = p r ime numbe r pa r f o r (n) ;
f p r i n t f (1 , ’ %8d %8d\n ’ , n , p r imes) ;
n = n * 10 ;

end

mat labpoo l (’ c l o s e ’)

40 / 1

PRIME: Timing

PRIME_NUMBER_PARFOR_RUN

Run PRIME_NUMBER_PARFOR with 0, 1, 2, and 4 labs.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278

500 0.008 0.023 0.027 0.032

5000 0.100 0.142 0.097 0.061

50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284

41 / 1

PRIME: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

42 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

43 / 1

ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes
the motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t)

44 / 1

ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t) swings
back and forth, in a pattern determined by the parameters m, b, k ,
f and the initial conditions.

Each choice of parameters defines a solution, and let us suppose
that the quantity of interest is the maximum deflection xmax that
occurs for each solution.

We may wish to investigate the influence of b and k on this
quantity, leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k).

45 / 1

ODE: Each Solution has a Maximum Value

46 / 1

ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a
pair of values for the parameters b and k , solving the ODE over a
fixed time range, and determining the maximum value of x that is
observed. Each point in our graph will cost us a significant amount
of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we
use a few shortcuts in MATLAB, the whole operation becomes
quite straightforward!

47 / 1

ODE: The Parallel Code

m = 5 . 0 ;
bVa l s = 0 .1 : 0 .05 : 5 ;
kVa l s = 1 .5 : 0 .05 : 5 ;

[kGr id , bGr id] = meshgr id (bVals , kVa l s) ;

peakVa l s = nan (s i z e (kGr id)) ;

t i c ;

p a r f o r i j = 1 : numel (kGr id)

[T, Y] = ode45 (@(t , y) ode sys tem (t , y , m, bGr id (i j) , kGr id (i j)) , . . .
[0 , 2 5] , [0 , 1]) ;

peakVa l s (i j) = max (Y(: , 1)) ;

end

toc ;

48 / 1

ODE: MATLABPOOL or BATCH Execution

matlabpool open local 4

ode_sweep_parfor

matlabpool close

ode_sweep_display

- - - - - - - - - - - - - - - - - - - -

job = batch (...

’ode_sweep_parfor’, ...

’FileDependencies’, {’ode_system.m’}, ...

’matlabpool’, 4);

wait (job);

load (job);

ode_sweep_display

destroy (job)

49 / 1

ODE: Display the Results

%
% Di s p l a y the r e s u l t s .
%

f i g u r e ;

s u r f (bVals , kVals , peakVals , ’ EdgeColor ’ , ’ I n t e r p ’ , ’ FaceCo lo r ’ , ’ I n t e r p ’) ;

t i t l e (’ R e s u l t s o f ODE Parameter Sweep ’)
x l a b e l (’ Damping B ’) ;
y l a b e l (’ S t i f f n e s s K ’) ;
z l a b e l (’ Peak Di sp lacement ’) ;
view (50 , 30)

50 / 1

ODE: A Parameterized Problem

51 / 1

ODE: A Very Loosely Coupled Calculation

In the MD program, the parfor loop was only a part of the
calculation; other parts of the calculation had to run in order, and
the loop itself was called several times, but each time the input
depended on previous computations.

In the ODE parameter sweep, we have several thousand ODE’s to
solve, but we could solve them in any order, on various computers,
or any way we wanted to. All that was important was that when
the computations were completed, every value xmax(b, x) had
been computed.

This kind of loosely-coupled problem can be treated as a task
computing problem, and we will see later on how MATLAB can
treat this problem as a collection of many little tasks to be
computed in an arbitrary fashion and assembled at the end.

52 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

53 / 1

FMINCON: Hidden Parallelism

FMINCON is a popular built-in MATLAB function which finds
the minimizer of a function of several variables with constraints:

min F(X) subject to:

A*X <= B,

Aeq*X = Beq (linear constraints)

C(X) <= 0,

Ceq(X) = 0 (nonlinear constraints)

LB <= X <= UB (bounds)

If no derivative or Hessian information is supplied by the user, then
FMINCON uses finite differences to estimate these quantities. If
fun is expensive to evaluate, the finite differencing can dominate
the execution.

54 / 1

FMINCON: Path of a Boat Against a Current

Professor Gene Cliff created an example using FMINCON, in which
a boat is steering against a current, and trying to reach the shore.

55 / 1

FMINCON: Hidden Parallelism

FMINCON uses an options structure that contains default
settings. The user can modify these by calling the procedure
optimset. The finite differencing process can be done in parallel if
the user sets the appropriate option:

options = optimset (optimset(’fmincon’), ...

’LargeScale’,’off’, ...

’Algorithm’, ’active-set’, ...

’Display’ , ’iter’, ...

’UseParallel’, ’Always’);

[x_star, f_star, exit] = fmincon (h_cost, z0, ...

[], [], [], [], LB, UB, h_cnst, options);

...and uses the matlabpool command to make workers available!

56 / 1

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

MD Example

PRIME NUMBER Example

ODE SWEEP Example

FMINCON Example

Conclusion

57 / 1

CONCLUSION: Summary of Examples

The QUAD example showed the simplest use of parfor. We will
see new versions of this example again when we talk about spmd
and task programming.

In the MD example, we did a profile first to identify where the
work was.

By timing the PRIME example, we saw that it is inefficient to work
on small problems, or with only a few processors.

In the ODE SWEEP example, the loop we modified was not a
small internal loop, but a big “outer” loop that defined the whole
calculation.

In the FMINCON example, all we had to do to take advantage of
parallelism was set an option (and then make sure some workers
were available).

58 / 1

CONCLUSION: Summary of Examples

We only briefly mentioned the limitations of the parfor statement.

You can look in the User’s Guide for some more information on
when you are allowed to turn a for loop into a parfor loop. It’s not
as simple as just knowing that the loop iterations are independent.
MATLAB has concerns about data usage as well.

MATLAB’s built in program editor knows all about the rules for
using parfor. You can experiment by changing a for to parfor, and
the editor will immediately complain to you if there is a reason
that MATLAB will not accept a parfor version of the loop.

59 / 1

CONCLUSION: Where is it?

The Parallel Computing Toolbox is installed on the HPC login
nodes (2 licenses each) and there are 16 DCE licenses on the HPC
compute nodes.

FSU’s Department of Scientific Computing has received 20 extra,
temporary licenses for the Parallel Computing Toolbox.

It’s available on classroom machines class01 through class10 and
the public machines hallway-b through hallway-f, and valid
through April 21.

Run it by typing /scratch/R2010aTrial/bin/matlab

60 / 1

CONCLUSION: Where is it?

The temporary license includes lots of extras!:

Curve Fitting Toolbox

Image Processing Toolbox

Optimization Toolbox

Parallel Computing Toolbox

Signal Processing Blockset

Signal Processing Toolbox

Statistics Toolbox

Symbolic Math Toolbox

61 / 1

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 4.3
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

FSU HPC web site: www.hpc.fsu.edu/

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼burkardt/m src/m src.html

quad parfor
md parfor
prime number parfor
ode sweep parfor
fmincon parallel

62 / 1

