
Fast Programs, Big Problems

John Burkardt
...

ISC 3222-01
”Symbolic and Numeric Calculations”

Professor Ming Ye
11:15am-12:05pm, 152 DSL

...
https://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab fast 2010 fsu.pdf

19/22 November 2010

1 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

2 / 1

Introduction

In June 2010, the fastest computer in the world was the Jaguar
system, at Oak Ridge National Laboratories. It can run at 1.75
petaflops. (This is part of the machine!)

3 / 1

Introduction

Now, at the annual 2010 Supercomputing meeting in New Orleans,
the list of the biggest and fastest computers in the world was
announced. China’s 2.57 petaflop Tianhe machine is now the
fastest.

4 / 1

Introduction

Who needs these big machines?

What kind of problems could possible be this large?

What does a petaflop measure?

These questions might seem to have nothing to do with the
machines on our desktops. We don’t really feel that it takes any
significant time to calculate anything we are interested in.

And 20 years ago our desktop machines would have counted as
supercomputers.

5 / 1

Introduction

6 / 1

Introduction

A megaflop is a computational rate of a million floating
operations per second. (Gigaflops are billions, teraflops trillions,
and Petaflops are quadrillions).

A “floating point operation” is addition or multiplication, applied
to a floating point (real) number.

If you can estimate the number of operations in a calculation, and
if you can determine how long it took the computer to carry them
out, you have computed the computational rate or performance for
that computer on that problem.

To factor and solve a linear system of size N takes about
2
3N3 + 2N2 operations. The program linpack bench carries out
this operation and reports the performance in megaflops.

Do this now: Run linpack bench on your machine and note the
MFLOPS number.

7 / 1

Introduction

The performance value you get only tells you how fast the
computer solved the problem as you described it. Sometimes there
are faster ways to solve the same problem.

MATLAB can solve a linear system using the “backslash” notation.
The backslash operation is highly optimized, so it can carry out the
work as fast as possible.

Do this now: Run linpack bench backslash and note the
MFLOPS.

I expect you will see that the same problem has been solved
significantly faster. If the problem takes a long time to solve, then
this is an important discovery, and we must pay attention to good
computer performance!

But what is a “big” problem? How can we measure computer
speed? And how can we try to improve a slow program?

8 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

9 / 1

SPEED: Relating Work and Time

To call a problem ”big”, we need to be able to measure the work
the computer has been asked to do.

To call an algorithm, computation, or computer ”fast”, we need to
be able to measure time.

If we can make these measurements, we can generalize the formula

Speed = Distance / Time,

to define

Computer Performance = Work / Time

10 / 1

SPEED: Measuring Time

tic and toc are a pair of MATLAB functions that allow you to
measure the time it takes to carry out your work.

tic starts or restarts the timer; toc reports the elapsed time in
seconds since tic was called.

Try this now:

tic

a = rand(1000,1000);

toc

a = rand(1000,1000);

toc

Why will some people get very different answers?

11 / 1

SPEED: Measuring Time

If we use a MATLAB M file to define the work to be done, then
MATLAB won’t be measuring the time it takes us to type each
line! Repeat the experiment, but do so by putting those 5 lines
into an M file, called, for example, ticker.m.

Try this now:

ticker

Run the program and let’s all tabulate our results.

Now, even if you run the program five times in a row, the results
should be about the same.

12 / 1

SPEED: Measuring Work

Measuring the work involved in a computer program is harder
than measuring time. For one thing, the computer does not
execute our source code, but a lower level assembly language.

MATLAB, in particular, is partly an interpreted language; that
means that often a lot of the computer’s work is tied up in trying
to figure out what you want, rather than in computing.

MATLAB includes precompiled or executable code that can run
very fast, but it is always possible to do things in the worst
possible way! Let us take a moment to consider what that means!

13 / 1

SPEED: An Experimental Calculation

Suppose we want to set the elements of a matrix A(I,J) using a
formula based on I and J.

The obvious approach is to use a pair of for loops:

for i = 1 : m

for j = 1 : n

a(i,j) = sin (i * pi / m) * cos (j * pi / n);

end

end

As long as m and n are small numbers, there’s no way it could
matter whether this is the most efficient approach.

But we have made two bad MATLAB programming decisions here.

14 / 1

SPEED: TIC and TOC to Time the Calculation

To see that something’s wrong, let’s make an M file called
array1.m, and include an initial tic and final toc as well:

tic;

for i = 1 : m

for j = 1 : n

a(i,j) = sin (i * pi / m) * cos (j * pi / n);

end

end

toc

We are free to set the values of m and n outside the script.

15 / 1

SPEED: Slow, then Fast

The first thing to notice is a little peculiar:

Try this now:
Set M and N to 100, and then run array1 5 times.

What do you notice? Can you make it happen again?

I told you MATLAB is an interpreted language. The first time it
reads your commands, it has to do a lot of set up, make sure it
knows where the data is and the functions it needs to call. If the
same command is repeated while MATLAB still has this setup
information available, it can run much more quickly.

Debatable point: do we want the fast time or the slow time?

The clear command wipes out all that setup information, so you
can go back to the slow code anytime.

16 / 1

SPEED: Counting the Work

To estimate the performance of this calculation, we ought to
know how much work is involved in evaluating the formula. But
sin() and cos() are not simple floating point operations, so we
can’t count the work that way. However, let’s simply assume that
computing each entry of the matrix costs the same work W. In
that case, the total work in evaluating the whole matrix is

Work = M * N * W

So a matrix with 100 times as many elements has 100 times as
much work, and presumably takes 100 times as much computer
time.

It’s not hard to check this using a graph!

17 / 1

SPEED: A Sequence of Tasks

array1 once.m:

m = 1000;

n = 1;

for logn = 0 : 10

tic;

for i = 1 : m

for j = 1 : n

a(i,j) = sin (i * pi / m) * cos (j * pi /n);

end

end

x(logn+1) = m * n;

y(logn+1) = toc;

n = n * 2;

end

plot (x, y, ’b-*’, ’LineWidth’, 2, ’MarkerSize’, 10);

18 / 1

SPEED: Timing Data

19 / 1

Introduction

What happens if we run the program again, right away?

20 / 1

SPEED: Run It Again

21 / 1

Introduction

The program array1 twice.m runs the computation twice,
plotting in blue the first time, and red the second. (And it uses the
clear command at the beginning,so we have a clean start!)

Perhaps if we plot the data together we can understand why the
shape of the plot changed.

22 / 1

SPEED: Compare First and Second Runs

23 / 1

SPEED: Compare First and Second Runs

When we look at the two graphs together, it becomes clear that
something is wrong, or out of proportion. In both computations,
on the last step, we compute 1,000,000 matrix entries. But
somehow, something else is taking up 10 times as much time as
the numerical calculation on the last step (2.6 seconds the first
time and 0.18 the second.)

I mentioned that MATLAB is an interpreted language, and has to
do some setup and interpretation of your statements. But here is a
case where the setup is severely expensive...and easily fixed!

In MATLAB, you don’t need to declare the size of an array. You
can simply start using it. That means that MATLAB has to
”guess” the space you need based on your commands, and it may
have to adjust this guess as you issue new commands.

24 / 1

SPEED: MATLAB’s Array Allocation

If your first statement is

x(100) = 5;

then MATLAB ”realizes” you want an array x of size at least 100.
Suppose your next statement is

x(200) = 5;

Then MATLAB realizes it didn’t set aside enough space so it finds
space for an array of size 200, copies the old version of x into the
first 100 entries, and assigns x200.

This means that an array assignment can “accidentally” also be a
request for more space.

25 / 1

SPEED: MATLAB’s Array Allocation

Now we see the flaw in our program. Every time the i or j loop
index increases by 1, MATLAB realizes we need one more row or
one more column to hold the matrix, so it stops calculating and
redefines the matrix.

Unless we hit ”clear”, MATLAB keeps this information around; so
the second time we run the same program, all that space is already
available and so the program runs 10 times faster.

So, is the key to running faster to run the program twice?
(Wrong conclusion!)

26 / 1

SPEED: Preallocate Arrays

MATLAB allows you to request space for an array before you use
it. In particular, the zeros command is what we need!

Try this now:
Just after the first for logn = 0 : 10 statement, insert:

a = zeros (m, n);

into the array1 twice.m program.

Run the program. Do the two calculations take about the same
time now?

27 / 1

SPEED: MATLAB’s Editor Can Help

MATLAB’s editor can spot and warn you about some
inefficiencies like this.

If you use the editor to view a program, on the right hand margin
of the window you will see a small red, orange or green box at the
top, and possible orange or red tick marks further down, opposite
lines of the program.

If you examine array1.m this way, you might see an orange box
and an orange tick mark. Putting the mouse on the tick mark
brings the following message:

Note:

The variable ’a’ appears to change size on every loop iteration
(within a script). Consider preallocating for speed.

This is the change we just made to array1 twice.m.

28 / 1

SPEED: Another Flaw

The second flaw in our program is again a MATLAB issue.

MATLAB allows you to program in the “scalar” style in which each
command works with numbers in the ordinary way. But you are
encouraged to use vector and array commands instead.

These commands can be simpler (fewer statements are needed),
but they can also result in much faster execution.

The speedup can be significant enough that it’s even worthwhile to
rewrite your program in a way that makes it look more
complicated.

29 / 1

SPEED: MATLAB’s Vector Notation

Examples include:

for i = 1 : n ==> a(1:n) = 7

a(i) = 7

end

for i = 2 : 93 ==> b(2:93) = (2:93) / 17

b(i) = i / 17

end

for i = 1 : m ==> c = a * x’

c(i) = 0

for j = 1 : n

c(i) = c(i) + a(i,j) * x(j)

end

end

30 / 1

SPEED: Using Vectors

Suppose we had vectors s and c containing the values

s(1:m) = sin (pi * (1:m) / m)

c(1:n) = cos (pi * (1:n) / n)

Then the entry a(i,j) is the ith entry of s times the jth entry of c

for i = 1 : m

for j = 1 : n

a(i,j) = s(i) * c(j)

end

end

This is an outer product. It can be written in vector notation as

a = s’ * c; (if s and c are row vectors)

a = s * c’; (if s and c are column vectors)

31 / 1

SPEED: Same Calculation, Different Forms

Try this now:

Modify array1 twice so that the first half of the program
computes a the old way, but the second half computes vectors s
and c first, and then evaluates a as an outer product.

Try this yourself, but I will also walk you through this modification,
so don’t get frustrated!

Now run the program: How do the plots compare?

32 / 1

SPEED: Summary

Performance tells you how your computer and algorithm are
handling a given task.

Computer time is part of this measurement;

If we can also measure “work”, then it’s possible to say more
about the computational rate.

The “work” in computing includes not just the numerical
computations in our formulas, but also “support work” like setup,
interpretation, array resizing. Try to minimize support work, and
look for optimized ways of carrying out certain operations.

NEXT TIME, WE WILL LOOK AT HOW PROGRAMS GET BIG.

33 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

34 / 1

MD: Performance Profiles

If a program is small and the calculation is simple, it is easy to
estimate how much work is involved, and to make experiments to
see if a change to the code will make it run faster.

But very often, you start with a big, complicated code which
performs several tasks, including reading input, interacting with
the user, performing the calculation, writing output and making
graphs.

You may not even have written the program yourself!

But you are told that it’s important to measure its performance on
a typical problem, and to identify parts of the code that take up a
lot of time and that might be speeded up.

35 / 1

MD: How the Program Works

Our first example program, called MD, (“molecular dynamics”)
simulates the movement of a collection of particles which have a
weak attraction to each other.

The program is given

ND, the number of space dimensions;

NP, the number of particles;

STEP NUM, the number of time steps.

The program starts the particles at random positions, and then
estimates their motion over the given number of time steps.

Depending on the problem size, the program might take a few
seconds or minutes to run. We have been asked to locate the parts
of the program that take up the most time.

The MD program has about 500 lines of code; we will really need
some help to make an intelligent report!

36 / 1

MD: A Molecular Dynamics Simulation

Compute the positions and velocities of N particles at a sequence
of times. The particles exert a weak attractive force on each other.

37 / 1

MD: Run the Program

Since we don’t know much about the program, let’s keep things
small, staying in 2D, with 100 particles and 20 time steps.

Try this now:

>> md (2, 100, 20)

38 / 1

MD: Run the Program

>> md (2, 100, 20)

Step Potential Kinetic (P+K-E0)/E0

Energy Energy Energy Error

0 4843.049881 0.000000 0.000000e+00

2 4843.049881 0.532737 1.100004e-04

4 4829.529611 13.541667 4.417896e-06

...

18 4736.761673 262.217688 3.219655e-02

20 4748.749293 295.544894 4.155322e-02

Main computation:

Wall clock time = 21.216702 seconds.

39 / 1

MD: Bigger Problems Need Better Code

We’d like to go to 3 dimensions, use many more particles, and
take more time steps. Can we solve bigger problems?

To estimate the cost of increasing a parameter requires knowing
the complexity of the calculation, which we’ll come back to later.

For now, we want to see where the code took the most time.

MATLAB has a profile command that can “watch” a program run
and tell us a lot about it afterwards.

Do this now:

>> profile on

>> md (2, 100, 20)

>> profile viewer

40 / 1

MD: Where is Execution Time Spent?

41 / 1

MD: Where is Execution Time Spent?

If you interpret the profile report, you can see that the MD
function calls COMPUTE OLD 20 times, and that about 38
seconds of the 43 second run time was spent inside of
COMPUTE OLD.

(Notice also that, because of adding the profiler, the wall clock
time increased. The profiling work has been added to our total
computation - but that will go away once we are done our analysis.)

By the way, use profile off when you are done, otherwise the
profiler will slow down all your commands!

If we click on the line md>compute old we can even see more
detail about what went on in that function.

42 / 1

MD: Focus on the COMPUTE OLD function

43 / 1

MD: Focus on the COMPUTE OLD function

44 / 1

MD: Assignment

Try to make the MD program run faster!

1 First run the program, without making any changes, using the
command md(2,1000,100). How long does this take?

2 Turn off the plotting option by changing the line
show plots=1 to show plots=0. Now what is the run time?

3 Leave plotting off. Try to replace some for loops in
compute old with vector operations. What is your best run
time now?

When you change compute old, what is a simple check to make
sure the program is probably still correct?

An acceptable report will list the three run times, and include a
printout of your modifications to compute old.

45 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

46 / 1

NEIGHBORS: A Tiny Bit of Greenland

47 / 1

NEIGHBORS: The Triangle Neighbor Problem

Triangulation is a way of breaking up a large complicated region
into simple triangles. We can think of the triangles as convenient
local maps of the region. To keep track of things, we just need to
know which triangle to examine.

But to keep track of moving things (such as the ice sheets of
Greenland, or deer herds in Canada, or currents in the ocean), we
need to know how to go from one triangle to any of its three
neighbors.

If we assume everything possible is numbered, then our task is to
identify the neighbor triangles in a list.

48 / 1

NEIGHBORS: The Nodes of a Simple Region

49 / 1

NEIGHBORS: The Nodes are Numbered

The node coordinates are supplied in a file that looks like this:

line: X Y

1: 0.0 0.0

2: 1.0 0.0

3: 2.0 0.0

4: 3.0 0.0

5: 4.0 0.0

6: 0.0 1.0

7: 1.0 1.0

... ...

21: 2.0 4.0

50 / 1

NEIGHBORS: Triangles formed from Nodes

51 / 1

NEIGHBORS: The Triangles are Defined and Numbered

Each triangle is defined by three nodes (A,B,C):

Triangle: A B C

1: 1 2 6

2: 7 6 2

3: 2 3 7

4: 8 7 3

5: 3 4 8

6: 9 8 4

7: 4 5 9

...

24: 21 20 18

52 / 1

NEIGHBORS: Triangles Labeled in Red

53 / 1

NEIGHBORS: A List of Neighbors

We easily see that the neighbors of triangle 2 are triangles 9, 1,
and 3, and that triangle 21 has neighbors 18 and 22, plus a side
that’s missing a neighbor.

The computer has no eyes, so it must compute a list like this:

Triangle: n1 n2 n3

1: 2 * *

2 9 1 3

3: 4 2 *

4: 11 3 5

...

21: 18 22 *

22: 21 23 *

23: 20 24 22

24: 23 * *

54 / 1

NEIGHBORS: Triangle Neighbors

The computer has to “think” about this problem without a
picture. Triangles 6 and 13 are neighbors. Triangle 6 uses nodes 4,
9, and 8. Triangle 13 uses nodes 8, 9 and 13. The fact that they
are neighbors is hidden in the way that triangle 6 has a side using
nodes 9 and 8, while triangle 13 has a side using nodes 8 and 9.

Perhaps we can detect neighbors by making a list of all the edges
associated with each triangle, and looking for matches.

To make it easier to match, each edge will list the smaller node
first. And each edge will have a third item, indicating the triangle
it came from.

55 / 1

NEIGHBORS: The List of Edges

Here’s how the data starts:

N1 N2 Tri

Triangle 1 -> 1 2 (1)

2 6 (1)

1 6 (1)

Triangle 2 -> 2 7 (2)

6 7 (2)

2 6 (2)

Triangle 3 -> 2 3 (3)

3 7 (3)

2 7 (3)

..

Triangle 24 -> 18 21 (24)

20 21 (24)

18 20 (24)

Can we make this search efficient?
56 / 1

NEIGHBORS: Look for the right kind of SORT

Do this now:
The file ell3 edges.txt contains the list of edges for the figure we
have been discussing. Read this data into MATLAB using a
command like

edges = load (’ell3 edges.txt’);

We want to modify the file by putting, one after the other, the
pairs of lines that correspond to matching triangle edges. In other
words, the new file should have these lines one after the other:

2 6 1

2 6 2

We can do this with one MATLAB command...but it’s not sort!

57 / 1

NEIGHBORS: SORT Options

The MATLAB sort command has an optional argument to specify
which dimension is to be sorted. And there’s a sortrows
command, too.

Do this now:
Try these commands and see which one does what we want:

edges2 = sort (edges);

edges3 = sort (edges, 1);

edges4 = sort (edges, 2);

edges5 = sortrows (edges);

You are hoping to find this pair of consecutive lines:

2 6 1

2 6 2

58 / 1

NEIGHBORS: Example Triangulations

Here are four examples of triangulations:

Name Nodes Triangles Time

box3 20 24 0.06 seconds

lake coarse 621 974

big cavity 8,185 4,000

greenland 33,343 64,125

To see a picture of any of these triangulations, you can use the
triangulation display program:

Do this now:

triangulation_display (’box3’, 0, 1)

59 / 1

NEIGHBORS: Running the Program on Small Data

To compute the neighbor information for the box3 triangulation,
we need the triangulation triangle neighbors program:

Do this now:

triangulation_triangle_neighbors ’box3’

This will compute the neighbor information, store it to a list called
box3 element neighbors.txt, and print the time it took to
compute the neighbors.

It only took me 0.06 seconds for the box3 data.

60 / 1

NEIGHBORS: Using Bigger Data

We can see that the program runs quickly for the small box3
problem. But we need to run the program on the other three sets
of data as well.

Run the program on lake coarse and record the time. It’s about
30 times as much data. Does it take 30 times longer?

Can you guess how long big cavity will take to run?

It should be clear that before we try to run greenland, it would be
worthwhile to have the profile program take a look and see where
the time is being spent.

Do this now:

profile on

triangulation_triangle_neighbors ’big_cavity’

profile viewer

61 / 1

NEIGHBORS: Identifying The Expensive Calculation

The profile viewer points to i4col sort a as using the time.

That function simply sorts the edges, as we did earlier with
MATLAB’s sortrows command.

Do this now:
In the triangulation triangle neighbors program, replace the line

col = i4col_sort_a (4, 3*triangle_num, col);

by the line

col = (sortrows (col’))’;

(Be careful! We need those two ”transposes” exactly as they
appear here because MATLAB doesn’t have a sortcols function.)

Rerun big cavity. Did the execution time change significantly?

62 / 1

NEIGHBORS: Summary

Your experiences with MATLAB’s performance profiler should
give you a little bit of confidence that even if you didn’t write the
program, and it’s a big program with lots of pieces, you can still
get some idea of where the computational time is being spent.

If a lot if time is spent on a small amount of code, then we may be
able to understand what that code is doing, and try to speed it up,
without actually spending time measuring and understanding the
entire program.

63 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

64 / 1

COMPLEXITY:

A computer calculation or algorithm is often thought of as an
abstract machine or procedure that accepts input and produces
output.

Sometimes, the value of one particular input quantity is a measure
of how hard the calculation is going to be. Often this quantity is
an integer, perhaps N, which might measure the length of an input
vector, the number of iterative steps to take, or some other
quantity that affects the amount of work.

It is sometimes possible to estimate the work W, the number of
arithmetic operations performed, as a function of an input
parameter such as N. Suppose we worked out an exact formula for
the work and it came out to be:

W (N) = 23N2 + 38N + 1447.

65 / 1

COMPLEXITY:

The details of the complexity formula are not important. The
important thing is, if W can be written as a polynomial in N, then
what is the highest power of N that shows up?

The reason this is important is that we want to know what
happens to the work as N grows.

For our example formula,

W (N) = 23N2 + 38N + 1447,

the highest power of N is 2, so we say that

W has quadratic growth with N or

W is order 2 in N or

W is order N2 or

W is O(N2).

66 / 1

COMPLEXITY:

Having quadratic growth tells us something about how hard the
problem is. If we want to solve a problem twice as big, there will
be (about) 4 times the work. A problem 10 times as big has 100
times the work, and so on.

Knowing the complexity of an algorithm is important, because the
same algorithm is likely to be used for a wide range of problem
sizes. An algorithm whose work grows quadratically will hit the
”computational ceiling” very quickly.

67 / 1

COMPLEXITY: Example Algorithms

binary search of sorted list: O(log N)

search an unsorted list: O(N)

vector dot product: s = U’*V: O(N)

Fast Fourier Transform: O(N log N)

Heap sort N numbers: O(N log N)

Diagonally Dominant Symmetric Iteration: O(N(log N)2)

Gauss backsolve: O(N2)

Bubble sort N numbers: O(N2)

Gauss elimination: O(N3)

Matrix multiply A=B*C: O(N3)

Factor N digit number: O(2N)

Shortest round trip through N cities: O(N!)

(It took two years and hundreds of computers to factor a single
232 digit number)

68 / 1

COMPLEXITY:

Let’s suppose we’re willing to do W = 1,000,000,000 operations.
What size problem can we do?

O(log N) - no limit on N

O(N): N = 1,000,000,000

O(N log N) N = 50,000,000

O(N(log N)2) N = 4,000,000

O(N2) N = 30,000

O(N3) N = 1,000

O(2N) N = 30

O(N!) N = 13

In other words, a high order algorithm will very quickly use up
whatever work or time limit we allow.

69 / 1

COMPLEXITY: Time and Complexity

It’s important to be able to estimate complexity, because
program A may be faster than program B for a low value of N, but
the advantage may change as N increases.

Since we don’t want to figure out a formula for the work as a
function of N, it is reasonable to try to get a feeling for the
behavior of a function by timing it for a sequence of values of N
over a representative range.

We should not be surprised if the results are meaningless for very
small and very large values of N.

70 / 1

COMPLEXITY: Dot Product

Given two (column) vectors U and V, the scalar dot product is
defined by:

s = U ′V =
N∑
i=1

uivi

and can be computed in “about” N operations:

1 initialization

2*N “fetches” from memory

N multiplies

N adds

1 write to memory

Counting only the N+N computational operations, we have an
O(N) algorithm.

71 / 1

COMPLEXITY: Dot Product Timings

72 / 1

COMPLEXITY: Absolute performance

So far, we’ve only looked at relative performance; we compare
the times as we double the problem size.

The computer I am using has a clock speed of 2.8 GigaHertz. Very
roughly speaking, this means 2.8 billion things can “happen” in one
second. A “thing” might be a numerical operation, for instance.

Let’s compare that to the the work we did (2 * 33 million
operations) and the time it took, about 0.037 seconds:

rate = 2 * 33,000,000 ops / 0.037 seconds = 1.8 billion (ops/sec)

This suggests that our operation count and timing are meaningful,
and indicate that the computer is operating at about 65% of its
maximum possible speed on this calculation.

73 / 1

COMPLEXITY: Absolute performance

Try this now:

Find the clock speed on the computer you are using.

Run the dot product calculation, doubling from N=1 to
N=225.

Is your plot linear?

Use the results of your calculation to determine the rate, in
terms of (ops/sec).

How does this compare to the clock speed?

74 / 1

COMPLEXITY: Dot Product Timings

What has gone wrong now? (Same plot as before except now
we’ve added N = 226 and N =227)

75 / 1

COMPLEXITY:Floyd’s Algorithm

76 / 1

COMPLEXITY: Floyd’s Algorithm

Suppose we have N cities, and we are interested in determining
the shortest time ST(I,J) to drive from any city I to any city J.

We have to assume that we start with a table that gives the driving
time DT(I,J) for a direct trip from city I to each city J. Since most
cities don’t have a direct link, many of these values will be ∞.

But if a direct link doesn’t exist, we can usually find many ways to
get from I to J, and we want to find the shortest of all possible
routes.

Between city I and city J there are N-2 other cities, so theoretically
there are (N-2)! routes to check. Since there a total of N * (N-1)
values of T(I,J) to compute, this seem like an O(N!) problem, also
known as ”impossible”!

77 / 1

COMPLEXITY: Floyd’s Algorithm

Instead of being impossible, Floyd’s algorithm shows a simple
way to compute the entire table in just a few lines of code:

st = dt

for k = 1 : n

for j = 1 : n

for i = 1 : n

st(i,j) = min (st(i,j), st(i,k) + st(k,j))

end

end

end

Tell me right now:
What is the complexity or order of this algorithm?
What size is a “big” problem for Floyd’s algorithm?

78 / 1

COMPLEXITY: Floyd’s Algorithm Timed

79 / 1

COMPLEXITY: Floyd’s Algorithm Timed

It’s easy to be tricked by plots. Since we expect a cubic, we are
prepared to accept this image. Is it really a cubic? It could be a
quadratic. It could be that the last two data values are “wild”, as
we saw with the dot product results.

The human eye is terrible at detecting a quadratic or cubic curve.
On the other hand, straight lines are a cinch!

If it’s really true that T ∝Work = O(N3) so that roughly
T = c ∗ N3 what happens if we take logarithms?

log(T) = log(c ∗ N3) = log(c) + log(N3) = log(c) + 3 ∗ log(N)

So plotting logarithms should reveal a straight line;
moreover, that line should have slope 3!

80 / 1

COMPLEXITY: Floyd’s Algorithm Timed, Logarithmically

81 / 1

COMPLEXITY: Floyd’s Algorithm Timed, Logarithmically

Rather than estimate the slope, let us print the values of

log(time(k + 1))− log(time(k)

log(n(k + 1))− log(n(k))

1 -2.769370

2 1.571803

3 2.515884

4 2.870909

5 2.789927

6 2.883388

7 2.898314

8 2.927246

9 2.960317

10 2.984813

82 / 1

COMPLEXITY: Conclusions

A program may have many lines of code, and yet, as the
problem size increases, the behavior of the program becomes more
and more like the highest order term in the complexity function.

Knowing the program complexity tells you how much it will cost
you to solve a problem that is twice as big.

Knowing that one algorithm has a lower complexity than another,
for example, N log N versus N2, helps when looking for a better
algorithm for large problems.

Plotting the run time over a range of N values can help to
estimate the complexity, but you should always test your
complexity formula in a way that would result in a straight line
graph or a table of logarithms.

83 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

84 / 1

SAMPLES: Suppose You Find this Interesting?

If you find the topics we have discussed to be of special interest
to you, then the best thing you can do is try to explore some
simple cases, make some intelligent attempts to solve the
problems, keep track of your results, and hope that the patterns
you find give you some ideas and insights.

The following examples all involve problems that can be made to
be of any size N. As the problem size increases, we expect the
work to increase. This depends, of course, on the algorithm you
choose to solve the problem. Often the structure of your algorithm
will tell you the complexity. Other times, you may need to estimate
the complexity by doing some experiments.

Even those these examples are very simple, the problem of
estimating complexity and choosing a good algorithm for large
problems is something most scientific programmers must consider
in all their work.

85 / 1

Example 1: The Largest Number in a List

Suppose we have a vector of N numbers V, and we wish to
compute the largest value.

1) We can compute this value using a for loop and the max
function, checking one element of V on each step.

2) We could apply the max function to the whole array in one step.

Presumably, the second approach is faster.

Graph the times of the two operations as N increases;

How do you expect work (and time) to grow with N?

Is there some value of N, after which the second approach is
usually 5 times faster than the first?

86 / 1

Example 2: Cheapest Bridge System

We have N islands, and we want to connect them. A bridge can
be built to connect any pair of islands; (we don’t allow two bridges
to meet in mid-air and make extra connections!)

What is the smallest number of bridges that can be used so that
every island is connected to all the others?

Short bridges are cheaper than long ones. Dijkstra’s algorithm tells
us how to decide which islands to using the shortest total bridge
mileage.

paint all islands red;

start at island 1 and paint it blue.

find the red island that is closest to some blue island, build a
bridge to it, and paint it blue.

repeat the previous step until all islands are blue.

87 / 1

Example 2: Cheapest Bridge System (continued)

This algorithm is a more “realistic” example of the kinds of
problems that occur in computing. And for that reason, it is
somewhat harder to say how much time and work is involved in the
computation, that is, the order of the work as a function of the
number of islands, N.

I won’t ask you to program this problem. You can get the files you
need for a program to solve this problem by going to
http://people.sc.fsu.edu/∼jburkardt/m src/dijkstra/dijkstra.html

This program takes N as input, and chooses the island distances
randomly.

Your job is to run the program for an increasing sequence of values
of N, record and graph the times, and try to estimate the order.

88 / 1

Example 3: Multiplying Matrices

We are given an NxN linear system A*x=b, with x unknown.

One way to solve the system is by Gauss elimination. MATLAB
will do this for you automatically using the command

x1 = A \ b;

You could instead multiply b by the inverse of A:

x2 = inv (A) * b;

estimate the orders of algorithms 1 and 2 using a sequence of
increasing values of N

let e1 = norm(A * x1 - b) and define e2 similarly. Plot e1
and e2 together as N grows. Are the algorithms equally
accurate?

89 / 1

Example 4: Traveling Salesman

A traveler begins at city 1, and wishes to visit N-1 other cities
exactly once and then return home. The traveler wishes to
minimize the total distance traveled.

The simplest approach to this problem generates every possible
trip, adds up its distance, and “remembers” the shortest one.

How many trips are there if we have 6 cities? What about N cities?

Use trial and error to search for Nbig, the largest value of N for
which the problem can be solved in under one minute. Then run
the problem for each value of N from 1 up to Nbig, and make a
plot. Compute the slopes. What seems to be happening?

90 / 1

Example 5: The Hailstone Problem

1 Pick any positive integer N.

2 If N is equal 1, stop.

3 If N is even, divide it by 2 and go back to step 1.

4 If N is odd, multiply it by 3 and add 1, then go to step 1.

Instead of trying to count floating point operations, simply count
the number of steps it takes you to reach the value 1.

This problem is much harder to analyze, and you will have to think
about how to summarize your data, since the results will not follow
a smooth graph. Can you find a linear or quadratic function of N
that is always above or below the running times?

91 / 1

Fast Programs, Big Problems

Introduction

Speed = Work / Time

MD: Performance of a Molecular Dynamics Program

NEIGHBORS: Performance of a Neighbor Program

Complexity: How Calculations Grow

Some Sample Calculations

Conclusion

92 / 1

Conclusion

In your classes, you may be used to solving “toy” problems; a
10x10 matrix, a set of 3 ODE’s, a pair of nonlinear equations.
These examples teach you one part of scientific computing,
namely, the design and use of numerical algorithms.

However, if you need to to scientific computing for research or
work, it is likely that you will be dealing with much bigger
problems. The same algorithms may work correctly on big
problems, but perhaps not always efficiently.

I hope I have told you how to estimate computer performance,
look for trouble spots in your program, compare two ways of
solving the same problem, and the many ways that problems
become harder as they get bigger.

93 / 1

