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Random Variables: The Probability Space

Suppose we wish to model some physical process whose outcome is
influenced by chance or uncertainty.

The uncertainty can be modeled with a probability space (Ω,F ,P):

Ω is a space of outcomes, whose generic example is ω;

F is a σ-algebra of “events” or sets of outcomes;

P is function which defines a probability for each event;

By choosing a particular probability space for our model, we can control
everything about it . . . except the actual value of the outcome ω that will
be selected any time we request a sample from the space.
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Random Variables: A Function of Uncertain Argument

Having modeled the uncertainty, we turn to the physical process itself.

A random variable is a function from the sample space Ω to the state
space S . We’ll often assume the state space is R:

x : ω ∈ Ω→ x(ω) ∈ S

An outcome ω is randomly chosen or “sampled”, in accordance with the
probability function P, and this produces the “observable” value x(ω).

The sampling can be repeated, inducing a stream of ω values which are
observable as a sequence of values of the random variable.

If we know the probability space in use, we can derive statistical
quantities about it. Otherwise, if the model is “hidden”, repeated
sampling can be used to estimate its structure.
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Random Variables: Probability Density Function

The probability density function p(x) allows us to compute the
probability of the observable states:

P(a < x < b) =

∫ b

a

p(x) dx

Using χ[a,b](), the characteristic function of [a,b], the integral reads:

P(x ∈ [a, b]) =

∫
R
χ[a,b](x) p(x) dx

This second form suggests how p(x) will be used within integrals to
automatically account for uncertainty.

Repeated sampling of the process estimates the pdf with a histogram.
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Random Variables: Probability Integrals

In the sampling approach we just discussed, we are working directly
with the observed values of x , and the relative frequency of these values
gives us an approximation to the probability density function p(x).

But we can also look at the process as beginning in the abstract
probability space, where x is actually written as a function of ω. In that
case, we would integrate over the outcome space Ω, and the function
ρ(ω) would represent the probability density function there, so we might
wish to write

P(x(ω) ∈ [a, b]) =

∫
Ω

χ[a,b](x(ω)) ρ(ω) dω
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Random Variables: Expected Value of a Variable

For a random variable x(ω), the expected value may be denoted by
x or µ(x) or µx or E[x ] or 〈x〉.

Depending on the circumstances, the expected value may be defined by:

x =

∫
Ω

x(ω) dP

=

∫
Ω

x(ω) P(dω)

=

∫
Ω

x(ω) ρ(ω) dω

=

∫
R

x p(x) dx

The expected value is also called the first moment.
Integrating x2 gives the second moment and so on.
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Random Variables: Variance of a Variable

The variance measures the deviation of the random variable from its
expected value. It is an example of a central moment, which essentially
uses x as the origin.

For a random variable x(ω), the variance may be denoted by
var(x) or σ2(x) or σ2

x or E[(x − x)2].

Depending on the circumstances, the variance may be defined by:

σ2(x) =

∫
Ω

(x(ω)− x)2 ρ(ω) dω

=

∫
R

(x − x)2 p(x) dx
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Random Variables: Covariance of Two Variables

The covariance measures the correspondence between variations from
the mean in two random variables.

For random variables x(ω1) and y(ω2), the covariance may be denoted by
Cov(x , y) or σxy or E[(x − x)(y − y)].

Depending on the circumstances, the covariance may be defined by:

Cov(x , y) =

∫
Ω1

∫
Ω2

(x(ω1)− x) (y(ω2)− y) ρ(ω1) ρ(ω2) dω1dω2

=

∫
R2

(x − x) (y − y) p1(x) p2(y) dx dy

Note, in particular that Cov(x , x) = σ2(x).
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Random Variables: Correlation of Two Variables

The correlation of two random variables is a normalized version of the
covariance, with values ranging from

-1.0, perfectly anti-correlated,

0.0, uncorrelated,

1.0, perfectly correlated.

The correlation of two random variables may be defined by

Corr(x,y) =
Cov(x , y)

σ(x)σ(y)

From the definition, we can see that Corr(x , x) = 1.
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Random Variables: Covariance Matrix for Vectors

We may extend this discussion to a random value x which is an
n-dimensional vector function of the outcome ω; we may distinguish this
case by writing ~x(ω) or x(ω).

The expected value x is now also a vector.

The variance σ2
x is a vector:

σ2
x =

∫
Rn

(x− x)2 p(x) dx

We can now define a covariance matrix Cov(x) whose (i , j) entry is the
covariance between xi and xj :

Cov(x)i,j =

∫
Rn

(xi − xi )(xj − xj) p(x) dx

Cov(x) is symmetric, nonnegative definite, and has diagonal σ2
x .
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Random Variables: Correlation Matrix for Vectors

As before, the correlation matrix can be defined from the covariance
matrix. Form a diagonal matrix Σ from the square roots of the variances,
so that Σi,i = σx(i).

Then we compute the correlation matrix by:

Corr(x) = Σ−1 Cov(x) Σ−1

It should be clear that the diagonal entries of Corr(x) are 1; The
Cauchy-Schwarz inequality guarantees that the off-diagonal elements of
the correlation matrix will lie between -1 and +1, and so the value of
each covariance entry indicates the strength and direction of the
correlation between the corresponding components.
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Stochastic Process: A Generalization of Random Variables

In the real world, the systems that have inherent variability or
randomness are frequently time-dependent, and we can imagine
describing the behavior of such a system, over time, by a highly
oscillatory graph.

We assume that if we restarted the system, we might get a different
resulting graph, but that after many restarts, we would be able to detect
statistical patterns in the behavior.

Thus, it is natural to want to extend the concept of random variable or
random vector to what we can think of as a sort of random function that
has both explicit and implicit arguments.

This motivates the concept of a stochastic process.
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Stochastic Process:

We’ll think of a stochastic process as a function of both a random
outcome ω and an observable parameter t, which returns a real value.

Instead of X (t, ω), the notations Xt(ω) and Xt are more common.

We require that, for any fixed t, the process is square integrable:∫
Ω

Xt(ω)2 ρ(ω) dω <∞

The value t is sometimes called the index of the stochastic process. We
usually expect that t is a continuously varying quantity satisfying
−∞ < a ≤ t ≤ b <∞. It is also possible to choose t to be a finite or
infinite discrete index set.
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Stochastic Process: Only the Initial Data Uncertain

A typical realization of a stochastic process will be a path in time,
selected by the value ω, and indexed by t.

A natural example would involve a differential equation. If only the initial
condition is subject to variation, then we can imagine samples of the
process evolving smoothly in time, giving us a bundle of paths.
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Stochastic Process: Uncertainty at All Times

In general, we will be interested in processes in which the evolution in
time includes uncertainty, so that knowing the initial state is not enough
to follow the path.
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Stochastic Process: Associated Quantities

Let Xt be a stochastic process.

The mean of Xt , denoted µX (t), is:

µX (t) =

∫
Ω

X (t, ω) dω

The variance of Xt , denoted varX (t), is:

varX (t) =

∫
Ω

(X (t, ω)− µX (t))2 dω

The covariance of Xt , denoted KX (t, s), is:

KX (s, t) =

∫
Ω

(X (s, ω)− µX (s)) (X (t, ω)− µX (t)) dω

or, if µX (t) ≡ 0,

KX (s, t) =

∫
Ω

X (s, ω) X (t, ω) dω

19 / 91



Stochastic Process: The Covariance Function

KX (t, s), the covariance of Xt , has the following properties:

KX (, ) is continuous in s and t;

KX (, ) is symmetric: KX (s, t) = KX (t, s);

KX (, ) is positive semidefinite: KX (t, t) ≥ 0;
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Stochastic Process: The Eigenvalue Problem

If we define an operator TKX
for any function f ∈ L2[a, b], by

TKX
(f ) =

∫ b

a

Kx(s, t) f (s) ds

then we can pose the eigenvalue problem: find eigenvalues λi and
eigenfunctions φi (t) so that

TKX
(φi ) =

∫ b

a

Kx(s, t)φi (s) ds = λiφi (t)

The sequence of solutions φi (t), i = 1 . . .∞ can be arranged as an
orthonormal basis for the space L2[a, b]. It is natural to arrange the
sequence so that the corresponding sequence of eigenvalues is
descending.
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Stochastic Process: The Representation of Xt

Mercer’s theorem now tells us that the solutions of the eigenvalue
problem provide a representation for the original stochastic process

Xt = µX (t) +
∞∑
i=1

αi φi (t)

where the coefficients α can be determined by

αi =

∫ b

a

(Xt − µX (t))φi (t) dt

The variables αi have zero mean, are uncorrelated, and have variance λi .
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BROWN: An Idealization of Observed Random Motion

Brownian motion is a mathematical
idealization inspired by observation
of the incessant, irregular motion of
pollen particles in liquid.

The idealized impulses may be
thought of as a kind of white noise,
uncorrelated forces varying randomly
in direction and strength over time.

But physics tells us that the path of
the particle must be continuous. As
time progresses, the particle’s
position is essentially the integral of
the white noise.

.
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BROWN: Mathematical Properties

We write Wt (in honor of Norbert Wiener) to represent a typical
instance of Brownian motion, evaluated at time t.

A Brownian motion is assumed to satisfy the following requirements:

1 W0 = 0;
2 Wt2 −Wt1 ∼ N (0, t2− t1) for 0 ≤ t1 ≤ t2;
3 Wt2 −Wt1 and Wt4 −Wt3 independent if 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4;
4 Wt is (almost surely) continuous in t.

The particle starts at 0, and its distance from the origin at time t has
variance t, which means its typical distance is actually of the order of

√
t.

That is the same kind of behavior one sees in the simpler mathematical
model of the random walk.

The third requirement means that the increments or changes over
disjoint time intervals have no influence on each other.
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BROWN: Expected Value and Variance

Given the mathematical properties, what are the statistical
characteristics of Wt?

By condition 1:
E (Wt) = µ(Wt) = 〈Wt〉 = 0

By condition 2:

Var(Wt) = σ2
Wt

= 〈Wt − E (Wt),Wt − E (Wt)〉
= E ( (Wt − E (Wt))2 )

= E (W 2
t − 2Wt E (Wt) + E 2(Wt))

= E (W 2
t )

= t because Wt ∼ N (0, t)
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BROWN: The Covariance

By condition 3:

Cov(Ws ,Wt) = 〈Ws − E (Ws),Wt − E (Wt)〉
= E ( (Ws − E (Ws) (Wt − E (Wt) ) )

= E (WsWt −Ws E (Wt)−Wt E (Ws) + E (Ws)E (Wt))

= E (WsWt)

= E (Ws(Ws + (Wt −Ws))) ) assume s < t,

= E (W 2
s ) + E (Ws (Wt −Ws)))

= E (W 2
s ) +

���
���

���:
0

E (Ws (Wt −Ws))), by independent increments

= s or, in general, min(s, t).
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BROWN: The Correlation Function

The correlation is:

Cor(Ws ,Wt) =
Cov(Ws ,Wt)

σWsσWt

=
min(s, t)√

st

=

√
min(s, t)

max(s, t)

which obviously stays between 0 and 1. As the argument s gets large, the
correlation Cor(Ws ,Wt) stays near 1 for a much broader interval. Ws

tends to get large, so changes become relatively less significant, and
hence the correlation is stronger.
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BROWN: ”Slices” of the Brownian Correlation Function

For a given value of s, the correlation function Cor(s, t) is:
0 at t = 0; 1 at t = s; 0 at t =∞.
The function cannot be rewritten as a function of |s − t|, so it is called
an anisotropic correlation function.
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BROWN: Simulating Brownian Motion

The requirement Wt2 −Wt1 ∼ N (0, t2− t1) for 0 ≤ t1 ≤ t2 gives us
an immediate method of simulating Brownian motion.

To simulate values at equal time steps ∆t, we need increments ∆W
distributed like N (0,∆t) – meaning they should be proportional to

√
∆t.

1 w(0) = 0
2 w(i + 1) = w(i) +

√
∆t ∗ n(0, 1)

We can precompute a vector of n normal values R, let G be a matrix 0
above the main diagonal and 1 on or below it, and write

W =
√

∆t ∗ G ∗ R

which indicates how the independent values R are transformed into the
correlated values W .
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BROWN: MATLAB Simulation

%

% Time step.

%

dt = t / n;

%

% We want N+1 successive positions.

%

x(1:n+1) = zeros ( n + 1 );

%

% We take N steps.

%

s(1:n) = sqrt ( dt ) * randn ( n );

%

% Each position is the cumulative sum of all previous steps.

%

x(2:n+1) = cumsum ( s(1:n) );
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BROWN: Simulation of 1D Brownian Motion

32 / 91



BROWN: Simulation of 2D Brownian Motion

A 2D Brownian motion can be generated from the 1D motion by
choosing a uniform random direction for each step.
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BROWN: Representation of Brownian Motion

Let us restrict the time argument t to the interval [0, 1].
A Brownian motion Wt may be written as

Wt =

∫ t

0

ξ(s)ds =
∞∑
i=0

αi

∫ t

0

ψi (s)ds

where {ψi}∞i=0 is a complete orthonormal basis for L2[0, 1] and ξ(s) is the

formal time derivative Ẇs .

The coefficients in the expansion may be determined by

αi =

∫
0

ξ(s)ψi (s)ds

and will be independent and Gaussian.

Conversely, inserting any chosen set of independent Gaussian coefficients
{αi}∞i=0 into the above expansion will produce a Brownian motion.
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BROWN: Representation of Brownian Motion

In particular, Brownian motion over 0 ≤ t ≤ 1 can be represented as
an infinite sine series expansion, with Gaussian coefficients ( ∼ N (0, 1) ):

Wt =
√

2
∞∑
i=0

αi

sin((i + 1
2 )πt)

(i + 1
2 )π

where

αi =
√

2

∫ 1

0

ξ(t) sin((i +
1

2
)πt)dt
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BROWN: Representation of Brownian Motion

This representation suggests another way to simulate Brownian
motion. This time, we don’t discretize in space, but rather in frequency.

Computationally, we may truncate such an expansion at a given
frequency, obtaining a representation that can be evaluated at any point
in the interval.
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ISO-COR

Let us consider a function a(:), whose argument might be a scalar time
t, or a spatial variable x ∈ Rn. Suppose that, for our function a(:), the
correlation depends only on the distance between the two arguments,
that is, on |x − y | for scalars, or ||x − y || for vector arguments.

Defining ρ(x , y) ≡ ||x − y ||, we are asserting that, for some function
c : R→ R, we have

Corr(ax , ay ) =
E ((ax − µx) (ay − µy ))

σxσy

= c(||x − y ||)
= c(ρ(x , y))

In this case, we say the covariance is isotropic.
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ISO-COR

Based on our understanding of physical law, it is natural to assume
that many common phenomena are related in precisely this way. Thus,
the gravitational attraction between two given masses depends only on
their distance, not on their position.

If we assume that the stochastic problem we are interested in has an
underlying isotropic covariance function, this results in a great deal of
simplification in the analysis and simulation of the process.

The definition of c() guarantees that

c() is symmetric with respect to x and y ;

c() is bounded between -1 and +1;

c(0) = 1

Once we have picked a function c , it is natural to immediately define a
parameter called the “correlation length”, which allows us to define a
natural scale between our physical distances and the natural scale for c .
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ISO-COR: Sample Correlation Functions

There are a few popular correlation functions based on correlation
length. We assume ρ0 is a given correlation length, define ρ = ||x − y ||,
and let ρ̂ ≡ ρ

ρ0
.

Bessel J c(ρ) = J0(ρ̂)
Bessel K c(ρ) = ρ̂K1(ρ̂)
Constant c(ρ) = 1 everywhere;
Damped Cosine c(ρ) = e−ρ̂ ∗ cos(ρ̂);

Damped Sine c(ρ) = sin(ρ̂)
ρ̂

Exponential c(ρ) = e−ρ̂

Gaussian c(ρ) = e−ρ̂
2

Linear c(ρ) = max(1− ρ̂, 0);
White noise c(ρ) = 1 if ρ = 0, 0 otherwise;
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ISO-COR: Correlation Function Plots
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ISO-COR: Computing a Correlated Path or Sample Vector

Our correlation function describes the statistical behavior of sample
functions f (ρ). We might suppose that f (ρ) is a spatially varying thermal
conductivity in a material, a porosity in an underground strata, or the
temporally varying strength of an electrical signal.

To do computations, we need to create samples or realizations of f (),
and these must be generated in a way that reflects the underlying
correlation function.

Typically, we want to create a discrete vector of values sampled at equal
intervals. In this case, the correlation matrix has a simple structure:

1 c(dx) c(2dx) c(3dx) ...

C = c(dx) 1 c(dx) c(2dx) ...

c(2dx) c(dx) 1 c(dx) ...

c(3dx) c(2dx) c(dx) 1 ...

... ... ... ... ...
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ISO-COR: Computing a Correlated Path or Sample Vector

To generate our data:

1 construct the correlation matrix C ;
2 compute the eigendecomposition C = Q ∗ D ∗ Q ′;
3 compute the square root matrix S = Q ∗

√
D ∗ Q ′;

4 compute N normal independent values R;
5 set X = S ∗ R;

The symmetry of C implies that Q is orthogonal.
The computed X values will be a sample with the appropriate statistics.
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ISO-COR: Computing a Correlated Path or Sample Vector

rho_vec = linspace ( 0.0, rhomax, n );

cor_vec = correlation ( n, rho_vec, rho0 );

cor_vec = [ cor_vec(n:-1:2)’, cor_vec(1:n)’ ];

cor = zeros ( n, n );

for i = 1 : n

cor(i,1:n) = cor_vec(n+1-i:2*n-i);

end

[ v, d ] = eig ( cor );

d = max ( d, 0.0 );

sqrt_d = sqrt ( d );

sqrt_cor = v * sqrt_d * v’;

r = randn ( n, 1 );

x = sqrt_cor * r;
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ISO-COR: Examples of Correlation Plots and Paths

Gaussian Correlation | Gaussian Paths

--------------------------+------------------

Damped Cosine Correlation | Damped Cosine Paths
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ISO-COR: An FFT Approach for 2D and 3D Data

For higher dimensions, generating a sample 2D matrix or 3D block of
correlated data means that the typical amount of data is m ∗ n or
l ∗m ∗ n, and the correlation matrix will require the square of this much
data, making the eigenvalue decomposition approach expensive or
impractical.

An alternative approach represents the data in terms of the Fast Fourier
Transform. For a 2D array with Gaussian correlation, we arrive at a
representation in which the typical FFT coefficient will have the form:

ψ̂(κj , λk) = c e−(κ2
j +λ2

k ) e2πiφj,k

where φj,k is a uniform random value. Simulating a sample field then
simply involves choosing the random values φj,k and taking the inverse
FFT; this process works in a similar fashion for 1D vectors or 3D blocks.
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SVD: The Singular Value Decomposition

Every (real) m by n matrix A has a singular value decomposition:

A = U S V T

where

U is an m by m orthogonal matrix (UT U = I );

S is an m by n diagonal matrix with nonnegative entries;

V is an n by n orthogonal matrix;

The diagonal entries of S , called the singular values of A, are chosen to
appear in descending order, and are equal to the square roots of the
nonzero eigenvalues of AAT or ATA
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SVD: Facts About the Singular Value Decomposition

r , the number of nonzero diagonal elements in S , is the rank of A;
very small nonzeros may indicate numeric singularities.

The i-th diagonal element of S is the i-th largest eigenvalue of AAT (and
also of AAT ). Hence, we may write this value as

√
λi .

Let ui and vT
i be the i-th columns of U and V T . Then A maps the i-th

column of V T to the i-th column of U.

The columns of U and V provide a singular value expansion of A:

A =
r∑

i=1

√
λi ui vT

i
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SVD: Facts About the Singular Value Decomposition

If we use all r terms, the singular value expansion is exact.

But let Ak represent the sum of just the first k terms of the expansion.
Then Ak is a matrix of rank k , the sum of k rank-1 outer products. Of
all rank k matrices, Ak is the best approximation to A in two senses:

Minimum L2 norm:

||A− Ak||2 ≡square root of maximum eigenvalue of (A− Ak)T (A− Ak)

||A− Ak||22 =s2
k+i = λk+1

Minimum Frobenius (sum of squares) norm:

||A− Ak||F ≡
√∑

i,j

(Ai,j − Aki,j)2

||A− Ak||2F =
r∑

k+1

s2
i =

r∑
k+1

λi
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SVD: Using the Facts

U and V are natural bases for the input and output of A.

In the natural bases, the SVD shows that multiplying by A is simply
stretching the i-th component by si :

x =
r∑

i=1

vT
i ∗ ci =⇒ y = A ∗ x =

r∑
i=1

ui ∗ (si ∗ ci )

The relative size of the singular values indicates the importance of each
column.

The singular value expansion produces an optimal, indexed family of
reduced order models of A.
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SVD: Using the Facts

The singular value decomposition is the discrete version of the
Karhunen-Loeve (KL) expansion that is typically applied to stochastic
processes that produce, for any time t, a field of values varying spatially
with x .

Since it’s easier to understand discrete problems, let’s prepare for the KL
expansion by looking at how the SVD is used with a set of data.

Let us re-imagine the columns of our discrete data as being n snapshots
in discrete time indexed by j . Each snapshot will record m values in a
“space” indexed by i .
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SVD

If we pack our data into a single matrix A, then Ai,j means the
measurement at position i and time j .

It is reasonable to expect correlation in this data; the “neighbors” of Ai,j ,
in either space or time, might tend to have similar values.

Moreover, the overall “shape” of the data for one time or one spatial
coordinate might be approximately repeated elsewhere in the data.

This is exactly the kind of behavior the SVD can detect.

<-- "Space" -->

| 1890 1 12 12 33 29 22 3 0

| 1891 0 31 23 44 18 13 1 0

"Time" 1892 0 23 44 25 17 17 13 1

| 1893 1 30 49 37 15 23 10 1

V 1894 0 30 18 74 9 5 0 2
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SVD - Snowfall at Michigan Tech

We have a data file of the monthly snowfall in inches, over 121 winters
at Michigan Tech. We’ll think of the months as the ”space” dimension.

Year Oct Nov Dec Jan Feb Mar Apr May Tot

---- --- --- --- --- --- --- --- --- ---

1890 1 12 12 33 29 22 3 0 112

1891 0 31 23 44 18 13 1 0 130

1892 0 23 44 25 17 17 13 1 140

1893 1 30 49 37 15 23 10 1 166

1894 0 30 18 74 9 5 0 2 138

.... ... ... ... ... ... ... ... ... ...

2006 6 6 27 38 37 20 31 0 165

2007 0 21 40 55 32 24 14 0 186

2008 0 17 70 85 27 5 15 0 219

2009 3 4 87 39 19 0 0 0 152

2010 0 26 33 72 18 13 18 0 180

http://www.mtu.edu/alumni/favorites/snowfall/snowfall.html
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SVD

To analyze our data, we consider each of the 121 snowfall records,
starting with x1890, as a column of 8 numbers, and form the m=8 by
n=121 matrix A:

A =
[
x1890|x1891|...|x2010

]
Now we determine the SVD decomposition A = USV T .

The columns of U are an orthogonal set of “spatial” behaviors or modes
(typical behavior in a fixed year over a span of months).

The columns of V are typical behaviors or modes in a fixed month over a
span of years. In both cases, the most important behaviors are listed first.

The diagonal matrix S contains the “importance” or “energy” or signal
strength associated with each behavior.
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SVD: The 9 Singular Values

The S data shows the relative importance of the first two modes is:

s12√∑8
i=1 s2

i

= 0.87
s22√∑8
i=1 s2

i

= 0.05

The first pair of modes, u1 and v1, by itself, can approximate the entire
dataset with a relative accuracy of 87%.
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SVD: Four Strongest Snowfall Modes For a Year

1 December/January High (DOMINANT) | 2 More December, less later

-----------------------------------+------------------------------

3 February High, less January | 4 More November snow
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SVD: Approximating 2010-2011 Snowfall

2010-2011 Data | 1 Mode | 2 Modes

----------------------------------

3 Modes | 4 Modes | 5 Modes

The same kind of approximating is occurring for all 121 sets of data!
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SVD: Four Strongest “Time” Modes

The linear regression line suggests the “December/January High”
pattern (upper left) is steadily gaining importance over the years.

59 / 91



SVD: Typical Old and New Snowfall Patterns

To see how heaviest snowfall is coming earlier, compare the 1890
January/February style snowfall with the 2008 December/January style:
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SVD: Conclusions

Data gathered at discrete places and times is easier to understand than
the corresponding continuous cases.

The SVD shows how underlying patterns and correlations can be
detected, and represented as a sum of the form

A =
r∑

i=1

√
λi ui vT

i

where the λ values represent a strength, the u’s represent variation in
space, and v variation in time.

The structure of the u and v vectors suggests something about the
preferred modes of the system, and the size of the λ coefficients allows us
to understand the relative important of different modes, and to construct
reduced order models if we wish.
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SVD: Conclusions

Given that our data was stored in A, we may think of the matrices
AAT and ATA as a form of a covariance matrix.

The singular values
√
λi are the square roots of eigenvalues of both these

matrices.

U contains eigenvectors of the “spatial” covariance matrix AAT .

V contains eigenvectors of the “temporal” covariance matrix ATA.

Very similar statements will hold for the continuous case.
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SVD: Computational Implementations

F77 LAPACK: call dgesvd ( jobu, jobvt, m, n, a, lda, &

s, u, ldu, vt, ldvt, work, lwork, info )

C/C++ GSL: gsl_linalg_SV_decomp ( A, V, S, work );

Java JAMA: SingularValueDecomposition ( A );

A.getU(); A.getS(); A.getV();

Mathematica: { u, s, v } = SingularValueDecompostion ( a )

Matlab: [ u, s, v ] = svd ( A );

Python numpy: u, s, vh = svd ( a, full_matrices=1, compute_uv=1)

F77 Lapack: http://www.netlib.org/lapack/
C/C++ GSL: http://www.gnu.org/software/gsl/
Java JAMA: http://math.nist.gov/javanumerics/jama/
Python numpy: http://numpy.scipy.org/

.
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KL:

Mercer’s theorem applied to the case in which we had a stochastic
process which, at every time t, took on a real value x . We now suppose
the more general case in which at every time, the value of the process is
a function, that is, a random field...
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KL:

Suppose that X (t, ω) is a stochastic process with mean µX (t) and
covariance covX (t, s). Then there are numbers λi , functions ψi (t), and
random variables yi (ω) such that

X (t, ω) = µX (t) +
∞∑
i=1

√
λi ψi (t) yi (ω)

Here,

λi are (eigenvalues)?;

ψi (t) are (random field)?;

yi (ω) are (eigenfunction)?
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KL:

The KL expansion:

X (t, ω) = µX (t) +
∞∑
i=1

√
λi ψi (t) yi (ω)

breaks the process up into digestible pieces:

mean value in µX (t);

weights in λi ;

time variation in ψi (t);

stochastic dependence in yi (ω).
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KL:

Because the random variables yi (ω) are uncorrelated, the variance of X
is just the sum of the eigenvalues:

var(X ) =
∞∑
i=1

λi
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KL: Mean + Covariance → Stochastic Process

One way to look at the KL representation is that all the information in
a square-integrable stochastic process with continuous covariance is
contained in the mean and the covariance.

This suggests that we can create a model stochastic process simply by
choosing the mean and covariance; naturally, we will prefer a covariance
function for which the eigenvalues and eigenfunctions can be easily
determined, and which can be adjusted to suit our physical problem.
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KL: Mean + Covariance → Stochastic Process

Now we will consider how, given a mean µ(t) and covariance K (s, t),
we can use the KL expansion to express a corresponding stochastic
process.

The form of the expansion requires that we determine the Mercer
eigenvalues λi and the corresponding eigenfunctions ψi (t). To express a
particular realization, we choose coefficients zi which are uncorrelated
and of unit variance.

Putting this together, we arrive at:

Xt = X (t, ω) = µ(t) +
∞∑
i=0

√
λiψi (t)zi (ω)
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KL: Computation

Suppose that our kernel function is the Brownian kernel and our
interval is [0,1]:

K (s, t) = min(s, t)

We need to determine the eigenvalues and eigenfunctions of the operator

(Tf )(t) =

∫ +1

0

K (s, t)f (s)ds
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KL: Computation

For i = 0, . . . ,∞, the eigenvalues are:

λi =
1

(i + 1
2 )2π2

The eigenvectors are:

ψi (t) =
√

2 sin((i +
1

2
)πt)
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KL: Computation

Suppose that, over the interval [-1,+1], our kernel function K (s, t) is
the Gaussian isotropic correlation function

K (s, t) = e−(s−t)2

We need to determine the eigenvalues and eigenfunctions of the operator

(Tf )(t) =

∫ +1

−1

K (s, t)f (s)ds
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KL: Computation

For i = 0, . . . ,∞, the eigenvalues are:

λi =?

The eigenvectors are:
ψi (t) =?
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KL: Computation

Suppose that, over the interval [-1,+1], our kernel function K (s, t) is
the exponential isotropic correlation function

K (s, t) = e−|s−t|

We need to determine the eigenvalues and eigenfunctions of the operator

(Tf )(t) =

∫ +1

−1

K (s, t)f (s)ds
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KL: Computation

Let vj and wk be the sequences of solutions, in ascending order, of

1− v tan(v) = 0

w + tan(w) = 0

Then, for i = 1, . . . ,∞, the eigenvalues are

λi =

{
2

(1+vj )2 if i = 2 ∗ j + 1
2

(1+wk )2 if i = 2 ∗ k

The eigenvectors are

ψi (t) =

 cos(vj t)/
√

1 +
sin(2vj )

2vj
if i = 2 ∗ j + 1

sin(wkt)/
√

1− sin(2wk )
2wk

if i = 2 ∗ k
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KL: Computation

mu =

psi =
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ORTHO:

Orthogonal polynomials play several roles in stochastic computations:

quadrature rules for collocation methods;

natural basis for approximation;

a basis for the polynomial chaos expansion.

The Askey scheme organizes as many as 13 commonly used orthogonal
polynomial families, including the well known cases of Hermite,
Laguerre and Legendre polynomials.

The choice of the polynomial family depends in part on the domain and
the weight function.

For multidimensional problems, product polynomials can be constructed
in the usual way, and different polynomial families may be chosen for
different dimensions.
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ORTHO: Quadrature

To see how quadrature is needed, suppose we begin with the
deterministic problem

−∇ · (a(~x)∇u(~x)) = f (~x)

a(~x) is the diffusivity, f(~x) a source term. A finite element approach to
the deterministic problem integrates the equation against various test
functions vi(~x):∫

D

a(~x)∇u(~x) · ∇vi (~x) d~x =

∫
D

f (~x)vi (~x) d~x
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ORTHO: Quadrature

Now suppose that we assume a stochastic component to the diffusivity,

with a Gaussian distribution ρ(ω) = e
−ω2

2 . Then to compute the finite
element coefficients of the expected value, we need to solve:∫

Ω

∫
D

a(~x ;ω)∇u(~x ;ω) · ∇vi (~x) d~x ρ(ω) dω =

∫
Ω

∫
D

f (~x)vi (~x ;ω) d~x ρ(ω) dω

I WENT WRONG HERE I THINK.
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ORTHO: Approximation, Inner Product and Norm

Orthogonal polynomials can be used to approximate a function.

We will suppose we are interested in functions which are square

integrable with respect to the Hermite weight e
−x2

2 .

For two functions f and g , we can define the inner product

(f , g) =

∫
R

f (x) g(x) e
−x2

2 dx

from which we can define the norm

||f ||2 = (f , f )

As long as ||f || <∞, an orthogonal polynomial approximation exists.

82 / 91



ORTHO: The Orthonormal Family

For our weight and region, the appropriate family is the (probabilist’s)
Hermite polynomials he(n, x). The first few elements are:

he(0, x) = 1

he(1, x) = x

he(2, x) = x2 − 1

he(3, x) = x3 − 3x

he(4, x) = x4 − 6x2 + 3

he(5, x) = x5 − 10x3 + 15x

The he(n, x) are pairwise orthogonal, with norm
√

2πn!. Dividing each
polynomial by its norm defines an orthonormal family ψn(x) so that:

(ψi (x), ψj(x)) =

∫
R
ψi (x)ψj(x) e

−x2

2 dx = δi,j
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ORTHO: Approximation

Let f be any function with ||f || <∞, and construct the series of
generalized Fourier coefficients:

ci = (f , ψi (x)) =

∫
R

f (x)ψi (x) e
−x2

2 dx

Then we have the following sequence of approximations to f :

fn(x) =
n∑

i=0

ci ψi (x)

Within the space of polynomials up to degree n, this approximation is the
best possible. Moreover, it can be shown that

lim
n→∞

||f − fn|| = 0

so that the approximation sequence is convergent.
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SVD - REJECTED SLIDE

Since correlations indicate that some information is redundant, or less
important, we seek a way of looking at this data which emphasizes the
information, or the strongest signal that is present.

Especially if the data contains random noise, we want to be able to
accept the strong signals, and ignore the noise.

Suppose we form an m by n matrix X , using x j for the j-th column. Each
column is a vector, and so it has a direction and a norm. Norms are easy
to understand, so let’s divide them out, and concentrate on the direction
information, replacing x j by x̂ j = x j/||x j ||. If we divide each column by
its norm, that will make it easier to see which vectors have the same
direction. In particular, the dot product of two vectors will now be a
number between -1 and +1, representing the correlation between the two
direction vectors. In fact, if X̂ is the matrix formed from just the
directions, we have

Ĉ = X̂ ′ X̂
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SVD - REJECTED SLIDE
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important, we seek a way of looking at this data which emphasizes the
information, or the strongest signal that is present.

Especially if the data contains random noise, we want to be able to
accept the strong signals, and ignore the noise.
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BROWN:

Consider a small particle at position ~x(t), moving with a velocity
~v = d~x

dt through a liquid with a viscosity λ, leading to the mathematical
model:

d2~x

dt2
= −λd~x

dt

which predicts that the velocity will exponentially decay to zero. Instead,
we notice that the particle reaches a state where it seems to be constantly
jostled by relatively small forces of random direction and magnitude,
causing it to trace out a slow, irregular path through the liquid.

We hypothesize that the motion is described by the Langevin equation:

d2~x

dt2
= −λd~x

dt
+ ~η(t)

where ~η(t) represents the small, incessant, stochastic force.
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BROWN:

The quantity ~η(t) must do two things:

be a good approximation to the physical observations;

be mathematically, statistically, and computationally tractable.

We assume there is no preferred direction, so that

E (~η(t)) = 〈~η(t)〉 = ~0

and no correlation between values at different times:

〈~η(t1) ~η(t2)〉 = δ(t2 − t1)

It is common to simplify the equation, dropping the viscosity term so we
can focus on the stochastic term:

d2~x

dt2
= ~η(t)
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BROWN

A mathematical model of Brownian motion begins with notation: Wt ,
we mean the location of xxx

zero expectation

continuity

independent increments

Wt −W0 ∼ N (0, 1)
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