
Genetic Algorithms

John Burkardt
Department of Scientific Computing

Florida State University
..........

Mathematics Department Undergraduate Seminar
Trinity University

https://people.sc.fsu.edu/∼jburkardt/presentations/...
genetic 2013 trinity.pdf

21 February 2013

1 / 50

Reference

Zbigniew Michalewicz,
Genetic Algorithms + Data Structures = Evolution Programs,
Third Edition,
Springer, 1996,
ISBN: 3-540-60676-9,
LC: QA76.618.M53.

Nick Berry,
A “Practical” Use for Genetic Programming,
http://www.datagenetics.com/blog.html

John Burkardt,
Approximate an Image Using a Genetic Algorithm,
http://people.sc.fsu.edu/∼/jburkardt/m src/image match genetic/image match genetic.html

John Burkardt,
A Simple Genetic Algorithm,
http://people.sc.fsu.edu/∼/jburkardt/cpp src/simple ga/simple ga.html

Christopher Houck, Jeffery Joines, Michael Kay,
A Genetic Algorithm for Function Optimization: A Matlab Implementation,
NCSU-IE Technical Report 95-09, 1996.

The Mathworks,
Global Optimization Toolbox,
http://www.mathworks.com/products/global-optimization/index.html

2 / 50

Genetic Algorithms

Introduction

Genetic Algorithms

A Simple Optimization

The Patchwork Picture

Conclusion

3 / 50

Introduction - Computers Implement “Recipes”

When computers arrived on the scene, scientists had had
centuries to investigate important problems, develop a
mathematical model that simulated the phenomenon, and
algorithms to extract desired information.

One of the first uses of computers was to compute such artillery
tables during World War II.

4 / 50

Introduction - Knock Down the Steeple

The flight of a cannon ball can be modeled as a mathematical
parabola, with three degrees of freedom. The location and angle of
the cannon determine two degrees and the amount of gun powder
the third. By experiment, we can create tables that tell us whether
we can hit the steeple, and if so, the minimum amount of
gunpowder to use, and how to aim the cannon.

5 / 50

Introduction - Harder Problems

Thus, people tried to solve problems by understanding the model
well enough to be able to see how a solution could be produced,
and then implementing that procedure as an algorithm.

* Fourier developed a model of signals as sums of sines and cosines,
and now we can solve heat conduction problems, and electrical
engineers create electronic circuits with any desired property.

* Linear programming was able to solve many scheduling problems
for airlines and allocation problems for factories.

But what happens when we find a problem that needs to be
solved, but for which we simply cannot see an efficient way to
determine a solution?

There are lots of problems like that!

6 / 50

Introduction - The Traveler

One simple problem involves a traveler who must visit plan a
round trip that visits each city on a list once. The traveler is free
to choose the order in which the cities are visited and wishes to
find the route that minimizes the total mileage.

This problem is easy to state and understand, versions of it come
up all the time in many situations, and yet there is
no efficient algorithm for solving it!

The only sure way to find the best route is to check every possible
list. For n cities, that means n! possible itineraries.

On the other hand, given two itineraries, it is certainly easy to
check which one is better - just compare the mileages.

7 / 50

Introduction - The Traveler

8 / 50

Introduction - The Patchwork Picture

Here’s another simple problem: suppose you want to make a
copy of a famous photograph or painting, but you are only able to
use colored rectangles. You have rectangles in every size and color.
The rectangles are transparent, and if two overlap, the overlapping
region will have the average of the two colors.

If that was the whole problem, we’d be done, because we make
pixellated versions of images all the time.

But for this problem, we are only allowed to use 32 rectangles!

Suddenly, your mind goes blank. There’s no obvious solution.

But given any two attempts to copy the picture, we can always
determine which one is better, essentially by measuring the
difference between the original and the copies.

9 / 50

Introduction - The Patchwork Picture

Is it even possible to find an algorithm that can approximate the
picture on the left using 32 colored rectangles? A random attempt
is on the right.

10 / 50

Introduction - Search Problems

Our problem is a kind of search, with two features:

things or places to search;

a way to evaluate each candidate.

Solutions might include:

brute force - check every possibility;

Monte Carlo sampling - sample many possibilities;

Hill climbing - choose a candidate, then repeatedly search for
small improvements;

Simulated annealing - create a parameterized evaluation
procedure; solve the easy version, then increase the difficulty a
bit and solve that problem, and so on.

11 / 50

Introduction - Another Search Procedure

A drawback to sampling methods is that they have no memory;
although they see many candidates, the sampling method doesn’t
look for patterns or structure ...when x is near 2.5, the value of
f (x) is pretty big....

Meanwhile, a hill-climbing procedure picks a starting point at
random, and focuses on improving that point. But it’s easy to pick
a starting point that’s far from the best solution, or one that
quickly reaches a local optimum, which can’t be improved, but
isn’t the best.

Simulated annealing can get around the local optimum problem,
but still has the problem that it concentrates on improving a single
point.

12 / 50

Genetic Algorithms

Introduction

Genetic Algorithms

A Simple Optimization

The Patchwork Picture

Conclusion

13 / 50

Genetic Algorithms - Biological Metaphor

Genetic algorithms are based on a metaphor from biology,
involving the ideas of genetic code, heredity, and evolution.

The suggestion is that life didn’t know what it should look like, but
kept trying new ideas. The crazy ones got squashed, and the
better ones flourished.

We might assume that life starts out “knowing” nothing about the
world; however, after a while, the collection of living objects that
are thriving embodies a great deal of implicit knowledge about the
world - these are the body shapes and behaviors that work on this
planet.

Let us recall a little bit of biology before we turn everything into
numbers!

14 / 50

Genetic Algorithms - External Life Based on Internal Code

The sequence of A, C, G, and T pairs in DNA constitutes the
genetic code.

15 / 50

Genetic Algorithms: Fitness, Survival, Modification

In our idealized model of biology, we notice that within a
species, individuals exhibit a variety of traits.

We can explain these differences by looking at the genetic
information carried by each individual. For a given species, we can
think of the genetic information as being a list, of a fixed length,
containing certain allowed “digits”, perhaps A, C, G, T.

Two individuals of the same species, with different genetic
information, will have different properties and abilities, and these
differences will influence their relative fitness to survive.

Individuals that are more fit are more likely to survive and to breed.

Breeding requires two individuals, and involves the somewhat
random selection of genetic information from each.

Changes in genetic information can also occur because of
spontaneous mutation.

16 / 50

Genetic Algorithms - Meiosis

In meiosis, pairs of chromosomes containing genetic information
are shuffled and split into halves, in preparation for combining with
a half from the other parent.

17 / 50

Genetic Algorithms - Meiosis

Suppose we could measure the fitness of an individual named x
for the given environment, producing a rating f (x) which is higher
for fitter individuals.

Then we could regard a population of individuals as an initially
random sample of x values. In a “struggle” to eat, hold territory,
and mate, the weaker individuals would be likely to die, their
genetic information discarded.

Those individuals with the highest f (x) values are preferentially
allowed to reproduce - but reproduction involves shuffling the
genetic information of two fit individuals to produce a new and
different individual.

Over time, one might hope that the population of x values would
evolve so that the values of f (x) would increase, perhaps up to
some limiting value.

18 / 50

Genetic Algorithms: The Genetic Algorithm Idea

A genetic algorithm is a kind of optimization procedure. From a
given population X , it seeks the item x ∈ X which has the greatest
“fitness”, that is, the maximum value of f (x).

A genetic algorithm searches for the best value by creating a small
pool of random candidates, selecting the best candidates, and
allowing them to “breed”, with minor variations, repeating this
process over many generations.

These ideas are all inspired by the analogy with the evolution of
living organisms.

19 / 50

Genetic Algorithms: Algorithmic Structure

A genetic algorithm typically includes:

1 a genetic representation of candidates;

2 a way to create an initial population of candidates;

3 a function measuring the “fitness” of each candidate;

4 a generation step, in which some candidates “die”, some
survive, others reproduce by breeding;

5 a mechanism that recombines genes from breeding pairs, and
mutates others.

20 / 50

Genetic Algorithms: Choosing a Representation

The part of the genetic algorithm that varies the most from
problem to problem will be the representation of the candidates.

Even for the traveling salesman problem, it’s not too hard to see
how to make this representation numeric - we can number the
cities and then an itinerary simply lists those numbers in a
particular order.

However, in order to make the breeding and mutation work, we will
need to be able to convert the representation, whatever it is, back
and forth to a binary representation, that is, a sequence of 0’s and
1’s.

This has to be done in such a way that if we change one bit of the
binary information, we are still describing a candidate.

21 / 50

Genetic Algorithms

Introduction

Genetic Algorithms

A Simple Optimization

The Patchwork Picture

Conclusion

22 / 50

OPTIMUM - Seek X that Maximizes F(X)

Let’s begin by seeking to maximize a function:

f (x) = x sin(10πx) + 1

over the interval [−1,+2]. The maximum occurs near x = 1.8505,
where f (x) = 2.85.

23 / 50

OPTIMUM - Using Other Algorithms

To get six decimal places of accuracy, there are 3, 000, 000
distinct values in [−1,+2] we must consider.

A Monte Carlo scheme would have to sample perhaps 100,000
values before having a chance to find the right value.

A hill climbing scheme would have to start near the solution, or it
will climb up one of the lesser mountains.

Our genetic algorithm will assume the solution can be coded using
binary data, and will try to find that code using “evolution”.

24 / 50

OPTIMUM - Represent the Possible Solutions

Six decimal digits of accuracy in [−1,+2] corresponds to about
22 binary digits. A 22 digit binary string b can be converted to an
integer k :

k =
22∑
i=1

bi · 2i−1

The integer k becomes a real number u between 0 and 1 by:

u = k/(222 − 1)

and u becomes a real number r between -1 and +2 by:

r = −1 + 3 · u

so now we have a mapping between genetic information b and the
objects r that we are interested in.

25 / 50

OPTIMUM - Initial Population

Each candidate is a string of 22 binary digits, which we might
think of as an integer vector.

If we want a population of n = 50 candidates, then one way to do
this would be to create a 2 dimensional array of size 50× 22.

Now, to set up a random initial population, we simply need to
randomly set the entries of this array to 0’s and 1’s.

One way to do this is to call the random number generator for
each entry, and round each result.

b(i,j) = round (random ());

i ----------b----------- ----x---

#1 1000101110110101000111 = 0.637197

#2 0000001110000000010000 = -0.958973

...

#50 1110000000111111000101 = 1.627888
26 / 50

OPTIMUM - Fitness Measurement

For this problem, it’s easy to see that our fitness function is
simply f (x). We’re looking for the candidate x in [−1, 2] that
makes this quantity the biggest. So we begin our iteration by
measuring the fitness of each candidate:

i -----------b---------- ----x--- --f(x)--

#1 1000101110110101000111 = 0.637197 => 1.586345

#2 0000001110000000010000 = -0.958973 => 0.078878

...

#50 1110000000111111000101 = 1.627888 => 2.250650

27 / 50

OPTIMUM - Death, Breeding, and Mutation

Based on our fitness results, we make the following decisions for
the next generation:

Out of our 50 candidates, let the 10 with lowest fitness “die”;

Let the 10 candidates with the highest fitness breed in pairs,
creating 10 new candidates;

Randomly select 2 of the nonbreeding, nondying candidates
for mutation;

Our new population is the same size. It still contains the best
candidates from the previous population, since it includes the 10
best, unchanged. The ten worst disappeared, replaced by offspring
of the 10 best. For the intermediate 30, we kept 28 unchanged,
and modified two by mutation.

Thus, the best fitness value in our population will never go down.
Our goal, of course, is to make it go up, and quickly.

28 / 50

OPTIMUM - Implement Death, Breeding, Mutation

Death is easy - we just remove a candidate from the array.

Mutation is also easy. We pick a candidate i to mutate. We know
the candidate has 22 bits of genetic information. We pick an index
j between 1 and 22 and flip that bit:

b(i,j) = 1 - b(i,j)

For breeding, we have parents i1 and i2, creating children i3 and
i4. We pick an index j between 1 and 21 and splice the parental
information together:

b(i3,1:j) = b(i1,1:j) & b(i3,j+1:22) = b(i2,j+1:22)

b(i4,1:j) = b(i2,1:j) & b(i4,j+1:22) = b(i1,j+1:22)

29 / 50

OPTIMUM - Mutation Example

Recall that candidate #50 was:

i -----------b---------- ----x--- --f(x)--

#50 1110000000111111000101 = 1.627888 => 2.250650

If we mutated the fifth gene in this candidate, the result is

1110100000111111000101 = 1.721638 => -0.082257

and if we mutated the 10th gene, we would get:

1110000001111111000101 = 2.343555 => 2.343555

Thus, a mutation might decrease or improve the fitness value.

30 / 50

OPTIMUM - Breeding Example

Let us breed candidates #2 and #50:

i -----------b---------- ----x--- --f(x)--

#2 0000001110000000010000 = -0.958973 => 0.078878

#50 1110000000111111000101 = 1.627888 => 2.250650

If the crossover point is after j = 5, our two children will be

-----------b---------- ----x--- --f(x)--

0000000000111111000101 = -0.998113 => 0.940865

1110001110000000010000 = 1.666028 => 2.459245

One child has a significant increase in the fitness function.

31 / 50

OPTIMUM - Running the Algorithm

The algorithm took 145 generations to reach a good value:

-----------b---------- ----x--- --f(x)--

1111001101000100000101 = 1.850773 => 2.850227

Gen Best f(x)

1 1.441941
6 2.250003
8 2.250283
9 2.250284

10 2.250363
12 2.328077
39 2.344251
40 2.345087
51 2.738930
99 2.849246

137 2.850217
145 2.850227

32 / 50

Genetic Algorithms

Introduction

Genetic Algorithms

A Simple Optimization

The Patchwork Picture

Conclusion

33 / 50

PATCHWORK: Face = Sum of Fruits?

The Italian painter Arcimboldo enjoyed the puzzle of trying to
approximate a human face using vegetables.

This is not the sort of problem you expect to give to a computer!

34 / 50

PATCHWORK: Face = Sum of Rectangles?

Nick Berry works for DataGenetics, and in his spare time, posts
many short, interesting articles about computing.

He read an article about genetic programming, but didn’t find the
numerical example very interesting; after thinking for a while, he
came up with a challenge that he wasn’t sure genetic programming
could handle, and so he put some time into the investigation.

Could he teach his computer how to paint a picture of him?
Instead of using fruit, he would add together 32 rectangles of color.

This problem is much more realistic and useful than trying to
optimize a function f (x). We’ll have to think about how to make
it fit into the genetic algorithm framework, and we already know
that there’s no way that we can get a solution which is a perfect
match for the original picture.

35 / 50

PATCHWORK - The Genetic Information

To make a genetic algorithm for this problem, we want to start
by setting up the genetic information.

We assume the image is a jpg file containing 256× 256 pixels. A
candidate solution would be 32 colored rectangles. Each rectangle
has a position and a color. Using the jpg format, the lower left
corner is a pair (xl , yl) between 0 and 255, and (xr , yr) is similar.
The color of the rectangle is defined by three integers, r , g , and b,
also between 0 and 255. Thus, our numeric representation of a
candidate solution is 32 sets of (xl , yl , xr , yr , r , g , b), for a total of
224 integers.

A number between 0 and 255 requires 8 bits to specify, so our
genetic information describing one candidate would require
224 ∗ 8 = 1792 bits.

36 / 50

PATCHWORK: One ”Gene”

We have 10 candidates or “chromosomes”. Each chromosome
describes the color and position of 32 rectangles. The description
of a single rectangle is termed a “gene”.

37 / 50

PATCHWORK - The Fitness Function

Supposing we have specified a candidate solution x ; then we
must be prepared to evaluate its fitness f (x).

To evaluate our candidate, we can simply create a 256× 256 jpg
file from the rectangles, and sum the (r , g , b) color differences
pixel by pixel:

f (x) =
255∑
i=0

255∑
j=0

|r1(i , j)−r2(i , j)|+|g1(i , j)−g2(i , j)|+|b1(i , j)−b2(i , j)|

where r1 and r2 are the reds for original and candidate, and so on.

Note that a perfect solution would have f (x) = 0, and that low
values of f (x) are better than high ones. We remember that for
this problem, we are minimizing f (x) instead of maximizing.

38 / 50

PATCHWORK - The Fitness Function

The rest of the procedure is pretty straightforward. We have to
generate an initial random population of candidates, say 10 of
them.

Our generation step will kill the 2 worst candidates, and replace
them by the two children produced by breeding the two best
candidates. Then we will also pick one candidate at random and
hit it with a random mutation.

A typical run of the program might involve thousands or hundreds
of thousands of generations. To monitor the progress of the
program, we can look at how the fitness function evaluations are
changing, or we can examine successive approximations to our
picture.

39 / 50

PATCHWORK - Program Outline

read the original image "RGB_A";

generate 10 random candidates "B1", "B2", ..., "B10".

for 10,000 steps:

convert each B to an image RGB_B;

compare RGB_B to RGB_A to compute score;

sort candidates, lowest to highest score.

delete candidates B9 and B10;

cross two remaining candidates, replacing B9 and B10;

mutate one candidate of B2 through B8.

end

40 / 50

PATCHWORK - The Fitness Function

The graph of the fitness function values suggests that our rate of
improvement is leveling off, and that it might be time to take a
look at what we’ve computed!

41 / 50

PATCHWORK - First, Middle, and Last Approximations

These were made with Nick Berry’s program.

42 / 50

PATCHWORK - First, Middle, and Last Approximations

These were done with my own MATLAB program.

43 / 50

PATCHWORK - Comparison

Berry’s approximation, the original, the MATLAB approximation

If you squint, or blur your vision, or stand back a distance, the
approximations may start to look peculiarly good!

44 / 50

PATCHWORK - Color Combination

If you compare Nick Berry’s results to mine, they seem to be by
different “artists”. In particular, it’s easier to see the rectangle
borders in Berry’s pictures.

This is because, I believe, Berry and I differ in how we combined
the colors when two (or more) rectangles overlapped. He takes the
maximum, and I take the average. Thus, rectangles with RGB
colors (50,100,150) and (250, 0, 100) would combine to

(250, 100, 150) in Berry’s method;

(150, 50, 125) in my method.

so Berry’s pictures are brighter and the boundaries between
rectangles are sharper.

45 / 50

PATCHWORK - Gray Scale

Another difference is that Berry used the Gray code, for which
successive integers differ in just one digit, rather than the standard
binary code.

For instance, the binary codes for 127 and 128 are 01111111 and
10000000, respectively. If the exact answer to our problem is 128,
and we are very close, at 127, then in order for the genetic
algorithm to move a distance of 1 in the “physical space”, it has to
change all 8 digits in the “gene space”.

Figure: Distance maps for binary and Gray codes, for 0 through 15.
46 / 50

Genetic Algorithms

Introduction

Genetic Algorithms

A Simple Optimization

The Patchwork Picture

Conclusion

47 / 50

Conclusion - Applications

Antennas Turbine engines Pharmaceuticals
Protein Folding Factory scheduling Stock trading

Commodity Pricing VLSI partitioning Circuit design
Chemical classification Real estate appraisal Healthcare

Figure: Left: Human-designed antenna, Right: Genetic Algorithm

48 / 50

Conclusion - Machine Learning

Genetic algorithms are an example of an exploding field in
computational science, known as machine learning.

Instead of trying to come up with instructions for solving a
problem, we can tell a computer what a solution looks like, let it
look at lots of examples, and come up with its own solution
methods. (This is how spam filters work these days.)

We used to think that if you can’t understand how to solve a
problem, then you can’t solve the problem - but with genetic
algorithms, we can see that’s not always true.

One of the hardest problems we can imagine is how a life form can
survive, outlive its rivals, and reproduce . . . and yet life has been
stumbling on better and better solutions for a billion years.

49 / 50

Conclusion - THANKS

I thank Professor Hoa Nguyen for the invitation to speak here!

50 / 50

