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The Voronoi Diagram and the Delaunay Triangulation

A famous geometer should have said, “All geometry is local.”

We mean that life is full of bumps and shoves; the most important
influence on you is your neighbors. Far away places influence you only
indirectly, through a chain of intermediaries.

The Voronoi diagram and the Delaunay triangulation are natural
geometric structures that summarize this concept of nearness and
neighborhood.
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A Map of the Golden Square Area
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John Snow’s Investigation

Dr John Snow suspected a particular water pump was the source of the
cholera outbreak, but the pump water seemed relatively clean when he
examined it.

He made a map of where victims lived;

He paced the distance to the nearest pump;

He drew a line around the houses closest to the Golden Square
pump.

Some victims outside the line nonetheless used the pump.
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The Suspected Pump and its Neighborhood
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Conclusion

People minimize the distance they travel;

The path of a disease can be determined by local traffic patterns.

Understanding local geometry reveals natural neighborhoods and
connections.
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The Voronoi Diagram

Given a set of “generator” points, associate every point in the plane with
its nearest generator. The result is a kind of graph.

The plane is partitioned into regions or “Faces”;

Points equally far from two generators form Edges;

Points equally far from three generators form Vertices;
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A Simple Set of Points
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The Voronoi Diagram
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Some Properties of the Voronoi Diagram

Generator ⇒ Face;

Generator on convex hull ⇒ semi-infinite face;

Faces are convex and polygonal;

Each face = intersection of pairwise halfplanes;

Edges are perpendicular bisectors of neighbor lines;

Vertices are equidistant from 3 generators;

Each vertex defines an “empty” circle;
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The Voronoi Diagram of 100 points

With a larger set of points, irregularities become obvious.
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Euler’s Formula for Bounded 2D Figures

Euler’s formula, for a convex polyhedron in 3D, relates faces, vertices,
and edges.

F + V = E + 2 (1)

For a 2D bounded diagram, we need to count a single “infinite face”.

(1 + 1) + 4 = 4 + 2 (2)

(16 + 1) + 15 = 30 + 2 (3)
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Euler’s Formula for Unbounded 2D Figures

For an unbounded diagram, we need to count the infinite faces, and an
extra point at infinity.

(5 + 4) + (11 + 1) = 19 + 2 (4)
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How “Big” is a Voronoi Diagram

N points can have up to N ∗ (N − 1)/2 pairwise connections.
Each point corresponds to a face. Each edge has two vertices (one might
be infinity). Each vertex belongs to three (at least) edges (and infinity
can have many more.)

3V ≤ 2E (5)

Substituting for V in Euler’s equation gives:

E ≤ 3 ∗ N − 6 (6)

Substituting for E in Euler’s equation gives:

V ≤ 2 ∗ N − 4 (7)

The complexity of the diagram is linear with respect to N.
Neighbors average about 6.
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Voronoi Construction Algorithms

Naive approach: each Voronoi polygon Vi is the intersection of
half-planes. Time is O(N log N) per polygon, so O(N2 log N) total.

Better: Fortune’s sweepline algorithm - pass a horizontal line from top to
bottom, and construct the diagram. Work is O(N log N) (optimal).

Incremental or “local” algorithm: add one more point. Only a few
Voronoi regions need to be modified.

Algorithms and data structures are surprisingly complicated.
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It’s Easy to Plot

Pixel plots are very easy to make.
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A 3D Contour Plot

A contour plot of distance to nearest generator.
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A 3D Surface Plot

A side view, using a different “mountain chain”.
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Generalizations

any reasonable distance can be used;

easily extended to higher dimensions;

a nonuniform density or weight factor can be included;

region can be finite; region can be a manifold;

generators could be lines, or polygons;

generators could be an infinite set of points; using each point on the
boundary of a region generates the medial axis.
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Pixel Plot with L3 distance

The edges are no longer straight.
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Pixel Plot with L∞ distance
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Pixel Plot with L1 distance

The “edges” can have finite thickness.
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Pixel Plot with L1
2 distance

The regions are no longer connected.
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Voronoi Diagram on a Sphere
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Simple Voronoi Applications

what area is surveyed by each forest fire tower?

if we put a new store here, how many customers will it get?

can a robot move from A to B without hitting any obstacles?

what is the largest empty circle I can draw in a set of points?
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Triangulations

Given N points, we can draw many planar graphs (no edge crossing
allowed.) A maximal planar graph is one for which no more edges can be
added. A maximal planar graph is a triangulation, that is, it decomposes
the convex hull of the N points into disjoint triangles.
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A Sample Triangulation

This is a triangulation of the previous set of points. It is a Delaunay
triangulation.
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The Delaunay Triangulation

An edge of a triangulation is “locally Delaunay” if replacing it by the
other diagonal would result in a smaller minimum angle.

A triangulation is a Delaunay triangulation iff every edge is locally
Delaunay.

Every triangulation has a minimum angle. The Delaunay triangulation
has the maximum minimum angle.

28 / 1



The Empty Circumcircle

The Delaunay triangulation has two interesting “empty circle” conditions.

Triangle: the circumcircle of each triangle is “empty”.

Edge: every edge is contained in some “empty” circle.
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An Incremental Delaunay Algorithm

Initial triangulation D0: one triangle T0 contains all the points.

for points p1 to pn do:

find T in Di−1 containing pi ;
initialize triangulation Di by replacing T by three subtriangles with
pi as one vertex;
while any edge (a, b) not locally Delaunay:

flip (a, b) to other diagonal (c, d).

end while

end

This incremental algorithm is also “local”.
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Simple Delaunay Applications

where is the nearest neighbor Pi to a random point (x , y)?

estimate a function Z (x , y) from values at scattered points;

generate a triangulation suitable for finite element calculations.

31 / 1



Voronoi and Delaunay are Duals

Voronoi ⇐⇒ Delaunay

Generators ⇐⇒ Nodes

Edge separates generators ⇐⇒ Edge joins nodes

Vertex ⇐⇒ Triangle

32 / 1



The Nodes
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The Voronoi Diagram
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The Delaunay Triangulation
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Delaunay + Voronoi
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The Nesting Behavior of Tilapia
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Discussion

Are these fish doing geometry?

This is not a “random” Voronoi diagram!

Each cell is about the same size;

Each cell is about the same shape;

The cells are “centered”.
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A Centroidal Voronoi Diagram

Given a set of N points Pi ∈ Ω, a bounded subset of the plane,

let Vi be the Voronoi region associated with Pi ,
let Ci be the centroid of Vi .

The points Pi generate a centroidal Voronoi tessellation (CVT) if and
only if

Pi = Ci ∀i = 1...N
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Does a CVT Exist?

Given region Ω and order N, there is always at least one CVT; finding it
may be hard, because the definition is implicit.

Special examples:

a finite hexagonal grid (stable);

a checkerboard (unstable).

For practical calculations, an iteration is necessary.
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Lloyd’s Method

Initial generators are arbitrary.

Iteration:

Construct Voronoi diagram;

Determine Voronoi polygon for each generator;

Determine centroid of polygon;

Replace generator by centroid.

Nonuniform density OK, affects centroid calculation.
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MacQueen’s Monte Carlo Method

Initial generators arbitrary.

Iteration:

Generate a random sample point S ;

Assign it to nearest generator Pi ;

Redefine Pi as weighted average with S ;

Faster algorithm: use thousands of sample points.
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CVT in the Unit Square: Frame 1
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CVT in the Unit Square: Frame 100
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CVT in the Holey Pie: Frame 1
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CVT in the Holey Pie: Frame 100
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CVT with Nonuniform Density: Frame 1
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CVT with Nonuniform Density: Frame 100
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Improved Grids

Persson and Strang MATLAB code DISTMESH

Goal - fill region and boundary with well spaced nodes and good
triangulation.

scatter nodes initially at random;

connect Voronoi neighbors by springs (important!);

simulate how springs push nodes apart;

springs also push nodes out – so push them back in!

when done, produce Delaunay triangulation.
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An Empty Region
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The Final Mesh
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A Predator Prey Calculation
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Finale

In nature, squares, and infinity are rare. Triangles, hexagons and local
influence are common.

The Voronoi diagram “understands” local neighborhoods.

The Delaunay triangulation “understands” the local connections between
neighborhoods that create geometry.
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