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In this discussion, we will look at a simple word puzzle.

There are several special ways of thinking that we need in order to
solve such a puzzle:

•memory: we need to know a lot of words;

• imagination: we need to imagine possible changes to a word;

• evaluation: given several possible changes, we need to choose
the one most likely to take us to our goal;

• backtracking: when a choice doesn’t work out, we need to
backtrack and search for an alternate choice;

If we teach a computer to solve these puzzles, then we will have to
understand how we do them first, and then try to translate our mental
actions into computer actions.





Lewis Carroll, who wrote the children’s book “Alice in Wonderland”,
was very fond of word games and puzzles.

He asked a riddle that no one has solved: Why is a raven like a
writing desk?.

He wrote poems like Jabberwocky full of nonsense words, a few of
which were absorbed into English: burbled and gallumphing.

And he invented a word game which he called “Doublets”.





Lewis Carroll enjoyed asking friends ”Can you turn MAN into APE?”

After getting a puzzled look, he would say: ”It’s easy!”

MAN

MAT (change N to T)

OAT (change M to O)

APT (change A to P)

APE (change T to E)

His book called “Doublets” contains more examples of such puzzles.





Lewis Carroll came up with a few new puzzles each day and wrote
them down.

He didn’t explain how he came up with the puzzles, although we
can see from the examples that he enjoyed changing a word into its
opposite, or using a pair of words that could be used to express a
humorous sentence.

Obviously, the pair of words must have the same number of letters,
but just because we come up with a pair of words like LOVE and
HATE doesn’t mean that we can figure out a way to change one into
the other, one letter at a time.



MAN MAN MAN

MAY MAR MAT

PAY EAR OAT

PAT ERR APT

PIT ERE APE

PIE ARE

DIE APE

DYE

AYE

APE



If we find a way, we don’t know if there is a shorter one.

As we can see, in the MAN to APE example, it’s easy to drag out
the solution, although the best solution is very short.

An obvious strategy is to pick a letter in the goal, and see if you can
put it into the current word immediately. If not, sometimes you can
see that this is possible in one or two extra steps.



MAN
MAT
PAT
PIT
PIE ← consonant ”T” switches to vowel ”E”
DIE
DYE
AYE ← consonant ”D” switches to vowel ”A”
APE ← vowel ”Y” switches to consonant ”P”



Another thing to notice is whether the vowels and consonants match
up. In APE to MAN, every vowel becomes a consonant, and vice
versa, and this can make it difficult to do the transformation.



Transform IRON into LEAD.

Move FIRST to THIRD.

From BELOW go ABOVE.



Lewis Carroll worked out a solution to his puzzles before posing them.

But what if we just pull a pair of words out of the air, and try to join
them by a chain of transformations?

If we don’t find a solution, we really don’t know whether we simply
didn’t try hard enough, or whether there really is no solution.

Don’t try these examples! They can’t be done!





The game invented by Lewis Carroll is still very popular, and shows
up in many magazines and puzzle sites.

When given as a puzzle, sometimes it is helpful to show the number
of steps required.

Here, we are asked to turn mask into burn using 3 intermediate words,
changing one letter at a time.

One solution is MASK, BASK, BARK, BARN, BURN.

Notice that we were able to solve this example simply by changing
each of the four letters of MASK into a letter of BURN, and we
just had to figure out the right order in which to do this.

Most word ladder puzzles are harder than this, however!





To make a long puzzle solvable, sometimes there are clues for the
missing words.

The game web site Sporcle at www.sporcle.com offers a guided
version of Doublets, in which the steps are laid out, with hints. This
allows a group of people to cooperatively solve the puzzle, shouting
out their guesses, hoping to beat the timer.

Here, we start out with a clue for the word DUKE and are clued
through a series of steps to the final word EARL.



Turn COLD to WARM

COLD

WARM



One doublet puzzle asks us to turn COLD to WARM.

We think of COLD as the start word, and WARM as the target
word.

It is usually difficult to think of a correct strategy for solving such a
puzzle.

This particular puzzle, though, is another illustration of a simple ap-
proach that can sometimes work.

The approach, called the greedy method is Try to replace a letter
of the start word with a letter of the target word.

Thus, starting from COLD, we assume our first step should be to
check whether WOLD, CALD, CORD or COLM is a word.
Thereafter, we keep hoping to take another step by swapping another
letter of the starting word for a letter of the target word.



Turn COLD to WARM

COLD
CORD
WORD
WARD
WARM



It is surprising to see that this puzzle can be done simply by swapping
one letter at a time.

A greedy person might stumble on this strategy, saying “Let’s go for
the goal right away! The fastest way is to swap in a target letter on
every move!”

The greedy algorithm strives for an immediate obvious payoff. In this
example, it reaches the target word by taking a greedy step every
time. In other puzzles, it won’t always work, but it’s always useful to
check whether you can take at least one step by swapping in a target
letter.



Try the greedy algorithm on these doublets:

LEAF RICH COME

.... .... ....

.... .... ....

.... .... ....

WORD DUNE SALT



LEAF RICH COME

LEAD RICE SOME

LOAD DICE SAME

LORD DINE SALE

WORD DUNE SALT



Here are some harder ones!

HEAD HARD RISE

.... .... ....

.... .... ....

.... .... ....

.... .... ....

TAIL EASY ....

FALL



HEAD HARD RISE

HEAL HARE RITE

TEAL BARE MITE

TELL BASE MILE

TALL EASE FILE

TAIL EASY FILL

FALL

In these puzzles, the greedy method doesn’t always work. We have
to take more steps than usual, and occasionally swap in a letter that
later we have to swap back out.



SAGE FAGE Not a word!

SOGE Not a word!

SAOE Not a word!

SAGL Not a word!

FOOL



One of Lewis Carroll’s puzzles asks us to turn SAGE into FOOL.

Let’s try to think about how we might solve such a puzzle.

Perhaps the first thing to try is simply to hope that we can imme-
diately swap one letter of SAGE for one of FOOL...after all, we
have to do that eventually.

However, we can see that FAGE, SOGE, SAOO and SAGL are
not words, so we can’t make this jump.



SAGE CAGE

MAGE

PAGE

RAGE

WAGE

SAFE

SALE

SAME

SANE

SAVE FOOL



So maybe the next thing to consider is ... what words can we jump
to, and then make a choice of those words.

Changing the first letter of SAGE gives us CAGE, MAGE, PAGE,
RAGE, WAGE.

Changing the third letter of SAGE gives us SAFE, SALE, SAME,
SANE, SAVE.



SAGE CAGE CAFE

CAKE

CAME

CANE

CAPE

CARE

CASE

CAVE

FOOL



Given so many choices, let’s focus on the very first one, and then
move the others onto the back burner. If our first choice fizzles out,
then we can backtrack, that is, come back to these unexplored choices
and try them out.

In fact, CAGE looks very useful, because there seem to be a lot
of words we can get to next: CAFE, CAKE, CAME, CANE, CAPE,
CARE, CASE, CAVE.



SAGE CAGE CAKE

CAME

CANE

CAPE

CARE

CAVE

COKE

FAKE

COME

FAME

CORE

FARE

CONE

COPE

COVE

FOOL



Now we should look at each of these words, and try the greedy
approach, that is, whether we can immediately swap in a letter of
FOOL.

For instance, the word CAFE doesn’t seem to offer any chance.

But the word CAKE can get closer to FOOL by transforming into
COKE or FAKE.

Similarly, CAME, CANE, CAPE, CARE and CAVE all seem
to offer a chance of stepping closer.

So now let’s focus on the jump from CAKE, and put the other
options also on the backburner.



SAGE CAGE CAKE COKE

FAKE

JOKE

POKE

TOKE

WOKE

YOKE

FOOL



Now we have COKE and FAKE to work with. FOOL.

Looking at COKE, we can’t swap another FOOL letter in, so let’s
just ask what other new words we can get. It seems we have at least
JOKE, POKE, TOKE, WOKE, YOKE.



SAGE CAGE CAKE COKE JOKE

POKE

TOKE

WOKE

YOKE

FOOL



I really don’t find JOKE, WOKE, YOKE attractive because
words with the letters ”J”, ”W” and ”Y” don’t seem very common.
I’d much rather work with POKE or TOKE.

Let’s make POKE our focus, with TOKE as our backup, and JOKE,
WOKE, YOKE as backup backups...

This process of making an on-the-fly evaluation of your opportuni-
ties is very important. These rules-of-thumb can help you make a
reasonable, if not perfect, choice.



SAGE CAGE CAKE COKE POKE

TOKEPOKE PIKE

PILE

PINE

PIPE

POLE

POPE

PORE

POSE

FOOL



What can we do with POKE? We got here by changing the first
letter.

If we change the second letter, we can get PIKE, PILE, PINE, PIPE.

But we’d like to keep the second letter, since that matches FOOL.
Changing the third letter can get us POLE, POPE, PORE, POSE



SAGE CAGE CAKE COKE POKE

TOKEPOKE POLE

POPE

PORE

POSE

POLL

FORE

FOOL



And now things start to get exciting, because I can see that the greedy
choice can work for POLE, giving us POLL, or for PORE, giving
us FORE.

Suddenly, we seem to be moving close to our solution!



SAGE CAGE CAKE COKE POKE

POKE POLE

PORE

POLL

FORE

POOL

DOLL

PILL

POLO

many more!

FOOL



I am really interested in POLL because it means that we have
swapped out a vowel for a consonant in the fourth position, which is
a difficult jump.



SAGE CAGE CAKE COKE POKE

POKE POLE POLL POOL

DOLL

PILL

POLO

many more!

FOOL



And once we have POLL, we can see two greedy jumps that take
us the solution: POOL and then FOOL.

It’s strange but true that once we get close to the solution, the last
few steps are often easy.



SAGE

CAGE

CAKE

COKE

POKE

POLE

POLL

POOL

FOOL



Now we can display our solution, hiding all the work we did, and all
the partial results we kept in backup in case our first guesses didn’t
work.

SAGE turned into FOOL using 7 intermediate words.



SAGE : 4

CAGE : 4

CAKE : 4

COKE : 3

POKE : 3

POLE : 3

POLL : 2

POOL : 1

FOOL : 0



We can measure how close we are getting to the solution simply by
counting the number of incorrect letters.

SAGE starts out with all four letters incorrect, and our next two
moves don’t actually add a correct letter, they are just searching
around for a good jump.

When we go from CAKE to COKE, though, our distance does
drop to 3, since ”O” is the right letter in the right place.

It takes us some more time wandering around at a distance of 3.

At the end, our distance decreases step by step.

For this example, the distance always went down. We can imag-
ine there are puzzles for which the distance might go up, where we
have to temporarily lose a correct letter in order to reach a useful
steppingstone word.



POLE POLL

POLL POOL

When close, you may “see” the solution.

Otherwise:

1. Always try greedy step;

2. Step to words with many neighbors;

3. Try to avoid words with unusual letters;

4. Watch for chances to correct consonant/vowel mismatch;



Some conclusions we can make from this puzzle solving experience:

Once you get close, the puzzle gets much easier.

When you have several choices, you record the ones you didn’t explore,
so if the current one fails, you can come back and try others.

One useful way to evaluate choices is the ”greedy” check. Can we
use this word to swap in another letter of the target word?

Another way to evaluate a choice is whether it helps us match the
vowel and consonant pattern of the target word.

We also should prefer choices that don’t have unusual letters like J,
K, Q, W, X, Y or Z.

Another way to evaluate a choice is whether it has many ”neighbors”,
that is, it that word can be transformed into many new words.



In doublets, we are trying to “travel” from one word to another, but
we don’t have a map. A map would help us plan the route, and even
to take the shortest one.

Road maps may include in small print the distance between two cities
that are directly connected by a stretch of road; but we will want to
know the distance of the total journey.

So we are looking for a map that answers our question:

What is the shortest path to our goal?



The shortest path problem is a famous case in computing. Versions
of this problem arise during many kinds of computation, and our
doublets problem is one of them.

So before returning to the doublets question, let’s take a moment to
consider the shortest path problem for two simple cases, involving a
city-to-city driving map, and a maze of connected rooms.



For the driving map problem, suppose we have cities A through F,
with a network of roads of varying lengths, and that we wish to start
at city B and determine the shortest distance to all the other cities
on the map.

We know that the shortest distance from B to itself is 0 miles, so we
can fill that in before we start, and we set all the other distances to
∞.

Now we look at all the cities that are immediately connected to B,
and pick the closest one, say city A and add it to the sure set. We
are sure that there is no way to shorten the distance from B to A by
going through another town, say C, because just getting to C takes
longer than getting to A directly.



For the next step, we check the distances of trips that start at B,
pass through A, and then land at any immediate neighbor of A. Any
time such a trip is shorter than what we’ve already recorded, we put
down the new shorter estimate.

After this check, we look at the table for the city, say “F”, with the
lowest distance in the unsure set, and move it to the sure set.

Then we consider the distance of trips that start at B, pass through
F, and continue to any one of F’s immediate neighbors.

Eventually, we will complete the table and have the shortest distance
for trips from B to any other city.

To do a complete table of shortest distances from any city to any
city, we have to repeat the whole procedure, picking a new starting
city each time.



A:?

B:0

C:?

D:?

E:?

F:?

3

6

8

5

1

2

4

7

9

City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞



A:3?

B:0

C:?

D:?

E:5?

F:?

3

6

8

5

1

2

4

7

9

City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞



A:3

B:0

C:9?

D:11?

E:5?

F:?

3

6

8

5

1

2

4

7

9



City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞
From A 3 0 9 11 5 ∞



A:3

B:0

C:7?

D:11?

E:5

F:14?

3

6

8

5

1

2

4

7

9



City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞
From A 3 0 9 11 5 ∞
From E 3 0 7 11 5 14



A:3

B:0

C:7

D:8?

E:5

F:11?

3

6

8

5

1

2

4

7

9



City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞
From A 3 0 9 11 5 ∞
From E 3 0 7 11 5 14
From C 3 0 7 8 5 11



A:3

B:0

C:7

D:8

E:5

F:11?

3

6

8

5

1

2

4

7

9



City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞
From A 3 0 9 11 5 ∞
From E 3 0 7 11 5 14
From C 3 0 7 8 5 14
From D 3 0 7 8 5 11



A:3

B:0

C:7

D:8

E:5

F:11

3

6

8

5

1

2

4

7

9



City A B C D E F
B ∞ 0 ∞ ∞ ∞ ∞
From B 3 0 ∞ ∞ 5 ∞
From A 3 0 9 11 5 ∞
From E 3 0 7 11 5 14
From C 3 0 7 8 5 14
From D 3 0 7 8 5 11
Done! 3 0 7 8 5 11



After all that work, we only know the shortest distances for trips that
start at city B. To make a complete driving distance table, we need
to repeat this process for each possible starting city.

Here’s the result for our sample map, with our previous city B results
highlighted in red:

To A To B To C To D To E To F
From A 0 3 6 7 8 10
From B 3 0 7 8 5 11
From C 6 7 0 1 2 4
From D 7 8 1 0 3 5
From E 8 5 2 3 0 6
From F 10 11 4 5 6 0



This distance table has some properties that correspond to our ideas
of distance in the real world:

• The distance is never negative;

• The distance from a city to itself is always 0;

• The distance from A to B is the same as from B to A;

• The distance from A to B plus the distance from B to C can never
be less than the distance from A to C.





Doublets is somewhat like our city distance problem, because we do
have a beginning word, an end word that we are trying to reach, and
connections from one word to another that we could also think of as
roads.

Having a map, and knowing the shortest distance between any pair
of words, would be very helpful.

The Doublets game is simpler than the city distance problem, how-
ever, because the roads we use don’t have different lengths. We count
the steps we take in transforming words, so each word we “visit” in-
volves a trip of 1 unit in length.

So for the Doublets problem, determining the shortest distance infor-
mation can be done in a simpler way.



Suppose we are in a maze of connected rooms, and told to start in
one specific room, and to find another “goal” room.

We could seek our goal by aimless wandering, of course.

But we can also try a systematic approach, which involves measuring
the distance from our starting room to every other room.

We know the starting room has distance 0, of course. Now step into
each room immediately connected to the starting room and paint a
“1” on the floor.

Then, from every “1” room, step into unpainted neighboring rooms
and mark them “2”.

Repeating this process gets you to the goal room, tells you how far
the goal room is from the start, and even gives you a trail to follow
back to the starting room.



A B C D E F

G H I J K L

M N O P Q R



A B C D E F

G H I J K L

M N:0 O P Q R



A B C D E F

G H:1 I J K L

M:1 N:0 O P Q R



A B:2 C D E F

G:2 H:1 I:2 J K L

M:1 N:0 O P Q R



A:3 B:2 C:3 D E F

G:2 H:1 I:2 J:3 K L

M:1 N:0 O:3 P Q R



A:3 B:2 C:3 D E F

G:2 H:1 I:2 J:3 K L

M:1 N:0 O:3 P:4 Q R



A:3 B:2 C:3 D E F

G:2 H:1 I:2 J:3 K L

M:1 N:0 O:3 P:4 Q:5 R



A:3 B:2 C:3 D E F

G:2 H:1 I:2 J:3 K:6 L

M:1 N:0 O:3 P:4 Q:5 R



A:3 B:2 C:3 D E:7 F

G:2 H:1 I:2 J:3 K:6 L:7

M:1 N:0 O:3 P:4 Q:5 R



A:3 B:2 C:3 D:8 E:7 F:8

G:2 H:1 I:2 J:3 K:6 L:7

M:1 N:0 O:3 P:4 Q:5 R:8

Now our diagram of the maze has turned into a shortest distance ta-
ble for trips that start at position N. This means, for example, that
the shortest distance from N to K requires 6 steps.



So the shortest distance problem is simpler to work on when the
connections or road all have length 1.

We simply pick our starting point, and then all the immediate neigh-
bors are guaranteed to be one unit away.

All their neighbors (if we haven’t already seen them) are 2 units away,
and so on.

By marking each spot with its distance, we get a table of distances,
and we can even work out the path back to our starting point.



Now that we’ve thought about maps and shortest distances, let’s
return to our doublets problem and use these ideas.

We can’t afford to draw a map of all possible four-letter words, so
let’s draw a reduced map with a limited vocabulary.

Two words are connected if they differ by a single letter.

We plan to start at one word (SAGE) and try to reach another word
(FOOL) and we want to do this in the shortest possible number of
steps.



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE PARE CARE CORE

PALL POLE PORE

POKEFALL POLL

FAIL POOL

FOIL

FOUL FOOL COOL



Here is a sort of map of our word problem for transforming SAGE to
FOOL.

Of course, we have left out many many possible words, but this map
gives us some very interesting information.

It shows us that there are many solutions to the problem.

It shows us that there are dead ends, and worthless steps that just
lengthen our journey.



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE PARE CARE CORE

PALL POLE PORE

POKEFALL POLL

FAIL POOL

FOIL

FOUL FOOL : 0 COOL



We can even determine the number of steps necessary to transform
ANY word into FOOL.

Mark FOOL’s distance as ”0”.

Every word in the map that touches FOOL now has distance 1.

Any unmarked word that touches a word of distance 1 now has dis-
tance 2.

Keep going until you can reach no more words. If any words remain
unmarked, you can’t transform them to FOOL!



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE PARE CARE CORE

PALL POLE PORE

POKEFALL POLL

FAIL POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 1, we can add FOUL, FOIL, POOL and COOL.



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE PARE CARE CORE

PALL POLE PORE

POKEFALL POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 2, we add POLL and FAIL.



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE PARE CARE CORE

PALL : 3 POLE : 3 PORE

POKEFALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 3, we can add PALL, POLL and FALL.



SAGE CAPE

SALE PAGE CAGE CAKE COKE COPE

PALE : 4 PARE CARE CORE

PALL : 3 POLE : 3 PORE : 4

POKE : 4FALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 4, we can add PALE, PORE, POKE.



SAGE CAPE

SALE : 5 PAGE : 5 CAGE CAKE COKE : 5 COPE

PALE : 4 PARE : 5 CARE CORE : 5

PALL : 3 POLE : 3 PORE : 4

POKE : 4FALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 5, we can add SALE, PAGE, COKE, PARE, CORE.



SAGE : 6 CAPE

SALE : 5 PAGE : 5 CAGE : 6 CAKE : 6 COKE : 5 COPE : 6

PALE : 4 PARE : 5 CARE : 6 CORE : 5

PALL : 3 POLE : 3 PORE : 4

POKE : 4FALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 6, we can add SAGE, CAGE, CAKE, COPE, CARE.



SAGE : 6 CAPE : 7

SALE : 5 PAGE : 5 CAGE : 6 CAKE : 6 COKE : 5 COPE : 6

PALE : 4 PARE : 5 CARE : 6 CORE : 5

PALL : 3 POLE : 3 PORE : 4

POKE : 4FALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



On step 7, we add CAPE.



SAGE : 6 CAPE : 7

SALE : 5 PAGE : 5 CAGE : 6 CAKE : 6 COKE : 5 COPE : 6

PALE : 4 PARE : 5 CARE : 6 CORE : 5

PALL : 3 POLE : 3 PORE : 4

POKE : 4FALL : 3 POLL : 2

FAIL : 2 POOL : 1

FOIL : 1

FOUL : 1 FOOL : 0 COOL : 1



We can use our marked map to determine the transformation of any
word into FOOL.

Pick a starting word, such as “CAPE”. It has a distance 7. To find
the solution, move to any neighboring word that is one unit closer,
and keep doing it til you reach FOOL.

One such path is CAPE, CAGE, PAGE, PALE, PALL, POLL, POOL,
FOOL.





If we were playing Doublets using 5 letter words, and we had a com-
puter, we could make a map of all the connections.

Here is such a map, using more than 5,000 five letter words. In this
map, each word appears only as a dot, so we are just seeing the
abstract connection pattern.

Most words are connected, although there are some disconnected sets,
and even solitary, unconnected words. One of them is ALOOF.

You can see a few cases where words are connected but very far apart.
One such pair is COMEDY and CHARGE which can be connected
using a sequence of 48 words, some of them uncommon.

The fact that we can make such a map means that this is actually a
fairly simple problem...for a computer.





Is an algorithm more like Captain Kirk or like Mr Spock?

We have seen two ways to turn SAGE into FOOL.

One way is haphazard - we check to see if we can make a greedy
move, otherwise we look at our choices and evaluate them, taking
the best and saving the rest.

The other method spends a great deal of time preparing a map, and
then calmly says “Go here, then here, then here, and that’s the fastest
way.”

The mathematical, organized method is nice if you can discover it,
and have the time to set it up. The one-step at a time, rule-of-thumb
approach may not always work, may not be the fastest, but it may
be better at handling problems where the data changes, or it’s really
hard to see the big picture.


