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When you’re packing for a trip, you want to minimize the number of
suitcases and bags you take, but maximize the things you can trans-
port. Sometimes it takes several repackings, rolling and squashing
and rearranging, before you are satisfied.



The world of computing has similar problems.

Data, such as files, pictures, movies, songs, web pages, must be
stored, but there is only a limited amount of storage, and an ever-
increasing stream of data.



Not only must data be stored, it very often must be transferred,
and sometimes over a very slow network. In North America, 70%
of Internet traffic involves services that are streaming data, such as
movies or music. When the local network is overloaded, a movie
becomes unwatchable, music becomes noise, users are dissatisfied.



One solution to these problems is to increase capacity:

Buy more suitcases or bigger ones.

Buy another hard drive, or write stuff to a memory stick or DropBox.

Add more network servers, more cables, convert to fiber optics.

These temporary solutions all cost money and only help a few users.



Imagine if we could keep our suitcase, but shrink our clothes.

If the shrinking method is fast, safe, and cheap, then we have made
a great improvement for everyone.

This is the idea behind data compression: don’t buy bigger ”buckets”
and “pipes”, get smaller data instead!





Compression Example 1:

Before the internet, radio, and telephone, people relied on the tele-
graph for communication. Sending a telegram could be time consum-
ing and expensive. The user wrote the message on a standard form,
went to a telegraph office, where an operator collected a fee based on
the number of words, and then transmitted the message using short
and long taps (dots and dashes) on a single key.

To save money, users shortened their messages. The message ”Your
mother is sick. Come home as soon as you can.” would be written
”MOM SICK. COME IMMEDIATELY.”

Commercial users relied on sending hundreds of telegrams a day; the
messages they sent were of so simple that it was possible to write
most of them down on a menu. They realized that instead of sending
the message, they could just send the index of the message. To avoid
mistakes, it was common to use words as the index of the messages.



The message If you cannot get fair freight, go in ballast has an
index word of STATIONERY; the recipient needs the code book
in order to turn the one word telegram into the message.

The message goes through three steps, which we can think of as
ENCODE, TRANSMIT and DECODE.

The shipping code also provides secrecy; someone without the code
book can’t understand what the message STATIONERY means.





Compression Example 2:

There are many shortcuts and abbreviations invented for texting on
cellphones.

Reasons for this include:

• you’re often texting while doing something else: sitting in class,
or at lunch, or walking, and you don’t have much time to get your
message in.

• a cellphone doesn’t have room to display a length message, so
short messages are preferred.

• it’s often awkward to type on the keypad of a cellphone, and so
shortening the message reduces the work.



Compression is a favorite tool of computers, servers and networks:

Messages sent over the Internet are compressed, transmitted, and
then decompressed.

Audio signals (telephone, CD, streaming music) is compressed; (mo-
ments of silence can be squeezed out, for one thing.)

When you take a picture on your phone, and want to send it to
someone, you are offered the choice of low, medium or high resolution
versions of the picture to send.

Almost all software packages are downloaded in a compressed form
and have to be decompressed before use.

The ZIP and GZIP formats are popular ways of compressing com-
puter files to reduce the amount of storage required.



When compressing information, there is an important choice to be
aware of. Data compression can be:

• lossless, uncompressing the compressed file recovers all the original
information;

• lossy, uncompressing the compressed file does not return all infor-
mation; some is lost.

Our shipping code example is lossless, because when the compressed
word STATIONERY is uncompressed, we get back exactly the
original message that was sent.

We will start by considering lossless compression, but after that, we
will come back to lossy compression and see that there may be times
when it is the right solution to a compression problem.



The idea of lossless compression is simple.

We start with a long message, and notice patterns that make it easy
to describe the message briefly, but accurately.

For example, if someone needs to see you for an hour during the
work week, you might respond by listing every possible hour and
whether you’re free or not: Monday at 8: busy, Monday at 9:
busy, Monday at 10: busy... and listing your status for each of the
40 possible hours.

But you might be able to correctly summarize the situation by saying
“Monday and Tuesday are full, and I’m booked from 1 to 3 on
Thursday and Friday, but otherwise I’m free.”

The person receiving this message can perfectly reconstruct your cal-
endar, but you didn’t have to list each hour explicitly.



A simple lossless compression is called run length encoding, or RLE.

Suppose the messages we want to send are strings of letters, and
consider how we might send the following message:
AAAAAAAAAAAAAAAAAAAAAAAABCBCBCBCBCBCBCBCBCBCAAAAAADEFDEFDEF

Over the phone, you might describe this message as:

21 A’s, then 10 BC’s, then 6 A’s, then 3 DEF’s

and if you wrote the message, you might write:

21A,10BC,6A,3DEF.

Notice that a message that was 56 letters long has been compressed
to 16 letters, numbers and commas.

The compression ratio is the size of the original message divided by
the size of the compressed message. In this case, our compression
ratio is 56 / 16 = 3.5.



Run length encoding is a useful procedure in cases where messages
often consist of letters or sets of letters that are immediately repeated
several times.

Messages written in English don’t have this property, but computer
data is full os such situations.

A simple case is the fax machine, which accepts a document, somehow
takes a picture of it, and transmits that to another site.

In fact, the fax machine “picture” is simply a black or white dot at
regularly spaced locations on the page. This means that, whether
the original document is text or a photograph, the fax message will
consist of 1’s for black, and 0’s for white.



@@.....@@.....@@@@@@@@@.....@@............@@@@@@@@.

@@.....@@.....@@............@@............@@.....@@

@@@@@@@@@.....@@@@@@@@@.....@@............@@@@@@@@.

@@.....@@.....@@............@@............@@.......

@@.....@@.....@@@@@@@@@.....@@@@@@@@@.....@@.......

This picture suggests how a scanner might “see” the word HELP
on a document, using 255 characters.

RLE, applied to each row, reduces this to 147 characters:

2@,5.,2@,5.,9@,5.,2@,12.,8@,1.

2@,5.,2@,5.,2@,12.,2@,12.,2@,5.,2@

9@,5.,9@,5.,2@,12.,8@,1.

2@,5.,2@,5.,2@,12.,2@,12.2@,7.

2@,5.,2@,5.,9@,5.,9@,5.,2@,7.

for a compression ratio of 255/147 = 1.73.



Run length encoding is a simple idea, and it misses many opportunities
for compression because it only works if the repetitions are adjacent.

For instance, RLE can compress ABABAB but it can do nothing
with the repeated AB’s in the string ABXABYABZ.

Because compression can be so useful, many clever ideas have been
suggested for handling more complicated situations by lossless com-
pression.



Consider you were given the following message to repeat over the
telephone:

VJGDNQMYLHKWVJGDNQMYLHADXSGF0VJQGNQMYLHADXSGFVJGNMQMYLHEWADXSGF

Notice that two strings of letters occur several times:

VJGDNQMYLHKWVJGDNQMYLHADXSGF0VJGDNQMYLHADXSGFVJGDNQMYLHEWADXSGF

So while you are giving the message, it would save a lot of time to
be able to say: “this part is the same as something I told you
earlier.”

To be precise, you would have to point to the start and length of the
first occurrence of this string.



VJGDNQMYLHKWVJGDNQMYLHADXSGF0VJGDNQMYLHADXSGFVJGDNQMYLHEWADXSGF

The first 12 characters don’t show any repetition so we just have to
read them out, “V, J, G, D, N, Q, M, Y, L, H, K, W”.

The next 10 characters are the same as earlier ones, so you could say,
“back 12, copy 10”.

The next 7 characters are new, so we say “A, D, X, S, G, F, 0”.

The next 16 characters are a repeat, so we say “back 17, copy 16”.

Another repeat follows, so we say “back 16, copy 10”.

Two new characters have to be listed, “E, W”.

We finish saying “back 18, copy 6”.



Our original 63 character string was:

VJGDNQMYLHKWVJGDNQMYLHADXSGF0VJGDNQMYLHADXSGFVJGDNQMYLHEWADXSGF

Using the abbreviations b for “back” and c for “copy”, our revised
string could be written as:

VJGDNQMYLH-KW-b12c10-ADXSGF-0-b17c16-b16c10-EW-b18c6

Ignoring the dashes, which we inserted for clarity, our message has
been shortened from 63 characters to 44, for a compression ratio of
63/44=1.43.



It’s easy to come up with a compression scheme if you know before-
hand what kind of strings are going to be repeated. For a message in
which ”The Supreme Court of the United States” will appear many
times, you can write SCOTUS with the understanding that your
recipient will expand this abbreviation back to its original form.

But this method, called The Same As Earlier Trick, allows you
to compress a message containing any kind of repeated string.



Here’s one extra feature of The Same As Earlier Trick.

Suppose your message was the 16 characters:

FGFGFGFGFGFGFGFGFG

Then your “compressed” version might be

FG-b2c2-b2c2-b2c2-b2c2-b2c2-b2c2-b2c2

which is longer than the original. But in fact, you could write

FG-b2c14

achieving a compression ratio of 2.28



In order to understand the next approach to compression, it is nec-
essary to be a little more realistic about how information is stored in
the computer.

When the user enters letters like a, b or c, the computer doesn’t
actually store these letters. The computer can only store numbers,
and so it uses a table that can “translate” letters and other symbols
to a numeric code, or convert the numeric code back to a letter.

For example, the letter a might be represented by the numeric code
27, b by 28, c by 29 and so on.

When the user enters a character such as a, we say it is encoded into
the numeric symbol 27, and when the computer sends the numeric
symbol 27 back to the user, it is decoded as a.

a→ (encode)→ 27→ (decode)→ a



This means that a string which the user enters, such as cab, will be
stored in the computer as a string of numbers, namely 29,27,28.

You probably know that computers do not use the decimal system,
but a base two system called binary arithmetic.

We’ll explain things using base 10, but the points will still apply to
the actual binary arithmetic used in the computer.

Now we look more closely at how a computer handles characters. The
following example table (not the actual table used in computers!)
contains numeric codes for 100 symbols. These codes run from 0 to
99, that is, they are each a one- or two-digit decimal number.

The list includes the alphabetic characters in lower and uppercase,
punctuation marks, other symbols, and some accented letters that
occur in foreign languages.



space 00 T 20 n 40 ( 60 á 80
A 01 U 21 o 41 ) 61 à 81
B 02 V 22 p 42 * 62 é 82
C 03 W 23 q 43 + 63 è 83
D 04 X 24 r 44 , 64 ı́ 84
E 05 Y 25 s 45 - 65 ı̀ 85
F 06 Z 26 t 46 . 66 ó 86
G 07 a 27 u 47 / 67 ò 87
H 08 b 28 v 48 : 68 ú 88
I 09 c 29 w 49 ; 69 ù 89

J 10 d 30 x 50 < 70 Á 90

K 11 e 31 y 51 = 71 À 91

L 12 f 32 z 52 > 72 É 92

M 13 g 33 ! 53 ? 73 È 93

N 14 h 34 ” 54 { 74 Í 94

O 15 i 35 # 55 | 75 Ì 95

P 16 j 36 $ 56 } 76 Ó 96

Q 17 k 37 % 57 77 Ò 97

R 18 l 38 & 58 Ø 78 Ú 98

S 19 m 39 ’ 59 ø 79 Ù 99



Let’s look at how an example sentence is encoded by the table.

The 23 character English sentence “Meet your fiancé there.”
would become the following list of numeric codes:

M e e t y o u r f i a n c e t h e r e .

13 31 31 46 00 51 41 47 44 00 32 35 27 40 29 82 00 46 34 31 44 31 66

Since we’re concerned about compression, it’s important to realize
that, when measuring the length of the list of numeric codes, we
should not include any spaces or commas. As far as the computer
is concerned, the message has become the following string of 46
characters:

1331314600514147440032352740298200463431443166

Since each numeric code is exactly two digits, we can easily break
this string into its 23 separate codes if we need to.



All the numeric codes used two digits, so A is coded as 01, not 1.

Because of this, when we see a coded string like

1331314600514147440032352740298200463431443166

we only break it up into digit pairs:

13 31 31 46 00 51 ...

and we would not break it up into, say:

1 33 13 14 60 0 5 1...

The translation between characters and numeric codes must always
have a single interpretation, even when the numeric codes are written
packed together, with no spaces or commas between them.

This rule will become an important issue shortly!



Now we are ready to discuss the ideas behind the next compression
procedure, known as The Shorter Symbol Trick. Actually, this
trick is based on something we do all the time in everyday commu-
nication. The idea is that if you use a phrase often enough, it’s
worthwhile to come up with a shorter version of it.

Everyone knows that USA is short for The United States of Amer-
ica; we save a lot of time or typing by using the 3 letter abbreviation
for this 24 letter phrase.

The sky is blue in color is another 24 letter phrase, but no one has
bothered to come up with an abbreviation for it.

What is the difference? One phrase is rarely used; the other occurs
often, so inventing and using an abbreviation for it is worth the effort.



Let’s see if we can apply the Shorter Symbol Trick to compress the
message we considered earlier, Meet your fiancé there. We know
we should focus on the most commonly occurring items.

The letters e and t are the most common in English, but in the original
table we used two digits for each of them. How about cutting them
down to one-digit codes? Suppose e is coded as 8 and t as 9.

Now we cut down the encoded message from 46 to 40 decimal digits:

M e e t y o u r f i a n c e t h e r e .

13 8 8 9 00 51 41 47 44 00 32 35 27 40 29 82 00 9 34 8 44 8 66

or, written all together:

1388900514147440032352740298200934844866



The person sending the message is happy, because now the encoded
message has been compressed...but we have created a serious problem
for the person receiving the message, who has to do the decoding.

Since we switched to using both 1-digit and 2-digit numeric codes,
it’s no longer clear how to chop up the message into the individual
codes. Let’s concentrate on the first five digits of the message.

1388900514147440032352740298200934844866

could be intepreted as 13 8 8 9 or 13 88 9 or 13 8 89 which
would decode to Meet or Mút or Meù.

There is no way to tell which of these three messages is the intended
one.

Our scheme has made shorter compressed messages, but now we can’t
decode them!



Luckily, we can salvage the Shorter Symbol Trick if we are willing to
make some symbols longer.

One way to solve our problem is to put a 7 in front of every one of
the ambiguous 2-digit codes.

This will allow us to have short (1 digit) symbols for e and t, medium
(2 digit) symbols for other alphabetic characters, and long (3 digit)
symbols for rarely used characters.

Our new coding table includes all the changes:



space 00 T 20 n 40 ( 60 á 780
A 01 U 21 o 41 ) 61 à 781
B 02 V 22 p 42 * 62 é 782
C 03 W 23 q 43 + 63 è 783
D 04 X 24 r 44 , 64 ı́ 784
E 05 Y 25 s 45 - 65 ı̀ 785
F 06 Z 26 t 9 . 66 ó 786
G 07 a 27 u 47 / 67 ò 787
H 08 b 28 v 48 : 68 ú 788
I 09 c 29 w 49 ; 69 ù 789

J 10 d 30 x 50 < 770 Á 790

K 11 e 8 y 51 = 771 À 791

L 12 f 32 z 52 > 772 É 792

M 13 g 33 ! 53 ? 773 È 793

N 14 h 34 ” 54 { 774 Í 794

O 15 i 35 # 55 | 775 Ì 795

P 16 j 36 $ 56 } 776 Ó 796

Q 17 k 37 % 57 777 Ò 797

R 18 l 38 & 58 Ø 778 Ú 798

S 19 m 39 ’ 59 ø 779 Ù 799



Using the new table, our message becomes 41 characters long:

13889005141474400323527402978200934844866

but now there is only one way to decode the message:

13 8 8 9 00 51 41 47 44 00 32 35 27 40 29 782 00 9 34 8 44 8 66

M e e t y o u r f i a n c e’ t h e r e .

The original message used 46 characters and now we’re down to 41.
In practice, the compression ratios are much better.

The text book, for instance, requires about half a million characters
of storage. However, using just the two compression tricks we have
described, the compressed version is about 160,000 characters, for a
compression factor greater than 3.



One example of how the tricks we have discussed are used in real life
is when ZIP files are created:

1. the original file is transformed using the Same As Earlier trick;

2. the transformed file is analyzed to see which symbols occur most
frequently;

3. using the Shorter Symbol Trick, a coding table is created in which
frequent symbols get shorter codes;

4. the transformed file is encoded with the new coding table.

To expand the ZIP file, these steps are undone in the reverse order
using the UNZIP program.



The file dictionary.txt is 3.15 million characters in size:

ls dictionary.txt

-rwxrwxrwx 1 jburkardt staff 3151520 May 29 2013 dictionary.txt

zip dictionary.zip dictionary.txt

ls dictionary.zip

-rw-r--r-- 1 jburkardt staff 896590 Apr 26 10:44 dictionary.zip

ZIP compresses the file to less than 1 million characters.

rm dictionary.txt

unzip book.zip

ls dictionary.txt

-rwxrwxrwx 1 jburkardt staff 3151520 May 29 2013 dictionary.txt

UNZIP recovers the exact original text.



We have been considering lossless compression, that is, methods for
squeezing a message into a smaller version, which can later be ex-
panded to the exact same information.

Another option is available, called lossy compression. The name is
chosen to indicate that, if you compress a file, then when you uncom-
press it later, some of the original information has been perma-
nently lost.

Lossy compression is almost never used in text. Even if we can make
out most of the meaning of the following “compressed” text, it is not
possible to be exactly sure what the original was.



Howard Beale’s monolog in “Network”, compressed by removing a,
e, i, o, u:

dnt hv t tll y thngs r bd.

vrybdy knws thngs r bd

ts dprssn.

vrybdys t f wrk r scrd f lsng thr jb.

Th dllr bys nckls wrth; bnks r gng bst;

shpkprs kp gn ndr the cntr;

pnks r rnnng wld n th strt,

nd thrs nbdy nywhr wh sms t knw wht t d,

nd thrs n nd t t.



Howard Beale’s monolog in “Network”:

I don’t have to tell you things are bad.

Everybody knows things are bad.

It’s a depression.

Everybody’s out of work or scared of losing their job.

The dollar buys a nickel’s worth; banks are going bust;

shopkeepers keep a gun under the counter;

punks are running wild in the street,

and there’s nobody anywhere who seems to know what to do,

and there’s no end to it.



Although text is not appropriate for lossy compression, it turns out
that many other kinds of data files are ideal candidates for lossy
compression.

The reason is that a typical computer data file may contain a mixture
of useful and useless information. For example, a simple way to record
sound involves taking 44,100 samples per second.

A typical 640MB CD can hold about 1 hour of uncompressed mu-
sic, or 2 hours of losslessly compressed music, or 7 hours of music
compressed using the lossy MP3 method.

The MP3 recording is played (decoded, actually), the resulting music
will not be identical to the original samples. However, it is generally
close enough that the listener would have great difficulty detecting
the differences.



The techniques used to compress audio recordings are based in part
on recognizing the limitations of the human ear:

• you can’t hear very low or high frequency tones;

• you can’t hear very soft tones;

• you can’t hear soft tones just after a loud one;

• if low and high frequency tones are played with the same loudness,
you hear the low frequency (drumbeat over flute);

• if music is to be played in a noisy environment, only loud or low
frequency information will be heard at all.

Using ideas like this, a compression program can remove as much
as 80 or 85% of the original information, producing a stripped-down
recording that will still sound very close to the original.



Photos, drawings, and movies can also be compressed, and again,
compression is aided by understanding limitations of the human eye,
including:

• just as the human ear can’t hear high frequency tones, the human
eye is not good at detecting high frequency variations in an image,
for example, a pattern of alternating black and white lines, if thin
enough, will simply register as solid gray.

• the eye essentially averages the information in a small neighbor-
hood around any spot in a picture. Thus, we can blur the image
somewhat, without noticeable effect.

• although a computer can display millions of different colors, the
human eye is not very sensitive to small color differences;



While programs like JPEG use very sophisticated techniques to com-
press image files, we can easily demonstrate some of the simplest
ones. For example, we have The Leave It Out Trick.

We will look at this method in terms of a black and white image. Note
that most such images are actually black and white and hundreds of
shades of gray, and so are sometimes called grayscale images.

An uncompressed image is stored as a rectangular table, like a piece
of graph paper. Each entry in the table, or box in the graph paper,
is called a pixel (an abbreviation of picture element, and contains a
number representing the shade at that point in the picture.



Here is a simple uncompressed grayscale image file, (called FEEP),
using gray shades between 0 (black) and 15 (white):

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 9 9 9 9 0 0 11 11 11 11 0 0 13 13 13 13 0 0 15 15 15 15 0

0 9 9 9 9 0 0 11 11 11 11 0 0 13 13 13 13 0 0 15 15 15 15 0

0 9 0 0 0 0 0 11 0 0 0 0 0 13 0 0 0 0 0 15 0 0 15 0

0 9 9 9 0 0 0 11 11 11 0 0 0 13 13 13 0 0 0 15 15 15 15 0

0 9 0 0 0 0 0 11 0 0 0 0 0 13 0 0 0 0 0 15 0 0 0 0

0 9 0 0 0 0 0 11 11 11 11 0 0 13 13 13 13 0 0 15 0 0 0 0

0 9 0 0 0 0 0 11 11 11 11 0 0 13 13 13 13 0 0 15 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



The FEEP file used a table of 9 rows by 24 columns, containing
grayscale values between 0 and 15.

When we display the FEEP picture, we see the regions of darkness
and light corresponding to the numeric values.

However, the image does not seem to be made of squares of solid
colors.

This is because, in order to be viewed, we must decode the image file.
Most programs that decode or display an image file will automatically
try to smooth out the rectangular boundaries between various pixels
of different colors, to make the picture look better.

Thus, it is actually a little difficult to force our blocky picture to show
up as a bunch of blocks!



A more typical grayscale graphics file might use 256 shades of gray,
going from 0 for full black to 255 for full white.

Computer generated pictures often have height to width ratios of 4
to 3, (portrait) or 3 to 4 (landscape)

A modern camera or cellphone may store images as a pixel table of
4,000 rows by 3,000 columns, for a total of 12,000,000 pixels.

Many television screens have an array of 1920 pixels wide and 1080
pixels high, or 2,073,000 total pixels.

Many images on computers and the Internet are somewhat smaller,
with a typical size being 480 x 360 = 165,600 pixels,

The total number of pixels is known as the resolution of the picture.



Now 12 million gray dots is a lot of information, and your eye might
be perfectly satisfied with a much simplified version.

In fact, if I want to send a picture from my phone to someone else, the
phone suggests sending a medium or low resolution version, because
the picture will still be good enough to view, and I can reduce my
data transmission charge by sending a smaller image.

How is a lower resolution version created?

Suppose that we started with a 460 by 360 pixel image file, and simply
removed every other row and column. Our example would drop from
165,600 pixels to 230 * 180 = 41,400 pixels, that is, it would be
reduced to 1/4 the number of pixels.

This compression method is easy...and definitely lossy.

But will it result in a usable picture?



Let’s experiment by starting with a standard size image, and cutting
out the even rows and even columns.

This creates a file that is 1/4 the size of the original, by permanently
losing 3/4 of the information.

Our only hope is that, because the missing information is right next
to information we are keeping, the eye will not notice the small dis-
ruptions.

And if we are satisfied with the compressed image, we can try a second
compression....



460 * 360 = 165,600 pixels



230 * 180 = 41,400 pixels



115 * 90 = 10,350 pixels



58 * 45 = 2,610 pixels



29 * 23 = 667 pixels



15 * 12 = 180 pixels



If we look at all six versions of our image together, even the second
compressed version may not look too bad...because we’ve reduced its
size to show it together with the others.

But if we go back to the larger version, our eye may be able to spot
some unnatural looking jagged boundaries that correspond to the
rectangular pixels that make up the computer image.

But even after one or two more compressions, we can still see the
main items in the picture. Even with only 667 pixels, we may not be
able to tell what is going on, but we can guess that there are 3 or
4 people in the picture. Of course, with 180 pixels, there is just not
enough information for our eyes to make any sense of things.





We have applied the Leave It Out Trick in a very simple manner, by
dropping rows and columns of the image file without worrying about
the information they contain.

Because images are used so frequently, and the raw images created by
cameras and medicals devices are so large, it has become important
to develop much better lossy compression techniques for squeezing
out as much information as possible, while retaining the information
necessary for the eye to “read” the picture correctly.

The JPEG format is a widely used image compression technique that
uses the Leave It Out Trick in a more intelligent and careful way.



JPEG files are more complicated than the simple image file format we
discussed earlier; it is enough to know that the file size is measured
in characters. If we convert our 480x360 pixel image to the standard
JPEG format, it is stored using 60,231 characters, rather than 165,600
pixels.

Although 60,231 is smaller than 165,600, we have not actually asked
JPEG to compress the image information at all.

The number of characters is smaller, only because JPEG knows how
to store several pixels into a single character.



To compress the image, JPEG divides up the pixels into small squares
of 8x8 pixels called blocks, and looks very carefully at them.

If all 64 pixels in a block are the same color, than the computer can
simply “leave out” 63 numbers, remember simply that the block is
all the same shade.

If the 64 pixels in a block are close to some color, then the computer
can consider averaging the colors and using that average for the entire
block.

If the colors in the block change smoothly from the left to the right,
then the computer can store the left and righthand colors, and re-
member that the pixels in between get in between shades.

There are other patterns of variation that are simpler to describe than
simply recording the individual shades of all 64 pixels.



We may allow JPEG to replace the exact data by a pattern even if
the pattern is only an approximate match.

The quality of a JPEG image is 100% if we never allow any such
approximation.

As we reduce the quality, we are allowing JPEG more leeway in re-
placing exact picture data with approximate patterns. As we reduce
the quality, we improve the chances for compression.

We will see that JPEG can sometimes reduce the size of an image file
by a compression ratio of 20 without the eye noticing much difference.

Here, we will repeat our exercise with the black and white image,
decreasing the requested JPEG quality from 100% down to 1%.



JPEG 100% Quality = 60,231 characters



JPEG 75% Quality = 26,878 characters



JPEG 50% Quality = 21,045 characters



JPEG 25% Quality = 12,520 characters



JPEG 16% Quality = 9,482 characters



JPEG 8% Quality = 5,711 characters



JPEG 4% Quality = 3,229 characters



JPEG 2% Quality = 2,265 characters



JPEG 1% Quality = 1,261 characters



Using JPEG, we started with our file at 100% quality and 60,231
characters and reduced it to 8% quality and 5,711 characters, for a
compression factor of 12, without much noticeable loss of information.

Even going to 1% quality, 1,261 characters and a compression factor
of 50, the picture is recognizable.

What is perhaps more surprising is what happens when we try to show
all 9 versions of the image together. Because we reduce the size of
each image, the 1% image seems about as good as the 100% image.
This is because, as we said before, the eye is not good at seeing small
details. When you reduce an image, only the large details remain, and
we can not longer notice that the small details in the 100% picture
are sharp, while the small details in the 1% picture are very blocky.




