Computational Geometry Lab:
QUADRATURE ON A TRIANGULATION

John Burkardt
Information Technology Department
Virginia Tech
http://people.sc.fsu.edu/~jburkardt /presentations/cg_lab_triangulation_quadrature_2009_fsu.pdf

March 25, 2024

1 Introduction

In our previous discussion, we considered the problem of estimating the integral of a function f(x,y) over a
single triangle T', using a quadrature rule, so that
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Now suppose that we have a region R for which we have a triangulation 7 = {T; : 1 <4 < N}, with the
triangles T; having disjoint interiors and whose union is R. Suppose that we wish to estimate the integral
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Since R is identical to the extent of T, and since T is the disjoint sum of the triangles T;, an integral
over R is the sum of the integrals over the triangles:
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and, if we now apply a quadrature rule ) to approximate the integral over each triangle, we have:
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In other words, to approximate an integral over a triangulated region, we may use a quadrature rule to
approximate the integral of the function over each triangle in the triangulation and sum the result.

2 Quadrature Rules #1 through #5 for the Unit Triangle

Here are quadrature rules for the unit triangle, with the order N, precision P, weights W, and abscissas
(X,Y):



Table 1: Quadrature Rules for the Unit Triangle.

N P W X Y

1 1 1.000000 0.333333 0.333333

3 2 0.333333  0.500000 0.000000
0.333333  0.500000 0.500000
0.333333  0.000000 0.500000

4 3 -0.562500 0.333333 0.333333
0.520833  0.600000 0.200000
0.520833  0.200000 0.600000
0.520833  0.200000 0.200000

6 4 0.109951 0.816847 0.091576
0.109951  0.091576 0.816847
0.109951  0.091576 0.091576
0.223381  0.108103  0.445948
0.223381  0.445948 0.108103
0.223381  0.445948 0.445948

7 5 0.225000 0.333333 0.333333
0.125939  0.797427 0.101287
0.125939  0.101287 0.797427
0.125939  0.101287 0.101287
0.132394  0.059716 0.470142
0.132394  0.470142 0.059716
0.132394  0.470142 0.470142

3 Program #1: Quadrature Over a Triangulation

Write a program which estimates the integral of a function over a triangulated region by applying a quadra-
ture rule to each triangle in the triangulation.

Your program should:

read the number of triangles T_Num,;

read the triangles;

read the order of the quadrature rule N;

read the weights and abscissas of the quadrature rule;
apply the quadrature rule to each triangle

print the estimated value of the integral.

Use the following simple triangulation:

{ { {2,0}, {2,2}, {0,2} 1},
{{1,0}, {2,0}, {1,1} },
{ {0,1}, {1,1}, {0,2} } }

This triangulation has “hanging nodes” but that won’t be a problem for our calculation.
The function f(x,y) to integrate is

flz,y) = Va2 +y?

The value of this integral is 5.35637...(Thanks, Mathematica!) Run your program with quadrature rule
#3 from the table.



Figure 1: The triangulation to be used for the quadrature calculation.

4 Improving a Quadrature Estimate

The value returned by a quadrature rule is an estimate of an integral. Unless the integrand is a polynomial
for which the rule is precise, the estimate will have a certain amount of error.

If our quadrature rule has precision p, and our integrand f(x,y) is smooth enough, we would expect
that the error made over triangle A; is of order C * hY oy Area(A;), where C is a bound on the integrand
derivatives of order p+ 1, and h; is the length of the longest side or “characteristic length” of A;. Our total
error is the sum of all these errors, so it can then be estimated by

N
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where hyq. is the maximum value of h; and Area(7) is the total area of the triangulated region.

By looking at the formula for the error, it seems that one way to reduce the error for an integral over
a triangulation is to keep the triangulation fixed, but to use a quadrature rule of higher precision p2 > p.
If our integrand has bounded derivatives of order p2 + 1, then our error estimate will go down because the
exponent of A4, has increased.

A second approach would be to refine the triangulation; that is, to reduce the value of h,,q. by replace
some or all of the triangles by smaller ones. A simple procedure can be used to replace any triangle of
characteristic size h by 4 triangles of characteristic size h/2. If we refine every triangle in this way, but
use the same quadrature rule as before, then p stays the same, but h,,,, has been reduced by a factor of 2
so the new error estimate is divided by 2P. This procedure may be beneficial if the integrand has limited
differentiability, or if we simply don’t have access to a quadrature rule of higher precision.

If accuracy is important, it may be be desirable to estimate the size of the error, so that corrective action
can be taken, if necessary. A simple way to estimate the error is to carry out the approximation process
at least twice, using for the second estimate a rule with better accuracy, either by increasing the exponent
p or reducing the characteristic length h,,... If we have two such estimates, the difference between them



suggests the amount of error in our estimate. If the estimated error seems large, we may need to reduce p
or hyax yet again, and compare our second and third results.

5 Program #2: Repeated Quadrature Over a Fixed Triangulation

Modify your program from the previous exercise. Approximate an integral using one rule, and then estimate
the error by carrying out a second approximation with a better rule and taking the difference.

Your program should:

read the number of triangles T_Num,;

read the triangles;

read the order of the quadrature rule # 1: N1;

read the weights and abscissas of the quadrature rule # 1;
compute Q1, the first estimate;

read the order of the quadrature rule # 2: N2;

read the weights and abscissas of the quadrature rule # 2;
compute Q2, the second estimate;

print Q1, Q2, and the error estimate | Q1-Q2 |.

Run your program on the same problem as before, but now compare quadrature rules #1 and #2, then #2
and #3, and so on up to rules #4 and #5. You should expect to see the integral estimates improve, and
converge towards the correct value.



