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1 Introduction

In our previous discussion, we considered the problem of estimating the integral of a function f(x, y) over a
single triangle T , using a quadrature rule, so that∫

T

f(x, y) dx dy ≈
∑

1≤j≤n

wjf(xj , yj)

Now suppose that we have a region R for which we have a triangulation T = {Ti : 1 ≤ i ≤ N}, with the
triangles Ti having disjoint interiors and whose union is R. Suppose that we wish to estimate the integral

I(R, f) =

∫
R
f(x, y) dx dy

Since R is identical to the extent of T , and since T is the disjoint sum of the triangles Ti, an integral
over R is the sum of the integrals over the triangles:

I(R, f) =

∫
T
f(x, y) dx dy

=

N∑
i=1

∫
Ti

f(x, y) dx dy =

N∑
i=1

I(Ti, f)

and, if we now apply a quadrature rule Q to approximate the integral over each triangle, we have:

I(R, f) =

N∑
i=1

I(Ti, f) ≈
N∑
i=1

Q(Ti, f)

In other words, to approximate an integral over a triangulated region, we may use a quadrature rule to
approximate the integral of the function over each triangle in the triangulation and sum the result.

2 Quadrature Rules #1 through #5 for the Unit Triangle

Here are quadrature rules for the unit triangle, with the order N , precision P , weights W , and abscissas
(X,Y ):
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Table 1: Quadrature Rules for the Unit Triangle.

N P W X Y
1 1 1.000000 0.333333 0.333333
3 2 0.333333 0.500000 0.000000

0.333333 0.500000 0.500000
0.333333 0.000000 0.500000

4 3 -0.562500 0.333333 0.333333
0.520833 0.600000 0.200000
0.520833 0.200000 0.600000
0.520833 0.200000 0.200000

6 4 0.109951 0.816847 0.091576
0.109951 0.091576 0.816847
0.109951 0.091576 0.091576
0.223381 0.108103 0.445948
0.223381 0.445948 0.108103
0.223381 0.445948 0.445948

7 5 0.225000 0.333333 0.333333
0.125939 0.797427 0.101287
0.125939 0.101287 0.797427
0.125939 0.101287 0.101287
0.132394 0.059716 0.470142
0.132394 0.470142 0.059716
0.132394 0.470142 0.470142

3 Program #1: Quadrature Over a Triangulation

Write a program which estimates the integral of a function over a triangulated region by applying a quadra-
ture rule to each triangle in the triangulation.

Your program should:

� read the number of triangles T Num;
� read the triangles;
� read the order of the quadrature rule N;
� read the weights and abscissas of the quadrature rule;
� apply the quadrature rule to each triangle
� print the estimated value of the integral.

Use the following simple triangulation:

{ { {2,0}, {2,2}, {0,2} },

{ {1,0}, {2,0}, {1,1} },

{ {0,1}, {1,1}, {0,2} } }

This triangulation has “hanging nodes” but that won’t be a problem for our calculation.

The function f(x, y) to integrate is

f(x, y) =
√
x2 + y2

The value of this integral is 5.35637...(Thanks, Mathematica!) Run your program with quadrature rule
#3 from the table.
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Figure 1: The triangulation to be used for the quadrature calculation.

4 Improving a Quadrature Estimate

The value returned by a quadrature rule is an estimate of an integral. Unless the integrand is a polynomial
for which the rule is precise, the estimate will have a certain amount of error.

If our quadrature rule has precision p, and our integrand f(x, y) is smooth enough, we would expect
that the error made over triangle ∆i is of order C ∗ hp+1

i ∗ Area(∆i), where C is a bound on the integrand
derivatives of order p+ 1, and hi is the length of the longest side or “characteristic length” of ∆i. Our total
error is the sum of all these errors, so it can then be estimated by

|Error| ≤
N∑
i=1

C ∗ hp+1
i ∗Area(∆i) ≤ C ∗ hp+1

max ∗Area(T ),

where hmax is the maximum value of hi and Area(T ) is the total area of the triangulated region.

By looking at the formula for the error, it seems that one way to reduce the error for an integral over
a triangulation is to keep the triangulation fixed, but to use a quadrature rule of higher precision p2 > p.
If our integrand has bounded derivatives of order p2 + 1, then our error estimate will go down because the
exponent of hmax has increased.

A second approach would be to refine the triangulation; that is, to reduce the value of hmax by replace
some or all of the triangles by smaller ones. A simple procedure can be used to replace any triangle of
characteristic size h by 4 triangles of characteristic size h/2. If we refine every triangle in this way, but
use the same quadrature rule as before, then p stays the same, but hmax has been reduced by a factor of 2
so the new error estimate is divided by 2p. This procedure may be beneficial if the integrand has limited
differentiability, or if we simply don’t have access to a quadrature rule of higher precision.

If accuracy is important, it may be be desirable to estimate the size of the error, so that corrective action
can be taken, if necessary. A simple way to estimate the error is to carry out the approximation process
at least twice, using for the second estimate a rule with better accuracy, either by increasing the exponent
p or reducing the characteristic length hmax. If we have two such estimates, the difference between them
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suggests the amount of error in our estimate. If the estimated error seems large, we may need to reduce p
or hmax yet again, and compare our second and third results.

5 Program #2: Repeated Quadrature Over a Fixed Triangulation

Modify your program from the previous exercise. Approximate an integral using one rule, and then estimate
the error by carrying out a second approximation with a better rule and taking the difference.

Your program should:

� read the number of triangles T Num;
� read the triangles;
� read the order of the quadrature rule # 1: N1;
� read the weights and abscissas of the quadrature rule # 1;
� compute Q1, the first estimate;
� read the order of the quadrature rule # 2: N2;
� read the weights and abscissas of the quadrature rule # 2;
� compute Q2, the second estimate;
� print Q1, Q2, and the error estimate | Q1-Q2 |.

Run your program on the same problem as before, but now compare quadrature rules #1 and #2, then #2
and #3, and so on up to rules #4 and #5. You should expect to see the integral estimates improve, and
converge towards the correct value.
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