# Computational Geometry Lab: QUADRATURE ON A TRIANGULATION 

John Burkardt<br>Information Technology Department<br>Virginia Tech<br>http://people.sc.fsu.edu/~jburkardt/presentations/cg_lab_triangulation_quadrature_2009_fsu.pdf

March 25, 2024

## 1 Introduction

In our previous discussion, we considered the problem of estimating the integral of a function $f(x, y)$ over a single triangle $T$, using a quadrature rule, so that

$$
\int_{T} f(x, y) d x d y \approx \sum_{1 \leq j \leq n} w_{j} f\left(x_{j}, y_{j}\right)
$$

Now suppose that we have a region $\mathcal{R}$ for which we have a triangulation $\mathcal{T}=\left\{T_{i}: 1 \leq i \leq N\right\}$, with the triangles $T_{i}$ having disjoint interiors and whose union is $\mathcal{R}$. Suppose that we wish to estimate the integral

$$
I(\mathcal{R}, f)=\int_{\mathcal{R}} f(x, y) d x d y
$$

Since $\mathcal{R}$ is identical to the extent of $\mathcal{T}$, and since $\mathcal{T}$ is the disjoint sum of the triangles $T_{i}$, an integral over $\mathcal{R}$ is the sum of the integrals over the triangles:

$$
\begin{array}{r}
I(\mathcal{R}, f)=\int_{\mathcal{T}} f(x, y) d x d y \\
=\sum_{i=1}^{N} \int_{T_{i}} f(x, y) d x d y=\sum_{i=1}^{N} I\left(T_{i}, f\right)
\end{array}
$$

and, if we now apply a quadrature rule $Q$ to approximate the integral over each triangle, we have:

$$
I(\mathcal{R}, f)=\sum_{i=1}^{N} I\left(T_{i}, f\right) \approx \sum_{i=1}^{N} Q\left(T_{i}, f\right)
$$

In other words, to approximate an integral over a triangulated region, we may use a quadrature rule to approximate the integral of the function over each triangle in the triangulation and sum the result.

## 2 Quadrature Rules \#1 through \#5 for the Unit Triangle

Here are quadrature rules for the unit triangle, with the order $N$, precision $P$, weights $W$, and abscissas $(X, Y)$ :

Table 1: Quadrature Rules for the Unit Triangle.

| N | P | W | X | Y |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1.000000 | 0.333333 | 0.333333 |
| 3 | 2 | 0.333333 | 0.500000 | 0.000000 |
|  |  | 0.333333 | 0.500000 | 0.500000 |
|  |  | 0.333333 | 0.000000 | 0.500000 |
| 4 | 3 | -0.562500 | 0.333333 | 0.333333 |
|  |  | 0.520833 | 0.600000 | 0.200000 |
|  |  | 0.520833 | 0.200000 | 0.600000 |
|  |  | 0.520833 | 0.200000 | 0.200000 |
| 6 | 4 | 0.109951 | 0.816847 | 0.091576 |
|  |  | 0.109951 | 0.091576 | 0.816847 |
|  |  | 0.109951 | 0.091576 | 0.091576 |
|  |  | 0.223381 | 0.108103 | 0.445948 |
|  |  | 0.223381 | 0.445948 | 0.108103 |
| 7 | 5 | 0.225000 | 0.333333 | 0.333333 |
|  |  | 0.125939 | 0.797427 | 0.101287 |
|  |  | 0.125939 | 0.101287 | 0.797427 |
|  |  | 0.125939 | 0.101287 | 0.101287 |
|  |  | 0.132394 | 0.059716 | 0.470142 |
|  |  | 0.132394 | 0.470142 | 0.059716 |
|  |  | 0.132394 | 0.470142 | 0.470142 |

## 3 Program \#1: Quadrature Over a Triangulation

Write a program which estimates the integral of a function over a triangulated region by applying a quadrature rule to each triangle in the triangulation.

Your program should:

- read the number of triangles $\mathbf{T}_{-} \mathbf{N u m}$;
- read the triangles;
- read the order of the quadrature rule $\mathbf{N}$;
- read the weights and abscissas of the quadrature rule;
- apply the quadrature rule to each triangle
- print the estimated value of the integral.

Use the following simple triangulation:

```
{ { {2,0}, {2,2}, {0,2} },
    { {1,0}, {2,0}, {1,1} },
    { {0,1}, {1,1}, {0,2} } }
```

This triangulation has "hanging nodes" but that won't be a problem for our calculation.
The function $f(x, y)$ to integrate is

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

The value of this integral is $5.35637 \ldots$...(Thanks, Mathematica!) Run your program with quadrature rule \#3 from the table.


Figure 1: The triangulation to be used for the quadrature calculation.

## 4 Improving a Quadrature Estimate

The value returned by a quadrature rule is an estimate of an integral. Unless the integrand is a polynomial for which the rule is precise, the estimate will have a certain amount of error.

If our quadrature rule has precision $p$, and our integrand $f(x, y)$ is smooth enough, we would expect that the error made over triangle $\Delta_{i}$ is of order $C * h_{i}^{p+1} * \operatorname{Area}\left(\Delta_{i}\right)$, where $C$ is a bound on the integrand derivatives of order $p+1$, and $h_{i}$ is the length of the longest side or "characteristic length" of $\Delta_{i}$. Our total error is the sum of all these errors, so it can then be estimated by

$$
\mid \text { Error } \mid \leq \sum_{i=1}^{N} C * h_{i}^{p+1} * \operatorname{Area}\left(\Delta_{i}\right) \leq C * h_{\max }^{p+1} * \operatorname{Area}(\mathcal{T}),
$$

where $h_{\max }$ is the maximum value of $h_{i}$ and $\operatorname{Area}(\mathcal{T})$ is the total area of the triangulated region.
By looking at the formula for the error, it seems that one way to reduce the error for an integral over a triangulation is to keep the triangulation fixed, but to use a quadrature rule of higher precision $p 2>p$. If our integrand has bounded derivatives of order $p 2+1$, then our error estimate will go down because the exponent of $h_{\text {max }}$ has increased.

A second approach would be to refine the triangulation; that is, to reduce the value of $h_{\max }$ by replace some or all of the triangles by smaller ones. A simple procedure can be used to replace any triangle of characteristic size $h$ by 4 triangles of characteristic size $h / 2$. If we refine every triangle in this way, but use the same quadrature rule as before, then $p$ stays the same, but $h_{\text {max }}$ has been reduced by a factor of 2 so the new error estimate is divided by $2^{p}$. This procedure may be beneficial if the integrand has limited differentiability, or if we simply don't have access to a quadrature rule of higher precision.

If accuracy is important, it may be be desirable to estimate the size of the error, so that corrective action can be taken, if necessary. A simple way to estimate the error is to carry out the approximation process at least twice, using for the second estimate a rule with better accuracy, either by increasing the exponent $p$ or reducing the characteristic length $h_{\text {max }}$. If we have two such estimates, the difference between them
suggests the amount of error in our estimate. If the estimated error seems large, we may need to reduce $p$ or $h_{\max }$ yet again, and compare our second and third results.

## 5 Program \#2: Repeated Quadrature Over a Fixed Triangulation

Modify your program from the previous exercise. Approximate an integral using one rule, and then estimate the error by carrying out a second approximation with a better rule and taking the difference.

Your program should:

- read the number of triangles $\mathbf{T}$ _Num;
- read the triangles;
- read the order of the quadrature rule $\# 1: \mathbf{N} 1$;
- read the weights and abscissas of the quadrature rule $\# 1$;
- compute Q1, the first estimate;
- read the order of the quadrature rule \# 2: N2;
- read the weights and abscissas of the quadrature rule $\# 2$;
- compute Q2, the second estimate;
- print Q1, Q2, and the error estimate $\mid$ Q1-Q2 $\mid$.

Run your program on the same problem as before, but now compare quadrature rules \#1 and \#2, then \#2 and $\# 3$, and so on up to rules $\# 4$ and $\# 5$. You should expect to see the integral estimates improve, and converge towards the correct value.

