
Benchmarking on the Cray YMP

https://people.sc.fsu.edu/∼jburkardt/presentations/benchmark 1990 psc.pdf
..........

John Burkardt

1990

Abstract

This report discusses the idea of benchmarking programs on the Cray
YMP at the Pittsburgh Supercomputing Center. It was written around
1990. The machines and programs discussed here are long gone, but the
material is not merely of nostalgic interest.

1 Introduction

Benchmarking implies comparison. We might want to compare:

� two programs,

� two versions of a program,

� two compilers,

� two machines.

But remember that you can’t compare one thing. It’s actually hard to know
what to make of the fact that your program runs at a rate of 87 MegaFLOPS, or
completes in 17 seconds; it’s much easier to understand that your program runs
twice as fast on an Amiga as it does on a Commodore 64, or that the Pascal
version takes 10 times as long to run as the PL/1 version.

After all the theoretical work that goes into writing a program, benchmark-
ing is the practical side. No matter how well the program ought to run, bench-
marking reports what really happened. It can be a useful (and sometimes
shocking) guide to how well you are doing in matching your programming to
what the machine does well.

We can’t make benchmarking an end in itself. You’re here to get answers,
and the only role of benchmarking is to show you whether you’re getting those
answers quickly and efficiently. Use benchmarking to determine whether there
are any serious performance failures in your program. If not, stop benchmarking!
Otherwise, use it further to find the worst area of your program, the worst DO-
loops, fix those and see if you can move on to the important work.

1

Having the algorithm right isn’t enough! Even as simple an operation as
matrix multiplication must be programmed correctly if it is to use the full power
of the machine.

2 General Considerations

When timing software, you are usually interested in the elapsed CPU time, and
not in the wall clock time. The execution of your job may be interrupted by
I/O waits, or by being swapped out. You are not charged for wall clock time,
but for CPU.

You want to measure the performance of YOUR program, but benchmarking
adds an overhead. You’re paying not just for your program, but for the little
man who’s watching it. His expenses are included in the total, and it’s difficult to
sort that out. Some benchmarking programs are known to have high overhead,
where others are cheap.

The benchmarking tools (with the exception of FORGE) are not commercial
tools. Nobody ’wasted’ any time making them friendly, easy to use or to under-
stand. They fell off the desk of a programmer at Cray Research, but they’re the
only thing we have. The documentation is sparse and confusing. The output
can be overwhelming.

Benchmarking is easiest to do properly if you have access to the full source
code of the program you are interested in. If you are calling many system
library routines, or other libraries such as IMSL, you may not be able to carry
out many of the tests you might want to make. And if you don’t have access
to the source code at all, say you are running someone else’s executable, the
amount of information you can find out is very limited.

Another problem is that real life codes are often enormous. Even if you
have source code, many benchmarking programs will churn out reams of output
which it is impossible to digest.

Software libraries (BCSLIB, IMSL10, NAG13, SCILIB) are generally well
written, correctly implemented, and vectorized where possible. You should pre-
fer them, by default, to your own routines. But the compiler is very good,
and library software may be unsuitable for your problem. A simple example:
approximate integration. The library routine typically contains a loop:

do I = 1, n

sum = sum + weight * f (x(i))

end do

where F(X) is a function you write that evaluates the function. On the Cray,
the occurrence of the mysterious function F(X) is enough to keep the compiler
from trying to vectorize this loop. But if you simply inserted the code for your
formula into the loop, the compiler would be able to understand what is going
on, and schedule the loop for fast execution:

do I = 1, n

2

sum = sum + weight * sin (x(i))

end do

3 Special Features of the Cray YMP

I/O is much slower than computations. Unless you have a real interest in I/O
measurements, you should time portions of code that do not contain READ or
WRITE statements.

Multitasking has not been integrated with the benchmarking tools. That
means that it is not possible, at the moment, to get a good idea of the perfor-
mance of a code that uses multitasking, except through wall clock time. We
will ignore multitasking in this discussion.

The processor is only so fast. The Cray picks up its speed by vectorization
(and multitasking). Things to look for are DO loops that don’t vectorize, or
don’t vectorize well. Also, subroutine calls have an ’overhead’, so calling a simple
subroutine thousands of times is wasteful. I/O should be done unformatted
where possible, and in large ’chunks’.

A naive approach would assume that the Cray can compute 64 results as
fast as it can compute one. This is not true! Every vectorized DO loop has a
startup and finishup phase that is part of the overhead. The ”64-computations-
at-a-time” in fact occur in a pipelined manner. This is very fast, but significantly
slower than a single computation. In fact, it can be to your advantage to AVOID
the vectorization of so-called ”short loops”.

The Cray works at maximum efficiency when all the features of its processors
are hard at work. This means that a ’skimpy’ DO-loop will vectorize, but not
be as efficient as a more generous loop. With a longer loop, the compiler has
more statements to play with, and can orchestrate the fetching and computation
better.

As an example of this point, loop unrolling can achieve significant speed ups.
The loop:

DO I=1,N

SX(I)=SX(I)+SA*SY(I)

end do

is relatively ’skimpy’. The equivalent (if N is even, anyway) loop

DO I=1,N,2

SX(I)=SX(I)+SA*SY(I)

SX(I+1)=SX(I+1)+SA*SY(I+1)

end do

may execute twice as fast!
A better example is:

do I=1,N

X(I)=3.0*Y(I)

3

end do

do I=1,N

Z(I)=SQRT(Y(I))

end do

do I=1,N

W(I)=X(I)+Y(I)+Z(I)

end do

which will run much slower than the equivalent:

DO I=1,N

X(I)=3.0*Y(I)

Z(I)=SQRT(Y(I))

W(I)=X(I)+Y(I)+Z(I)

end do

The second form allows the program to fetch a single item of data, Y, perform
the calculations, and then write 3 items back to memory. The first form required
five separate fetches of data to do the same work. Moreover, the second form
is a ”richer” DO loop. The processor can do multiplication of 3.0*Y(I) at the
same time as the addition can be done!

4 Standard Benchmark Programs

In the case where you want to compare the performance of machines, rather
than the performance of software, you need a standard program that you can
run on each machine, inserting a few timing calls perhaps, so that you can
compare speed, or the ability of the compiler to vectorize loops or execute
instructions in parallel. A few such programs are available at the PSC. Source
code, documentation and other material is available to you. See the final section
for some details.

Benchmark programs testing computational speed include:

� EXPORTS A set of five benchmark programs used to rate computers,
to determine which ones may not be shipped overseas because they’re too
fast.

� LBENCH The LINPACK benchmark. A document is available con-
taining the timings and corresponding MFLOP rate for this program on
various machines. The Cray runs some versions of this test at roughly 150
MFLOPS.

� MFLOPS The Livermore Loops program. This package is so pervasive
that computer makers sometimes deliberately optimize their compilers to
handle certain of these loops and inflate their ratings. This program runs
at an average MFLOP rating of 125 on the Cray.

4

Table 1: The problem set
Name Task
SOLVE Factor and solve 100 dense linear equations.
INVERT Invert a dense matrix of order 100.
MULT Multiply two matrices of order 500.
EIGEN Find the eigenvalues of a matrix of order 100.
ODE-RK Solve a scalar differential equation by Runge-Kutta method.
ODE-AB Solve a scalar differential equation by Adams-Bashforth method.
FFT Compute the fast Fourier Transform of a vector of 4096 real values, then invert.
SORT Sort a vector of 20,000 real numbers.

� NASKER The NASA Ames Kernel. Seven subroutines, carrying out
matrix multiplication, Fourier Transforms, Cholesky decomposition, and
so on. This program runs at roughly 99 MFLOPS.

� WHSTONE The Whetstone benchmark, one of the original attempts at
estimating machine performance.

� PSR The examples discussed in the Levesque and Williamson book.
There are also five large production codes useful for practicing how to
benchmark.

� AUTOTASK Sample FORTRAN subroutines, and a suite of tests from
PSR (Pacific Sierra Research) for demonstrating how to use Autotasking.

� VECTORIZE A large set of subroutines to feed the compiler, checking
for whether loops are vectorized. VECTOR.FOR is a set of 100 loops
prepared by Jack Dongarra. The coming CFT77 3.1 compiler manages to
vectorize 83 of the loops (the current record!). VECTOR1, VECTOR2,
VECTOR3 and VECTOR4 are similar compilations of DO LOOPS.

5 Benchmarking a Mathematical Library

One of the great software issues at PSC is the dominant role that IMSL version
9.2 plays in our usage. Competing software from other vendors is available,
which, it is claimed, is highly vectorized for the Cray. Moreover, IMSL re-
sponded to user complaints by producing version 10.0, which they attempted to
vectorize. However, because of the law of inertia, users persist in using version
9.2. Perhaps we haven’t made the case strongly enough, or perhaps users, like
an enormous ocean liner, just take a terribly long time to change course.

I tried to measure the differences between the various software packages by
using a standard set of problems:

I wrote calling programs that defined each of these problems, and called the
appropriate routine from each of our common libraries for a solution. I timed
each process and made a table for comparison.

5

Table 2: Times in milliseconds, under the old COS operating system:
Name IMSL9 IMSL10 NAG11 NAG12 BCSLIB VECTPAK SCILIB SLATEC
SOLVE: 66 16 19 18 8 — 14 —
INVERT: 159 40 45 67 34 — 39 —
MULT: 4091 1407 1949 1957 1291 501 1275 —
EIGEN: 1419 1099 219 254 210 — 210 —
ODE-RK: 11 54 17 21 9 — — 11
ODE-AB: 38 72 65 72 34 — — 46
FFT: 48 31 22 9 8 5 4 4
SORT: 166 116 176 185 59 58 95 156

Now here we finally see some clear evidence that IMSL 10.0 does better
than IMSL 9.2 on linear algebra problems. Further, BCSLIB seems to have
very strong performance down the line.

6 Benchmarking Utilities Supplied by Cray

When benchmarking, we are interested in determining whether our code runs
well enough that we can leave it alone, or identifying problem areas that we
should try to fix.

The first thing benchmarking tools can do for us is tell us that there are
problems. The crudest measure of performance is the total program MegaFLOP
rating. On the YMP, a rating below 20 MFLOPS represents scalar code. A
rating of 100 is superior, and 300 is extraordinary.

Another thing that tools can do is identify subroutines that carry out the
greatest amount of work, and tell us whether the subroutine is called many
times or once.

Finally, we would like information on actual DO loops that do not vectorize,
or that are executed the most, or use the most time.

Cray Research supplies some built in benchmarking tools, available in many
different forms. A brief summary includes:

� FLOWTRACE Lists total time spent in each subroutine. Must have
access to the source code. Can be used with C, FORTRAN or PASCAL.
Has some overhead.

� FORGE Proprietary ”expert system” program. Helps you analyze the
performance of the code, and helps you improve it. Much easier to use
if you have a workstation. Takes some getting used to. This program
requires extensive interaction with the user. It is not a ”fire and forget”
utility. Requires source code access. Can be used with FORTRAN.

� FTREF Produces a ”static” calling tree, and analyzes common block
usage. Requires source code access. Can be used with FORTRAN.

6

� HPM reports on the total MFLOP rating of the program. Does not
require source code access. Can be used with programs in any language.
Has no overhead.

� RTC Integer version is called IRTC. Wall clock routines. Return the
number of ’ticks’ that have elapsed since last called. This includes time
you were swapped out. Appropriate for multitasking, but not otherwise.
Requires access to source code. Can be used with any language, easiest
with FORTRAN. There is some overhead.

� LOOPMARK Displays which loops were vectorized. (Static analysis)
Requires access to source code. Can only be used with FORTRAN.

� PERFTRACE reports on the MFLOP rating of each subroutine. It re-
ports the same quantities as HPM, but broken down by subroutine. Hence,
can be used to compare subroutines, finding the most heavily used, the
most I/O bound, the one that computes the most. Requires access to
source code. Can be used with C, FORTRAN, or PASCAL. Has consid-
erable overhead.

� PROF reports the activity of portions of code. PROF divides the pro-
gram into little pieces. Usually these pieces are smaller than subroutines,
but bigger then single lines of code. During program execution, it checks
which little piece is actually executing at each moment. If your subrou-
tines are ’small’, then PROF will not analyze them any further, unless you
change the default size (4 words) of the typical piece of code that PROF
monitors. Must have access to the source code. Source may be in any
language. There is no overhead.

� SCOUNT Lists how many times each line was executed. Useful for
finding dead code, heavily used loops, determining whether a particular
IF condition is ’usually’ true or false. Programming bugs and design flaws
can show up with this program. Requires source code access. Can be used
with FORTRAN. There is some overhead.

� SECOND Elapsed CPU time routine. Returns CPU elapsed since last
call. Tedious to use for large programs, but is very flexible. Requires
source code access. Can be used with any language, but easiest with
FORTRAN. There is some overhead.

� TIMEF Returns wall clock time in milliseconds. Requires source code
access. Can be used with any language, but easiest with FORTRAN.
There is some overhead.

7 A Sample Program

A single program was passed through the benchmarking programs. This pro-
gram comprises a driver program that sets up a matrix and right hand side,

7

Table 3: CPU time as reported by SECOND:
Routine Seconds
TGEFA 0.221
SGEFA 0.551
TGESL 0.006
SGESL 0.002

and the LINPACK routines required to solve this linear system. We are using
source code for the LINPACK routines, but we have renamed each routine to
avoid the possibility of confusion with the SCILIB versions. We solve a system
of 500 equations.

The individual routines that make up this program are

� TGEFA factor the matrix A.

� TGESL solve A*x=b for x, given b and a factored matrix A,

� ITAMAX return the index of the largest entry of a vector x.

� TAXPY compute y=sa*x+y, for a scalar sa, and vectors x and y.

� TSCAL compute x=sa*x, for scalar sa, and vector x.

Theoretical calculations tell us that most of the time should be spent in
TAXPY.

8 Benchmarking the Sample Program

Note that these routines (under slightly different names) are part of SCILIB.
SCILIB routines, in most cases, have been optimized and written in CAL, the
Cray Assembly Language. Thus, I can make a comparison run (always a good
idea when benchmarking) by calling the SCILIB routines instead. Naturally,
we expect to get some speedup by going to SCILIB. But in fact, we slow down!
Our first insight: something is wrong with SCILIB, or the CFT77 compiler is
better than it should be.

Now let’s just record the overhead from benchmarking by checking the run
times for these routines when run with the various benchmarkers. These timing
results are for a full matrix of order 500 by 500.

Notice that only HPM, PROF and SCOUNT manage to keep the overhead
low. At least for this problem, the other programs have enormous overhead.
This overhead makes the reports from these programs somewhat dubious.

8

Table 4: CPU time when ”tool” is included, as reported by SECOND:
Tool TGEFA TGESL
HPM 0.221 0.006
FLOWTRACE 2.792 0.026
PERFTRACE 8.185 0.069
PROF 0.222 0.006
SCOUNT 0.261 0.008

9 What Do the Results Mean?

9.1 HPM output

About the only useful number from HPM is the overall MegaFLOP rating,
which HPM reports as 4.36. This is a rather disappointing number, since the
Cray can, theoretically, run at a peak of about 250 MegaFLOPS. Can we find
some excuse? This rating is based on the the total execution time, including the
HPM overhead. This is averaged over the whole program, including the time it
takes to print messages to the log file, and to assign values to the matrix. The
HPM output is of limited use for this program.

9.2 PERFTRACE output

PERFTRACE produces an analysis of each routine in the package. Although
it has a significant overhead, it does produce a report which is a little more
easy to absorb. We see that TSCAL is the best vectorized at 41 MFLOPS. (We
ignore PERFPRB itself, listed as running at 107 MFLOPS, since there is no
significant computation there.) ITAMAX is the worst performance, but this is
to be expected. Searching for the maximum entry in a vector is not vectorizable.
Looking at the amount of work done (as opposed to the speed), we can tell that
TGEFA and TAXPY are working the hardest.

9.3 PROF output

The first thing to notice about PROF is the low overhead. The program runs
almost as fast as with no benchmarking. This suggests that the results of
PROF will not be distorted. However, since PROF is a statistical program, it is
important to make sure that enough hits are made to represent a good sample.
PROF again reports usage of TAXPY and TGEFA. About 67% of the execution
time was spent there. Since the figures PROF reports add up to 81%, the actual
percentage is probably more like 84% (.67/.81). Also, note that although PROF
can analyze pieces smaller than a subroutine, our subroutines are too small to
get any deeper attention by PROF.

9

9.4 SCOUNT output

Although this program is very unpretentious, the output it gives is quite useful
and understandable. The DO 30 loop in TGEFA is very busy, as are some loops
in TAXPY and TDOT. Note also that we can see large regions of ”dead” code in
the routines. Note in particular that we do not pivot in TGEFA. This example,
by accident, never has to pivot. We might be able to cause one or two loops to
vectorize by removing checks we don’t need.

9.5 FLOWTRACE output

Note that FLOWTRACE points out that TAXPY is called 125,749 times. Note
that calls to a subroutine take time. Maybe we should consider putting that
code ”in-line”? FLOWTRACE also reports that TAXPY and TGEFA use the
most time, and also cannot get percentages that add up to 100%.

9.6 LOOPMARK output

LOOPMARK gives us a compiled listing with vectorized loops marked. We see
that the assignment of A and B does not completely vectorize...It can’t, since
it’s a double loop. We note that TGEFA and TGESL have loops in them, but
don’t vectorize. The compiler tells us one reason, but we could easily rewrite
that problem out. The real problem is that these loops are really ”outer” loops.
Each of these loops sets up some information, and calls TAXPY, which contains
a loop that does vectorize,

9.7 FTREF output

The output of FTREF is not very exciting for this program. It’s too small,
and there aren’t any COMMON blocks. We get a dynamic calling tree from
FLOWTRACE, which gives us more information. So I’ve included output of
FTREF for a different program, which does have COMMON blocks.

10 What Can We Do?

The first thing we should do is minimize further work. SCOUNT has shown
us code that is never accessed. We can delete it all (assuming this is the only
matrix we will ever want to solve, of course!). Moreover, SCOUNT shows us
that for this matrix, we never need to pivot. That means we can get rid of
the code that searches for the pivot (ITAMAX, which LOOPMARK shows us
doesn’t vectorize), the code that moves entries around, and the array IPVT that
is used.

FLOWTRACE shows us that TAXPY is called a ”grotesque” number of
times. Subroutine calls are an overhead that can be gotten rid of. In fact, the
actual operation of TAXPY is very simple for this code: add a multiple of one
row to another. This is a do loop with one line.

10

Table 5: Results of improved code - worse performance!
Routine Seconds
TGEFA 0.556
TGESL 0.003

Table 6: Results of improved code, with TAXPY restored
Routine Seconds
TGEFA 0.222
TGESL 0.003

Finally, we try to avoid memory bank conflicts by setting LDA to N+1. In
fact, because the LINPACK routines are ”column oriented” we don’t gain much
by this at all.

Now if we repeat the benchmarking tests on this code, the results are about
the same as for SCILIB (that is, we have lost our advantage!).

Well, after all that work, that’s disappointing! What could be going wrong?
Notice how complicated the TAXPY routine is? In particular, notice the ”un-
rolling” of the DO loops. Could this be involved? Only one way to check it.
Let’s leave all our other improvements in and restore the call to TAXPY. And
lo, we have back our old timings.

To prove that TAXPY was actually helping us, let’s unroll the loops even
further, to a depth of 8, and rerun the code:

Well, after all that work, the moral of this story might be:

The problem is almost never what you thought it was - that’s why
you’re looking for it!

Moreover, these results tell us something else: the version of the routine
TAXPY in SCILIB is not unrolled, and that’s why it’s got the same crummy
performance!

11 A Surprising Result

As is so often the case, we see only through a glass, darkly. I was rather
disturbed at the results from HPM of an overall MFLOPS rating of 4. The
standard LINPACK benchmark, which uses the same routines, gets a rating of

Table 7: Results using TAXPY, with extra unrolling
Routine Seconds
TGEFA 0.180
TGESL 0.003

11

Table 8: CPU time for 1000x1000 (positive definite banded) matrix:
Tool TGEFA TGESL
(nothing) 5.429 0.002
(no vector) 124.158 0.373
HPM 5.450 0.002
FLOWTRACE 15.662 0.026
PERFTRACE 37.269 0.144
PROF 5.428 0.002
SCOUNT 6.205 0.002

Table 9: Timing for specialized LINPACK band factor/solve routines:
Routine Seconds
SPBFA 0.002
SPBSL 0.001

150. Granted, we have some I/O and things, but is this reasonable? What could
be different? The subroutine names? Nahhhhhh.... The data? Well, yes. Let’s
see, we’ve got a band matrix, and we’re calling a routine that is appropriate
for a full matrix. In other words, there are lots of computations that involve
vectors that are mostly zero.

Let’s take this a little further. First, let’s change the data to use a full
matrix. With no other change, if we run HPM, we get an overall MFLOP
rating of 84. How can this be? The calculations are formally identical. Clearly,
what’s happening is that the Cray disdains to multiply by zero, and doesn’t
even count that as an operation! If we had more time, we could go in and time
this code carefully, and see if we come closer to the 150 MFLOP rating. Instead,
let’s at least boost the size of the matrices up to 1,000.

Now let’s try calling the standard LINPACK routines for this particular kind
of (500 by 500) band matrix.

Well, that takes the cake, doesn’t it? For this particular problem, we can get
a stunning improvement in execution speed, if we’ll simply use the most suit-
able algorithm for the given problem - in this case, switching from LINPACK’s
“general” routines SGEFA and SGESL to the special band routines SPBFA and
SPBSL.

It might be time now for moral number 2:

Don’t waste your time trying to improve the wrong algorithm!

12 Rules of Thumb

Benchmark the real program, not a ’toy’ version. Small problems will not show
how vectorization improves speed. If DO loops are shortened, or tolerances
relaxed, or the number of iterations set to 1, then the true behavior of the

12

program will not show up, and one time operations like input/output or pre/post
processing may dominate the report.

Nothing is ’linear’. A vector of length 64 doesn’t take 64 times as long to
process. However, it doesn’t take exactly the same time as a scalar to process
either. Timing a program that deals with vectors of length 500 doesn’t nec-
essarily tell you much about how vectors of length 5000 will be handled. If
subroutine A is called once, for 1 second, and subroutine B is called 1000 times,
for a reported total of 1 second, then the two subroutines probably do not re-
ally take the same total amount of time. The timing report is a number like
T+fudge. So subroutine A maybe really takes 1-fudge seconds, but subroutine
B takes 1-1000*fudge.

As the sample program should demonstrate, benchmarking programs may
have difficulty monitoring a program with many subroutine calls, or a com-
plicated structure. Each time an ’event’ occurs, the benchmarker has to do
something. This action itself takes time, and may result in inaccurate timings,
particularly if the event being timed is brief. A well vectorized subroutine may
be reported as being a time hog, simply because it is called very often.

Benchmarking should be done at one time, and then turned off. Users have
been found running production codes with benchmarking on all the time. Some
benchmarking inhibits vectorization, other options are very expensive in time,
many generate reams of output.

Benchmarking is not precise. The timings of one run will differ from the
next, varying with system load, compiler and loader choices, and so on. The
important thing is to look for significant differences, ’relatively’ large (10% say)
and ’absolutely’ large (more than 0.001 seconds, certainly). Differences of such
magnitude are unlikely to be caused by the timing overhead or random fluctu-
ations and can be attributed to differences in the programs you are comparing.

Consider worrying about memory bank conflicts. This is a difficult problem
to attack in general, but easy to investigate. Sometimes, just making sure the
first dimension of an array is odd will help a lot.

13 Contradictions

One of the most frustrating things about benchmarking, or using the Cray, is
that you can’t really rely on a simple rule. The more you know, the more you
find out that a simple rule has exceptions. If you try to adjust the rule for those
exceptions, then you will later run into interesting problems for which your rule
is still inadequate. I’m not saying it’s wrong to make rules; in fact, it’s really
important to try to summarize your experiences so you can begin to understand
them. I’m just saying it’s a complicated world, and you should get used to your
rules being of limited use.

Consider, for example, the following series of statements. Each statement
can be objected to, or criticized, and so a “better” statement follows. Of course
there’s no perfect statement that we can arrive at. It’s better to try to remember
that the simpler, earlier, statements are usually “true enough”, but we have to

13

be prepared to think more carefully in a situation where they seem to be failing:

� The Cray is fast! - but of course, the real speed up comes not from the
faster processor, but from the vectorization of DO loops.

� The Cray speeds up DO loops. - but of course, some DO loops have too
low an iteration count, so the overhead of vectorizing actually slows you
down. So,

� The Cray speeds up DO loops that are heavily used. - but of course, some
loops don’t vectorize, because so many lines of code are in one loop, one
of them is bound to inhibit vectorization. So be sure to break up your
loops into simple pieces.

� The Cray speeds up DO loops that are simple enough for it to recognize
as vectorizable and heavily used. - but of course, some loops contain only
one or two lines of code, and this can leave the processor half idle. So it’s
good to cram more calculations into one loop.

� The Cray speeds up DO loops that are simple, but not too simple, and
heavily used. - but Of course, if a loop is too complicated, even if there are
NO vectorization inhibiters, the loop may slow down because the processor
doesn’t have enough ”on board” memory to keep all the temporary vector
results.

� The Cray speeds up DO loops that are not too simple, and not too compli-
cated, and heavily used. - but ...and so on and on!

SCILIB is a heavily vectorized library. Use it whenever possible. On the
other hand, because we had source code some SCILIB routines, we were able
to see that FORTRAN source can be faster than SCILIB. We even know why:
unrolling of loops.

14 References and Help

At the PSC, brief documentation is available on the VMS front end through the
HELP command. Documents are available in the VMS directory PSCDOC,
and in the CFS directory /usr/local/doc. Examples of how to use various
programs are in the VMS EXAMPLES directory, and in the CFS directory
/usr/local/examples. Finally, the source code for programs is in the CFS direc-
tory /usr/local/bin or /usr/local/lib.

Taking LBENCH (the LINPACK benchmark program) as an example, you
can type

HELP LBENCH

on VMS, to get a summary of information about the program. To access the
document, you might type

14

TYPE PSCDOC:LBENCH.DOC

on VMS, or on UNICOS, access the CFS copy by

cfs get /usr/local/doc/lbench.doc

You could see the VMS directory of examples of how to use LBENCH by typing

SETUP EXAMPLES

EXAMPLES LBENCH

or on UNICOS you could get a listing within CFS

cfs list /usr/local/examples/lbench

You could get the source code for LBENCH out of CFS by

cfs get /usr/local/src/bin/lbench.f

In the PSC EXAMPLES directory BENCHMARK are examples of the use
of PERFTRACE, FLOPTRACE and SCOUNT. Similar directories show the
use of FLOWTRACE, HPM and PROF.

Runs of the benchmarking programs, and their source code, are available in
the PSC EXAMPLES directories for EXPORTS, LINPACK, MFLOPS, NASKER,
VECTORIZE, and WHSTONE.

In particular, Jack Dongarra’s paper on the results of the LINPACK bench-
mark on various machines is available in PostScript form in the LBENCH ex-
ample directory as LBENCH.PS.

The FORTRAN programs used to benchmark library software, as well as the
output CPR files, are available in the various example directories for IMSL9,
IMSL10, NAG11, and so on.

A brief writeup on FORGE is available in PSCDOC:FORGE.DOC. The
FORGE online seminar is available during interactive use of FORGE. A copy
of this information is available as a document in PSCDOC:SEMINAR.DOC. A
book by John Levesque and John Williamson, of Pacific Sierra Research, that is
based in part on their experience with FORGE, is A Guidebook to FORTRAN
on Supercomputers, Academic Press, 1989.

Useful Cray Research, Inc, Manuals include:

� CFT77 Reference Manual, SR-0018C, Discusses FLOWTRACE, FTREF,
PROF, HPM, multitasking, vectorization, and the various compiler direc-
tives An out of date version is available on the VAX as PSCDOC:CFT77.DOC

� UNICOS Performance Utilities Reference Manual, SR-2040A, Discusses
FTREF, FLOWTRACE, PROF, HPM and PERFTRACE. An out of date
version is available on the VAX as PSCDOC:PERFORM.DOC.

15

Table 10: What quantity does each benchmarking program report?:
Tool Report
FLOWTRACE CPU time spent in each routine.
FORGE CPU time spent in each DO loop.
FTREF The subroutine calling tree and COMMON block usage.
HPM The overal MegaFLOP rating.
LOOPMARK Which loops vectorize.
PERFTRACE The MegaFLOP rating for each routine.
PROF CPU time spent in small code segments.
RTC The real time clock reading.
SCOUNT Number of times each statement was executed.
SECOND CPU seconds elapsed.
TIMEF Wall clock milliseconds elapsed.

Table 11: Method of use:
Tool Report
FLOWTRACE Compile with option ”-ef -a static”, load, execute.
FORGE FORGE preprocesses source code, analyzes log files after run.
FTREF Compile with options ”-exs -dB” to produce report.
HPM “hpm executable” produces report after executable has run.
LOOPMARK Compile with the option ”-em” to get the listing.
PERFTRACE Compile with ”-ef -a static”, load with ”-l /lib/libperf.a”, run.
PROF Compile with option ”-eD”, load with ”-g -l prof”, run. then run prof.
RTC Insert calls to RTC in source code.
SCOUNT Preprocess source code with SCOUNT, then run for report.
SECOND Insert calls to SECOND in source code.
TIMEF Insert calls to TIMEF in source code.

16

