
Image Algorithms

“Image Algorithms”
http://people.sc.fsu.edu/∼jburkardt/presentations/

asa images 2011 fsu.pdf
..........

ISC4221C-01:
Algorithms for Science Applications II

..........
John Burkardt

Department of Scientific Computing
Florida State University

Spring Semester 2011
Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

OVERVIEW: Images

To computational scientists, images are just data.

Images are created and stored digitally, so maps and portraits and
X-rays all become numeric data.

Image processing involves manipulating the image data to:

create a more satisfactory image,

or extract hidden information.

Image processing seeks algorithms that can carry out common
image tasks automatically.

Burkardt Image Algorithms

OVERVIEW: Sample Images

Burkardt Image Algorithms

OVERVIEW: Sample Images

These images suggest the variety of objects for which some kind
of image enhancement or analysis is desired:

1 The Mona Lisa; the image is too dark to see some details;

2 One of 24 slices of an MRI brain scan;

3 A satellite reconnaissance photo;

4 A color image damaged by noise;

5 An image of particle collisions in a bubble chamber.

The particle chamber, in particular, can generate millions of
images, which must somehow be analyzed automatically.

Burkardt Image Algorithms

OVERVIEW: Sample Images

Burkardt Image Algorithms

OVERVIEW: Sample Images

The previous pair of images show a prayerbook under normal
illumination, and the same prayerbook after images were made at
multiple wavelengths, including X-rays, and combined.

The processed image reveals that under the text of the prayerbook
are the traces of a lost manuscript of Archimedes.

For more information, go to “The Archimedes Palimpsest Project”
at http://www.archimedespalimpsest.org

Burkardt Image Algorithms

OVERVIEW: A View Becomes an Array

A 3D scene becomes a 2D perspective view.
The view is limited to a 2D rectangle.

The rectangle is discretized into “pixels”.
Each pixel is a single color, represented by numbers.

Burkardt Image Algorithms

OVERVIEW: Pixels Must Disappear For Realism

Our picture elements are squares of color.
The eye will be very disturbed unless the pixels are small enough.

A coarse picture will do badly in representing lines and edges.
500 pixels in each direction are enough for small images.

This image is 541x200 pixels.

Burkardt Image Algorithms

OVERVIEW: Pixels Must Disappear For Realism

This is really the same picture, but now your eye is very unhappy!

Burkardt Image Algorithms

OVERVIEW: A Color Becomes an RGB Setting

Color is represented by red, green and blue settings.
Values might be real in [0,1], or integers between 0 and 255.

Matching real colors with computer display colors is hard.

Burkardt Image Algorithms

OVERVIEW: A Color Becomes an RGB Setting

Some colors can’t be represented by the RGB system at all.

Burkardt Image Algorithms

OVERVIEW: Satellite Images

Satellites return images in visible, infrared or other wavelengths.

Can you detect “line” structures such as roads?

Can you detect “area” structures, such as buildings?

Can you detect an airplane, in any orientation?

Can you detect changes since the last picture was taken?

Burkardt Image Algorithms

OVERVIEW: Medical Images

In medicine, an image can be sonogram, a single X-ray, a series
of MRI slices forming a 3D image, or an animation from an fMRI.

Can you detect irregular tissue by pixel values?

Can you distinguish one big tumor from many small ones?

Can you determine the seriousness of an infection by
“integrating” the brightness of pixels, where white means very
infected?

Can you outline specific organs and track them as they move?

Burkardt Image Algorithms

OVERVIEW: Facial Recognition

How can you computerize the recognition of a face? We do it so
automatically that we can’t even begin to explain the process. But
it’s easy to spot your friend in a picture you’ve never seen before,
no matter what the expression.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

REPRESENT: Representing an Image

In computational science, we are used to the idea of
discretization; that is, the technique of representing a complicated
“continuous” object by an orderly array of “discrete” numbers.

Let us begin with the following definition of an image, which we
will have to expand later:

An image is an M by N array of integers between 0 and MAXINT.

Of course, we assume this array has some pictorial meaning, but
for now it’s just a bunch of numbers.

For now, we will also assume that the image is ‘black and white”
or actually, shades of gray. Once we understand how grayscale
images work, color will not be hard to add in.

Burkardt Image Algorithms

REPRESENT: The FEEP Example

Suppose our image was an array of M = 7 rows and N = 24
columns between 0 and MAXINT = 15:

0 0

0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0

0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0

0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 11 0 0 0 15 15 15 15 0

0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0

0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 0 0 0 0

0 0

If this array represents an image, what should we expect to see if
we could display it?

Burkardt Image Algorithms

REPRESENT: The FEEP Example Displayed

The relationship between the array and the picture starts to make
some sense!

Rows and columns of numbers <==> rows and columns of pixels.
0 means black, 15 means white.

Burkardt Image Algorithms

REPRESENT: The FEEP Example Explained

Actually, the FEEP example is just 7 pixels by 24 pixels, so if I
had not zoomed in, you would not have seen it!

Since we used the 16 integers 0 to 15, a range of 24 values, each
pixel could be described by 4 bits of information, so this is called a
4-bit grayscale image.

A 1-bit image corresponds to a true black and white picture.

For grayscale images, a more common choice uses 8 bit grayscale,
so that the values range from 0 to 255.

The available range of grays or colors is known as the color depth
of an image. Things will become more complicated when we look
at actual color images!

Burkardt Image Algorithms

REPRESENT: The FEEP Example Explained

For our work with gray scale images, we can assume our gray
scale ranges from 0 to 255.

For an image to properly show up on our computer screen without
zooming, we will typically expect somwhere between 300 to 1200
pixels horizontally and vertically. You can see that a typical image
might contain a million data values.

QUIZ: What happens to our FEEP image if we leave the data
alone but change the maximum allowed gray value from 15 to 31?

QUIZ: Suppose we wanted to make a “negative” of the FEEP
image, so that dark and light are swapped. How can we do this?

Burkardt Image Algorithms

REPRESENT: Integers Become Real Numbers

In the FEEP example, 0 was black and 15 was white.

In an 8 bit grayscale, 0 is still black but white is now 255.

While it is easier to store gray values as integers, it makes more
sense to think of them as real numbers between 0 and 1. That way
black is always 0.0 and white is always 1.0.

To determine the shade S indicated by a gray scale value G, write

S = G / MAXINT;

or, in C, where integer division only gives integer results:

S = (float) G / (float) MAXINT;

Burkardt Image Algorithms

REPRESENT: Where Does Gray Come From?

Our FEEP example image involves black, white, and grays.

But our computer pumps out red, green, and blue.
Where did the gray come from, and where did the color go?
R=G=B=0, means no light, so black...that’s easy to understand.

The relationship between the R, G and B values and the
corresponding light intensity have been carefully calibrated.

Surprisingly, if R, G and B are all at full intensity (a real value of
1.0, or perhaps an integer value of 255) the result is white light.

More interesting, as long as R=G=B, your eyes will register the
displayed color as gray.

Burkardt Image Algorithms

REPRESENT: Where Does Gray Come From?

So, if we know we are doing a grayscale image, we could store
each pixel as a single number...as long as we understand that that
value is to be used to set R, G and B.

If we must use a color format for a grayscale image, we have to
specify the same value three times, once for each color channel.

Many image file formats, recognizing that a gray image really only
needs 1/3 the data of a full color image, specifically include an
option to store the image as grayscale.

This is one example of image compression; if you think about the
fact that a single photo image can contain 100 MegaBytes of
pixels, (assuming 1 pixel = 1 Byte) that a movie requires about 30
frames per second, and lasts 90 minutes, we have:

90 min ≈ 5000 sec ≈ 150, 000 frames ≈ 15 TeraBytes

so now you know one huge area of image compression!
Burkardt Image Algorithms

REPRESENT: Unsigned Short Integers

Since images require a lot of data, it makes sense to cut down
on the size of each data item, if possible. In most computer
languages, an ”integer” or ”int” corresponds to 32 bits; on
MATLAB, an integer is stored in 64 bits.

We only need 8 bits, so we could use the C datatype called a
short; in MATLAB, the corresponding item is an int8.

But integers in images are always positive, while in computers we
usually have a signed representation for integers that “uses up” one
bit for the sign, so that 8 bits represent the range -128 to +127.

Luckily, C allows you to declare something called an unsigned short
and MATLAB has a datatype called uint8, both of which will
create integers that only use 8 bits and range from 0 to 255.

We will need to know this when we “pack” and “unpack” images.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

PGM: The Difference Between Images and Formats

It’s probably best if we think of an image as an abstract,
mathematical object, something like the following:

An image is an M by N array of pixel values.

A grayscale image pixel value determines a shade of gray.

An RGB color image pixel value determines R, G and B
levels that specify an RGB color.

We’ll assume that once an image is inside the computer, the
computer knows what it’s dealing with and how to display it.

All the details about storage, row and column ordering, maximum
entries, real or integer arithmetic, order of R, G, and B, and
compression are left to decide by the file format we use.

Burkardt Image Algorithms

PGM: Images Must be Formatted

An image file is a file that represents the information in an image.

To “understand” the file, we need to know the file format, which
allows us to reconstruct the image.

Why do we have to make things so complicated? Why can’t we
simply agree to store an image by rows, then columns, in the order
(R,G,B), and with pixel values between 0 and 255?

It takes a moment to realize that images are used across an
incredible array of human activity. The needs of a photographer,
an animator, a book publisher, a mathematician, a medical
technician are vastly different.

The primary problem is that the raw information in a typical image
is both enormous and redundant.

Burkardt Image Algorithms

PGM: Different Formats

Compression requires a sophisticated storage scheme;

Some images include huge areas of the same color;

Images vary in their color resolution. For true black and white
images, color is 0 or 1. For high-quality images, 255 color
shades (“8 bit depth”) is not enough.

Some images are mathematical or technical; they are best
represented by lines and solid polygons of color. Their storage
can be vastly reduced by a description of how to draw the
figure, rather than by pixel values;

Some images are actually predominantly text files. Because
text is examined and printed at many magnifications, a single
character is not well described by its pixel representation at a
single resolution.

Burkardt Image Algorithms

PGM: Run Length Encoding

As a simple example of how an image can be compressed,
consider the technique called run length encoding or RLE. Given a
vector of pixel data, we create a new array of pairs of data. The
first item is a pixel value, and the second item is the number of
times to repeat this value.

The first three lines of our FEEP file use 72 values.
The RLE version needs 42.

0 0

0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0

0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0

0 24

0 1 3 4 0 2 7 4 0 2 11 4 0 2 15 4 0 1

0 1 3 1 0 5 7 1 0 4 11 1 0 5 15 1 0 2 15 1 0 1

Burkardt Image Algorithms

PGM: Vector Graphics

PostScript is an image file format that describes text or a line
drawings economically.

line_rgb 1.0 0.0 0.0

moveto 0.5 9.5

drawto 1.5 9.5

drawto 1.5 5.5

drawto 3.5 5.5

Burkardt Image Algorithms

PGM: Living with Multiple Formats

You will often have image information which you need to
examine, or to convert to another format.

Everyone thinks of Adobe PhotoShop for this task;

The Gnu GIMP program is similar to PhotoShop, and allows
you to view, edit, and convert images.

The ImageMagick program convert can be used to convert
images from one format to another.

MATLAB’s Image Processing Toolbox reads images, allows
you to edit them, includes many tools for common tasks, and
can convert between various formats.

Burkardt Image Algorithms

PGM: Common Image Formats

Image file formats you may encounter include:

BMP, Microsoft Bit Map;

GIF, once popular for web graphics;

JPEG, what comes out of your digital camera;

PBM, PGM, PPM, portable B/W, gray, and color;

PDF, for documents to be published;

PNG, an open-source replacement for GIF;

PostScript, for documents to be published;

TIFF, a high-quality format.

Burkardt Image Algorithms

PGM: The Portable Gray Map

One of the simplest formats for grayscale images is called the
Portable Gray Map or PGM format.

It is a perfect beginner’s format, since it corresponds very closely
to our logical representation of an image, it is specifically designed
for grayscale images, and it comes in both an ASCII version (which
is easy to print or edit) and a binary version (which saves space).

When we are ready for color, there is a related PPM format.

For more information, see the NETPBM webpage at
http://netpbm.sourceforge.net/

Burkardt Image Algorithms

PGM: The FEEP Example

Our FEEP example could be stored as the following PGM file:

P2

This is an ASCII PGM file.

24 7

15

0 0

0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0

0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0

0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 11 0 0 0 15 15 15 15 0

0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0

0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 0 0 0 0

0 0

No line should be longer than 70 characters.
No data value should be less than 0 or greater than the declared
maximum (which is 15 for this file).

Burkardt Image Algorithms

PGM: The FEEP Example

To get a copy of the ASCII PGM version of the FEEP image:

//people.sc.fsu.edu/~jburkardt/data/pgma/feep.ascii.pgm

or, for the binary version:

//people.sc.fsu.edu/~jburkardt/data/pgmb/feep.pgm

Burkardt Image Algorithms

PGM: Displaying an Image

MATLAB’s Image Processing Toolbox includes the imshow
command which can display an image file for us:

imshow (’feep.pgm’) <-- file in current directory.

imshow (’../../data/pgmb/feep.pgm’) <-- elsewhere.

You can blowup a tiny image using the magnifying glass on the
toolbar, or specify a magnification percent on the command line:

imshow (’feep.pgm’, ’InitialMagnification’, 400)

MATLAB rescales data to [0,255]. We can limit the display range:

imshow (’feep.pgm’, ’DisplayRange’, [100, 150])

Burkardt Image Algorithms

PGM: Reading an Image

MATLAB’s Image Processing Toolbox includes the imread
command which can read an image file, creating an array we can
manipulate. An M by N gray scale image becomes an M by N
MATLAB array.

u = imread (’feep.pgm’); <-- Use semicolon!

Note that u is an array of unsigned 8-bit integers. To make a
numeric copy that we can work with, try

du = double (u);

To convert the other back, try

udu = uint8 (du);

Burkardt Image Algorithms

PGM: Unsigned 8 Bits

You will make many mistakes thinking that unsigned 8 bit
integers are ordinary MATLAB numbers.

The command imshow (u) assumes that u is an image array, not
a filename, (because it’s not quoted).

u = imread (’feep.pgm’);

u <-- Print the image data.

imshow (u) <-- Show the image data.

2 * u <-- Oops, no number is bigger than 255!

u + 1000 <-- All numbers become 255.

1 - u <-- All numbers become 0 or 1

255 - u <-- Finally, something useful!

Do an imshow (255 - u)!

A uint8 will refuse to move outside the range [0,255], and only a
conversion function like double() can change that!

Burkardt Image Algorithms

PGM: Writing a File

MATLAB’s Image Processing Toolbox includes the imwrite
command which can write an M by N MATLAB array of uint8
values as an image file. If we use the suffix .pgm, the file is
created as a PGM file. It will be a binary PGM file unless we
include the “ASCII” option.

If we assume u is a MATLAB uint8 array, then:

imwrite (u, ’feep1.pgm’); <-- creates binary PGM.

imwrite (u, ’feep2.pgm’, ’Encoding’, ’ASCII’);

<-- creates an ASCII file.

Using the same data array u, try both these commands and
compare the size of the output files.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

HISTO: Histogramming an Array

Our first attempts to understand an array of data require getting
some statistics, such as the maximum and minimum values, or a
visual display such as a histogram, that shows us simply the
frequency of occurrence of each value.

Let’s see what we can find out about a simple snapshot, which is
given to us as a binary PGM file snap.pgm.

Let’s begin by reading the file in, and displaying it:

g1 = imread (’snap.pgm’);

imshow (g1);

http://people.sc.fsu.edu/∼jburkardt/data/pgmb/snap.pgm

Burkardt Image Algorithms

HISTO: The SNAP Example

This certainly seems a dark image!

Burkardt Image Algorithms

HISTO: The HIST command

MATLAB has a hist command which can display a histogram of
data. However, it only works on a vector, and the vector has to
contain data of type double.

g2 = double (g1); <-- convert to double;

size (g2) <-- returns [400, 295];

g3 = reshape (g1, 400 * 295, 1); <-- g3 a vector;

hist (g3, 256); <-- use 256 bins.

Burkardt Image Algorithms

HISTO: The SNAP Histogram

This shows how dark the picture is...or how the picture is dark.

Burkardt Image Algorithms

HISTO: Experiment 1: Lighten Up!

Let’s try to make the picture lighter. The simplest way might be
to double all the grays between 0 and 127, and to set all higher
grays to 255.

g4 = g2; <-- copy.

i1 = g4 < 128; <-- dark grays.

i2 = 128 <= g4; <-- light grays.

g4(i1) = 2 * g4(i1); <-- double darks.

g4(i2) = 255; <-- set lights to white.

g5 = uint8 (g4); <-- back to uint8.

imshow (g5); <-- display.

Burkardt Image Algorithms

HISTO: The SNAP2 Image

The image seems brighter!

Burkardt Image Algorithms

HISTO: The SNAP2 Histogram

The information was mostly in the dark range.
Stretching it out made it easier to see.

Burkardt Image Algorithms

HISTO: Experiment 2: Three Colors!

Did our picture get better because we have more grays to look
at, or because the darks and lights were more spread apart? One
way to think about this question is to reduce the picture to using
just three shades of gray. Based on the histogram, it seems as
though we could break the range into 0:25:100:255.

g6 = g2; <-- copy.

i1 = g6 < 25; <-- dark grays.

i2 = 25 <= g6 & g6 < 100; <-- medium grays.

i3 = 100 <= g6; <-- light

g6(i1) = 0; <-- black.

g6(i2) = 127; <-- gray.

g6(i3) = 155; <-- white.

g7 = uint8 (g6); <-- back to uint8.

imshow (g7); <-- display.

Burkardt Image Algorithms

HISTO: The SNAP3 Image

Black, white, and one gray are enough.

Burkardt Image Algorithms

HISTO: What Happened to “Automatic”?

You should be a little concerned that the examples we have
looked at have not been automatic. In both cases, I looked at the
histogram, and then said, ”Let us change the data as follows.” I
did not try to write out my reasoning as an algorithm that even a
computer could understand.

Some sort of automatic procedure would be necessary if we are
going to ask a computer to clean up our pictures.

You may already have seen one such example of automatic choice
of a small number of colors for an image, because this was an
example in the “clustering” section of this course.

We will use a technique called K-Means to try to automatically
choose a small number of gray scales.

Burkardt Image Algorithms

HISTO: The K-Means Algorithm

The K-Means algorithm is given N items of data, and seeks K
“representative” values, in such a way that every data item can be
assigned to a nearby representative.

If we replace each color or shade by its representative, then we
have reduced the “color complexity” of the image from N to K. If
this is done in a systematic way, less memory is required to store
the image.

Burkardt Image Algorithms

HISTO: The K-Means Algorithm

The algorithm initializes the “centers” C at random.

For each data point P(I), we set PTOC(I) to be the nearest C.

The values of C are now replaced by the averages of the values of
P assigned to them.

The process repeats until no P gets reassigned after the latest
update.

We’ll try this on a file stored at:
http://people.sc.fsu.edu/∼jburkardt/data/pgmb/casablanca.pgm

Burkardt Image Algorithms

HISTO: MATLAB Code

[m, n] = size (g);

p = double (g); <-- G converted to double.

p = reshape (p, m * n, 1); <-- P becomes a vector;

k = 5; <-- Choose number of centers.

[c, ptoc] = kmeans (p, k);<-- Centers, assignments.

ptoc = round (ptoc); <-- Want integer centers.

p = ptoc(c); <-- Set P to center.

p = reshape (p, m, n); <-- P goes back to an array.

g = uint8 (p); <-- G is 8-bit.

Burkardt Image Algorithms

HISTO: Casablanca, 256 colors

Burkardt Image Algorithms

HISTO: Casablanca, KMEANS chooses K = 10 colors

Burkardt Image Algorithms

HISTO: Casablanca, KMEANS chooses K = 3 colors

Burkardt Image Algorithms

HISTO: KMEANS Startup Problem

You might see this KMEANS error message:

g = imread (’image.png’);

p = double (g);

[m, n] = size (p);

p = reshape (p, m * n, 1);

[c, ptoc] = kmeans (p, 10)

??? Error using ==> kmeans>batchUpdate at 435

Empty cluster created at iteration 1.

Error in ==> kmeans at 336

converged = batchUpdate();

This can be fixed by:

[c, ptoc] = kmeans (p, 10, ’Start’, ’uniform’);

Try ”help kmeans” for details!

Burkardt Image Algorithms

HISTO: Summary

The gray level histogram gives a useful summary of where the
“action” is in the picture.

Contrast stretching is the technique of spreading out the gray scale
over the range containing most of the information.

Quantization or color depth reduction is the process of reducing
the number of colors or shades used in an image. The reduced set
can be chosen by hand, or by a clustering technique such as
K-Means. This is one way to compress an image.

QUIZ: How many bits would we need to describe the “colors” of
the SNAP3 image? If we store the image as a sequence of these
color descriptors, what important thing must we also supply?
(Hint: the second word is “map”!)

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

ENHANCE: Local Processing

In contrast stretching, we completely ignored the “geometry” of
the picture. We counted the pixels of each shade, but we didn’t
care what pixels were next to others. We would have treated a
checkerboard the same as a picture that was black on one half and
white on the other.

In some images, the contrast problem occurs because an
interesting feature is only indicated by a small shade change as we
move from one pixel to another. This problem might be local, that
is, confined to a small region of the image. Contrast stretching
would be unlikely to fix it.

Let’s look at the following picture:
http://people.sc.fsu.edu/∼jburkardt/data/pgmb/surf.pgm

Burkardt Image Algorithms

ENHANCE: The SURF Image

Some things in this picture seem indistinct or washed out.

Burkardt Image Algorithms

ENHANCE: Local Differences

If a patch of the image seems to have a feature which we can’t
quite make out, then the pixels there must differ in shade. We
can’t see what’s going on so well because the pixels don’t differ
enough. We might be able to exaggerate the difference in order to
bring out the almost hidden features.

Imagine, for example, a globe that includes bumps and grooves
that represent the hills and valleys of Earth. A globe that is true to
scale would be extremely smooth, and we couldn’t see or feel Mt
Everest.

In order to actually see features, we would want to exaggerate their
height or depth, to make up for the limitations of our senses.

Burkardt Image Algorithms

ENHANCE: A Raised Relief Globe

Burkardt Image Algorithms

ENHANCE: Estimating the Local Baseline

To exaggerate the “height” of a pixel, we have to have a
numerical measurement of it. A standard way of doing this is to
compare the pixel’s shade to the average of the neighbors. A very
simple neighborhood would be the pixels immediately left, right,
above and below.

For a pixel with index (I,J), this would suggest:

P(I-1,J)

Average = 1/4 * (P(I,J-1) P(I,J+1))

P(I+1,J)

Height = P(I,J) - Average

For smoother results, we might average even more neighbors.

Burkardt Image Algorithms

ENHANCE: Evaluating and Increasing the Height

If the pixel P(I,J) was going to “fit in” with its neighbors, we
might expect it to equal the average value. But if something
interesting is happening, it might be higher (or lower) than that
value.

We can assign a numeric value to this “height”:

Height(I,J) = P(I,J) - Average

Therefore, we can think of the pixel’s value as the local average
plus its height:

P(I,J) = Average(I,J) + Height(I,J)

and the nonzero height is the reason this pixel is interesting.

Burkardt Image Algorithms

ENHANCE: Evaluating and Increasing the Height

If “height” makes a pixel more interesting, than we might think
we can make the pixel “twice as interesting” by doubling its
height, to exaggerate its difference from the local average.

Let’s make the amount of exaggeration a parameter S so we
remember we can set it to anything. Our urge to double the height
would be expressed this way:

Height(I,J) = P(I,J) - Average;

S = 2.0;

P(I,J) = Average(I,J) + S * Height(I,J);

The last formula is no longer an equation; it’s an assignment
statement, because we actually change the value of P(I,J) in the
hope that our new image will be more interesting.

Burkardt Image Algorithms

ENHANCE: SURF, S = 0.25

Burkardt Image Algorithms

ENHANCE: SURF, S = 1.0

Burkardt Image Algorithms

ENHANCE: SURF, S = 5.0

Burkardt Image Algorithms

ENHANCE: Color Images

Unfortunately, the contrast enhancement operation can be lost
when displayed on our rather low-quality projection system! If you
are following along on the PDF version of the slides, you should
have a better view of what is going on.

Although I have tried so far to avoid color images, let me stray
from the black and white path for a moment, and show you how
the same contrast enhancement process can improve a great
moment in sports:

http://people.sc.fsu.edu/∼jburkardt/data/png/underwater bmx.png

In the first image, I cannot see the spokes of the bicycle wheels.
However, the contrast-enhance operation makes the spokes appear
clearly. (This is more obvious on the computer screen than over
our classroom projector!)

Burkardt Image Algorithms

ENHANCE: AQUA BMX, S = 1.0

Burkardt Image Algorithms

ENHANCE: AQUA BMX, S = 5.0

Burkardt Image Algorithms

ENHANCE: AQUA BMX, S = 10.0

Burkardt Image Algorithms

ENHANCE: MATLAB Implementation

Here is a simple version of contrast enhancement:

s = 2.0; <-- or whatever value we want.

p = double (g); <-- remember why we do this?

[m, n] = size (g);

p2 = p; <-- Good idea for TWO reasons!

for i = 2 : m - 1 <-- Why not 1 : m?

for j = 2 : n - 1

average = 0.25 * (p(i+1,j) + p(i-1,j) ...

+ p(i,j+1) + p(i,j-1));

height = p(i,j) - average;

p2(i,j) = average + s * height; <-- Why P2, not P?

end

end

g = uint8 (p2);

Burkardt Image Algorithms

ENHANCE: Procrustes: One Size Fits All

The mythological innkeeper Procrustes advertised that he had a
bed that would fit every customer, short, medium or tall!

Compare and contrast truncation and dilation!

Burkardt Image Algorithms

ENHANCE: Rescaling

One thing we have seen before in our image experiments is that
we might replace a pixel’s value by a number greater than 255 (or
less than 0), in which case, the conversion to uint8 truncates it
back to the range [0,255].

The result is a pool of white (or black) where we lose detail.

The real problem is that our new pixel colors strayed outside the
legal range. But if we know that’s likely to happen, and we really
want the ”color” 300 to be ”whiter than” the color 255, we can
recalibrate the colors, that is, rescale them, rather than simply
truncating the extreme values.

p_max = max (max (P));

p_min = min (min (P));

P = 255 * (P - p_min) / (p_max - p_min);

This dilation stretches or squeezes our data to fit [0,255]!
Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

SALT: Introduction

Sometimes an image can have a more serious problem than
being dark or washed out. The physical process of recording and
storing an image is subject to disturbance and damage.

One example occurs in certain recording devices, including satellite
scanners, but also regular cameras. What happens is that, for
certain pixel positions, the camera fails to record the actual color
or shade. Instead, it reports either the highest or lowest possible
value.

In a grayscale image, the affected pixels will show up as a
scattering of black or white spots, and for this reason, this kind of
damage to an image is called salt and pepper noise.

It may seem like a very specialized kind of problem, but it occurs
often enough that techniques are needed to deal with it.

Burkardt Image Algorithms

SALT: Sample Images

http://people.sc.fsu.edu/∼jburkardt/data/png/balloons noisy.png
http://people.sc.fsu.edu/∼jburkardt/data/png/glassware noisy.png

Burkardt Image Algorithms

SALT: Can We Ignore the Noise?

There are several aspects of this problem to keep in mind.

1) An image has a lot of extra information in it; most of an image
consists of regions of pixels of roughly the same color.

2) The eye is very sensitive to sudden changes in color or
brightness. When noise artificially inserts many such changes, the
eye has trouble seeing the “real” picture. Even if 99% of the pixels
are good, the eye focuses on the bad ones.

3) The salt and pepper noise means that our smooth regions of
roughly equal color will occasionally be interrupted by one extreme
and meaningless value. If we use averaging, as we did in contrast
enhancement, then we will be diluting the bad pixel somewhat, but
it would be better if we could ignore it!

Burkardt Image Algorithms

SALT: The Median

The average is an attempt to produce one value that fairly
represents all the values present.

Since we expect cases where one value is essentially meaningless,
we would like to eliminate it from the final result.

Instead of an average, we should use the median, which sorts the
data and takes the middle one.

Average Median

----------- ------- ------

1,2,3,4,5 3 3

0,8,8,8,8 6.4 8

3,5,5,7,1000 204 5

In MATLAB, median(v) returns the median of vector v.

Burkardt Image Algorithms

SALT: MATLAB Implementation

This algorithm uses a 3x3 neighborhood.

p = double (g);

[m, n] = size (g);

p2 = p;

for i = 2 : m - 1

for j = 2 : n - 1

p2(i,j) = median (...

[p(i+1,j-1), p(i+1,j), p(i+1,j+1), ...

p(i, j-1), p(i, j), p(i, j+1), ...

p(i-1,j-1), p(i-1,j), p(i-1,j+1)]);

end

end

g = uint8 (p2);

Burkardt Image Algorithms

SALT: Images After 3x3 Treatment

Burkardt Image Algorithms

SALT: Summary

The technique we used here is called a median filter.

We didn’t really extract any information from the pictures that had
salt and pepper noise. At best, we can say we managed to hide
some of the false information.

Really, the important thing going on here was that we needed to
modify the image in a way that would make it more acceptable to
the eye. And that meant, so far as possible, to restore the smooth,
slowly changing regions of shade or color, and to ignore or destroy
the sudden noisy peaks.

We could make all the noise go away in the color photograph by
using a 5x5 or 7x7 neighborhood, but as we increase the size of the
neighborhood, we increase the work, and we introduce blurriness
into the picture.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

GAUSS: Introduction

Salt and pepper noise was relatively easy to detect and treat.
More often, however, every pixel of an image may be more or less
distorted by a noisy signal that interferes with the clear, smooth
image we are expecting.

The simplest model of the result of this kind of noise uses the
Gaussian function or “bell-shaped curve”. The idea is that the
value in each pixel is close to a correct value, but small errors are
very probable, and big errors happen occasionally.

Burkardt Image Algorithms

GAUSS: Errors in 2D

Unless we have a perfect camera, the information from a single
point in the object we are looking at is likely to wind up not just in
a single pixel, but also will affect neighboring pixels somewhat, by
blurring.

The typical size of such errors can be described by something
called the standard deviation, symbolized by σ.

We try to model errors using the Gaussian distribution.

Here is one version of that distribution in 2D:

f (x , y) = e−
x2+y2

2σ2

Burkardt Image Algorithms

GAUSS: Errors in 2D

Because the true data ends up in more than one pixel, the
nearby pixels actually have some information that can be useful. If
the central pixel is corrupt, or even if it is missing!, we may be able
to recover a good estimate of the correct image value.

The value of σ is unknown, but we can start with 1 and adjust it.

Burkardt Image Algorithms

GAUSS: Weighted Averaging

This technique of dealing with noise is called Gaussian averaging
or filtering or smoothing.

We choose a neighborhood around each pixel, say a 3x3 or 5x5
block with the pixel at the center. We replace the value at the
pixel by a new value computed as a weighted average of the values
in the block. The original pixel will dominate the result, but the
neighbors will influence its new value.

If the variance is reduced below 1, we are “believing” the central
pixel the most. Increasing the variance will allow neighbors to have
a stronger say. As we increase sigma, or the size of the
neighborhod, the processed picture will go from sharp/noisy to
smooth to blurry.

Burkardt Image Algorithms

GAUSS: Compute Coefficients

function w = gaussian_smoothing (n, v)

c = floor (n / 2) + 1;

for j = 1 : n

for i = 1 : n

w(i,j) = exp (- ((i-c)^2 + (j-c)^2) / (2*v));

end

end

s = sum (sum (w))

w = w / s;

return

end

Burkardt Image Algorithms

GAUSS: Example Coefficients

Assuming a variance of 1, here are the 3x3 coefficients:

0.0751 0.1238 0.0751

0.1238 0.2042 0.1238

0.0751 0.1238 0.0751

and the 5x5 coefficients:

0.0030 0.0133 0.0219 0.0133 0.0030

0.0133 0.0596 0.0983 0.0596 0.0133

0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

Burkardt Image Algorithms

GAUSS: MATLAB Implementation

p = double (g);

[m, n] = size (g);

p2 = p;

w = gaussian_smoothing (5, 1.0);

for i = 3 : m - 2

for j = 3 : n - 2

wp = w(1:5,1:5) .* p(i-2:i+2,j-2:j+2);

p2(i,j) = sum (sum (wp));

end

end

g = uint8 (p2);

Burkardt Image Algorithms

GAUSS: 5x5 Gaussian Smoothing

The smoothed image is on the right, although the projector may
make that difficult to tell!

http://people.sc.fsu.edu/∼jburkardt/data/png/lena noisy.png

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

EDGE: Automatic Recognition

We have seen that the eye is not very good at seeing the pattern
in an image when salt and pepper noise is added. However, there
are things the eye can do so automatically that we can’t explain
how, and we may not even realize that it is being done.

In particular, the eye is extremely good at:

recognizing edges;

determining the extent of an object or “component”;

recognizing movement;

recognizing an object, even when rotated or badly lit;

recognizing a face, which is never the same twice.

The recognition of edges is one of the simpler tasks on this list.

Burkardt Image Algorithms

EDGE: What is an Edge?

An edge is a surprising event!

Burkardt Image Algorithms

EDGE: What is an Edge?

We need to think about what we mean by a visual edge, and
hope that we can convert this into an operation on the numbers in
an image file.

If we are walking in the park and we come to an edge, we are
surprised. This suggests that an edge represents a difference
between what we expect and what we encounter. Something new
is about to occur!

We do not say we have come to an edge if the ground we are
walking on slopes downward or upward, as long as this happens at
about the same rate.

Just from your experience in walking, you might agree that a linear
function is expected and predictable, and that an edge occurs
when linear behavior is disrupted.

Burkardt Image Algorithms

EDGE: Slope Measures Changes

One way to describe linear behavior is to say is has a constant
derivative or slope. Another way is to say that if we measure the
quantity at equally spaced positions, it increases by the same
amount with each step.

We can think about each row or column of our pixel array as
equally spaced measurements, and so if we monitor the changes,
we can spot the places where a jump seems to occur.

We estimate the “right/left” and “top/bottom” slopes at P(I,J):

right/left slope = P(I,J+1) - P(I,J-1)

top/bottom slope = P(I+1,J) - P(I-1,J)

Our data is equally spaced, so it’s not so important that we didn’t
divide by a ”Delta X” - or we can take it as 1.

Burkardt Image Algorithms

EDGE: Our Edge Detector

A slope of large magnitude, in either direction, says something is
changing fast over a short range. This sounds like what we mean
by an edge.

So if we take the absolute value of both slopes and add them, we
get a measure of how fast things change at each pixel.

E = | P(I,J+1) - P(I,J-1) | + | P(I+1,J) - P(I-1,J) |

The value of E is zero at places where the pixels are “flat” and is
large when nearby values differ a lot.

http://people.sc.fsu.edu/∼jburkardt/data/png/coins.png

Burkardt Image Algorithms

EDGE: A Test Image

Burkardt Image Algorithms

EDGE: Read in Data, Compute E

a = imread (’coins.pgm’);

[m, n] = size (a);

b = double (a);

e = zeros (m, n);

e(2:m-1,2:n-1) = abs (b(3:m,2:n-1) - b(1:m-2,2:n-1)) ...

+ abs (b(2:m-1,3:n) - b(2:m-1,1:n-2));

emin = min (min (e)); <-- Scale E to [0,255]

emax = max (max (e)); so we can plot it!

e = round (255 * (e - emin) / (emax - emin));

imshow (uint8 (e));

title (’All the E data.’);

Burkardt Image Algorithms

EDGE: The Value of E

Burkardt Image Algorithms

EDGE: Use a Threshold

thresh = 50;

e = 255 * (thresh < e);

imshow (uint8 (e));

title (’E data above the threshold.’);

e_reverse = 255 - e; <-- Reverse video

imshow (uint8 (e_reverse));

title (’E data above the threshold (reverse video).’);

Burkardt Image Algorithms

EDGE: E with Threshold

Burkardt Image Algorithms

EDGE: E with Threshold and Reverse Video

Burkardt Image Algorithms

EDGE: Use a Threshold

e2 = max (e(2:m+1,2:n+1), double (a));

a2 = uint8 (e2);

r = a2;

g = a;

b = a;

rgb = cat (3, r, g, b);

imshow (rgb);

title (’Original gray data, with edges in red.’);

Burkardt Image Algorithms

EDGE: Coins Plus Edges

Burkardt Image Algorithms

EDGE: Comments

We can call E, our edge statistic, the “NEWS” value, since it
combines the north, east, west and south values.

Automatic edge detection means a program can search for roads or
vehicles in a photograph.

Our formula has some disadvantages, since it only looks for large
slopes. A better indicator would check for large changes in the
slope. This is essentially an estimate for the second derivative. A
simple formula for doing this can be constructed out of the NEWS
values plus C for the center.

QUIZ: What is the formula to estimate the second derivative for
f (x) on equally spaced data? What about f (x , y)?

Burkardt Image Algorithms

EDGE: Comments

Another thing I should point out is that, with our computation
of the quantity E(*,*), we haven’t completely “recognized” edges.

A single black pixel in a sea of white will get a high E value. But is
this an edge?

If a line of pixels all have a high E value, then that line will be
obvious if we draw it in red, but did we actually realize that these
pixels formed a linear edge?

To really recognize edges from image data, we need to carry out
more processing on the E array, looking for lines and curves that
seem to indicate the borders of objects.

Although the algorithm demonstrated here is only a small part of
an edge recognition process, I hope you can see how such a process
might begin, and what is needed to improve and complete it!

Burkardt Image Algorithms

EDGE: Comments

An interesting question that came up in class was this

Suppose your image data was coming from a Wii Kinect, which
measures color and distance. Does the extra information help you
to detect edges?

It is almost always true that more information is better; certainly it
is if you can see a way to take advantage of it.

Here, instead of RGB data, we have RGBD data, that is, color and
distance. The D information would allow us to detect an edge
between a blue person and a (far away) blue background, which
color information alone could not detect, while the color, as before,
can catch edges between two objects at the same distance.

Burkardt Image Algorithms

EDGE: Comments

I’m afraid that in my example, I snuck in two useful techniques
we really haven’t talked about.

Thresholding is the method of selecting some range of pixels to
preserve, while setting lower values to 0 (black) and higher ones to
white. We used thresholding to try to display only those pixels
where the E statistic was high.

Reverse Video is obviously the presentation of an image made by
interchanging dark and light. For an image of 8-bit depth, we
replace each pixel value P(I,J) by 255-P(I,J). Again, the main
reason for this is that the eye is better able to see small black
details on a white background than the other way around.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

COMPONENTS: Edges

In our first stab at detecting edges, we ended up with a bunch of
pixels whose E value was high. But it makes a huge difference
whether these pixels are scattered, or arranged in lines or layers
that can be organized into an edge, or boundary.

To automatically count the coins in the picture, we not only have
to detect edges, but group all the pixels that form an edge into a
single object.

There are other cases where some pixels in an image are special,
but we need to determine whether these special pixels are near
each other and form larger objects. The color of the pixel, for
instance, might be what we are working from.

Burkardt Image Algorithms

COMPONENTS: Edges

What we are trying to do in such cases is to organize the
individual pixels into larger objects, that is, to try to detect the
large, connected physical objects whose light we are seeing.

This is another example of a process that goes on so quickly and
automatically in your brain that you’re not aware that it happens,
or how hard it is.

We will see how hard it is when we try to export our knowledge,
that is, to make some kind of algorithm that will carry out the task
for us.

Burkardt Image Algorithms

COMPONENTS: Magnetic Resonance Imaging

A magnetic resonance imaging system, or MRI, applies a strong
magnetic field to a specimen (such as you), and then issues radio
frequency signals to measure the response of the body. A kind of
scanner systematically records this measurement over a grid of
regions, which you can think of as centers of boxes.

There are typical response values for skin, bone, spinal fluid, and
brain matter. If tumors are growing in the brain, the affected
regions will register a different response value.

Important judgments can be made based on the volume and
number of affected regions. Thus, if we know there are 30 boxes
that showed tumor response, we still need to know if those 30
boxes are scattered, or form a single, continuous mass.

Burkardt Image Algorithms

COMPONENTS: One Slice of an MRI

The very light squares in the northwest region are tumors.

Burkardt Image Algorithms

COMPONENTS: Magnetic Resonance Imaging

In the example image, we actually have a 64 x 64 array of
integers between 0 and 255. The MRI response is never exact, so
we have to estimate that tumors are characterized by a shade of
between 200 and 255, for instance.

We can use thresholding to make everything disappear from the
picture except for the tumor regions, and reverse video to make
them easier to see. Does that answer our question?

Not really! First, while our eye can spot the clusters, we need to
do this automatically, with an algorithm.

Secondly, while our eye can see the connections in a 2D slice, what
we actually get is a 3D dataset, which is much harder to process.

Burkardt Image Algorithms

COMPONENTS: The Algorithmic Challenge

To simplify the discussion, let’s assume from now on that our
data array contains a 1 for a tumor region and 0 otherwise. This is
essentially the same as saying that we’ve thresholded the data,
setting nontumors to black, and then set the tumors to white.

Now we know our task:

Given a 2D or 3D array of 1’s and 0’s, we need to be able to
answer the questions

how many connected components are there?

what is the size of each component?

Burkardt Image Algorithms

COMPONENTS: Connected Components?

Remember (please!) back in our discussion of graph theory, how
we talked about the connected components of a graph.

Essentially, we noticed that the graph fell apart into components,
so that all the nodes in a component were connected to each
other, but not to nodes in another component.

Well, this is the same thing, although our graph is implicit.
Without drawing edges, we naturally think of a pixel as being
“connected” to the 4 pixels that touch it (or 6 in 3D!)

So now we have a special case of the graph connected component
problem. It’s special because the data is laid out in a rectangular
grid. And that’s going to make it much much easier to analyze.

Burkardt Image Algorithms

COMPONENTS: The 1D Case

To solve a hard problem, it helps to warm up on a simple one.

Let’s ask how to solve the connected component problem in 1D,
(even though we’ll never win a prize for doing so!)

Here is a typical data array:

0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1

How many components? Easy: 5!

Component sizes? Easy: 3, 1, 2, 1, 1!

...but could we have answered these questions automatically?

Burkardt Image Algorithms

COMPONENTS: The 1D Case

Before we sneak a look at my answer to this problem, let’s try to
reason it through, and code up an algorithm. This version of the
problem is simple enough that we have a chance!

Our input array of N pixels P:

0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1

How do we count components and measure sizes?

function [l, label] = components (n, p)

L will be the number of components,
LABEL labels each pixel with its component.

———–Thinking time!———–

Burkardt Image Algorithms

COMPONENTS: Algorithm for 1D Case

L = 0; <-- Use L to label components.

POLD = 0; <-- POLD is the previous pixel.

for I = 1 : N

if (P(I) == 0) <-- P(I) is 0, so ignore it.

LABEL(I) = 0;

else <-- P(I) is 1, so we need a label.

if (POLD == 0) <-- Did we start a new component?

L = L + 1;

end

LABEL(I) = L; <-- Slap on the label!

end

POLD = P(I);

end

Burkardt Image Algorithms

COMPONENTS: The 1D Case

How would this have worked with our example data?

Let’s walk through this problem, and fill in the LABEL array:

I: 1 2 3 4 5 6 7 8 9101112131415161718192021

P: 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 -

POLD: - 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1

LABEL: _

Can you see how this is a special case of the connected component
problem for graphs, but that the fact that this graph is connected
like a string of beads makes it extremely simply to simply walk
from left to right and do the necessary work?

Some of these same ideas will still work in 2D, if we generalize
them a bit, although we will have a few loose ends to deal with.

Burkardt Image Algorithms

COMPONENTS: Sample 2D Problem

Burkardt Image Algorithms

COMPONENTS: Sample 2D Problem

Even though our problem is two-dimensional, our algorithm will
need to walk through the data linearly. Let’s suppose that we do
this by taking one row at a time.

I already see some problems!

What if the last pixel of one row and the first pixel of the next row
are nonzero?

How do we deal with the fact that a pixel can be related to pixels
above it as well as to those to the left of it?

Burkardt Image Algorithms

COMPONENTS: Sample 2D Problem

Our first attempt at an algorithm can simply walk through the
array, one row at a time, lookup “backwards” (previous column)
and “upwards” (previous row) to look for nonzero entries.

If either ancestor is nonzero, then this pixel inherits that
component label.

Hmmm, that’s going to do the connecting OK, but I can still see a
problem!

Burkardt Image Algorithms

COMPONENTS: Sample 2D Problem

Let’s apply our ideas to the sample problem!

Burkardt Image Algorithms

COMPONENTS: Algorithm for 2D Case?

L = 0;

for I = 1 : M

for J = 1 : N

if (P(I,J) == 0)

LABEL(I,J) = 0;

elseif (P(LEFT) == 0 and P(ABOVE) == 0)

L = L + 1;

LABEL(I,J) = L;

elseif (P(LEFT) == 0)

LABEL(I,J) = LABEL(ABOVE);

elseif (P(ABOVE) == 0)

LABEL(I,J) = LABEL(LEFT);

else

LABEL(I,J) = min (LABEL(LEFT), LABEL(ABOVE));

end

end

end Burkardt Image Algorithms

COMPONENTS: After Sweep

Burkardt Image Algorithms

COMPONENTS: Label Adjustment

Our algorithm is trying to work, but it is liable to mislabel pixels.
If we have a pixel with two nonzero neighbors, left and above, and
those labels don’t match, then we have a problem. The problem is
indicated by the red lines on the graph, which show connected
pixels with different labels.

Luckily, every time this problem occurs, we know about it (because
a pixel reports two neighbors with different labels) and the cure is
to realize that one label should be replaced by the other. For
instance, once we realize that “1” and “5” are both being used to
label the same component, we need to remember that later on, we
must replace all the “5” labels by “1”s.

It actually can get more complicated than that, as you see where
10’s should become 7’s, but 7’s should become 1’s... so really 10’s
should be 1’s too!

Burkardt Image Algorithms

COMPONENTS: Label Adjustment

The good news is, while a component might have multiple labels,
a label never refers to two different components. If we simply
choose one label for each component, we can sort out the problem.

We can handle this by keeping an INDEX array, which records the
adjustments we make to each label.

As long as we use the rule that when given two labels, we keep the
lower one, we can figure things out at the end

In the following table, we show the 15 labels used in the diagram,
and for each label, INDEX indicates whether we encountered a
lower label in the same component. By walking through this array,
we can find the minimum label for each component.

Here we only need 6 labels, so we have a FINAL array that assigns
“1” through “6” to the pixels based on their original labels.

Burkardt Image Algorithms

COMPONENTS: Label Adjustments

LABEL INDEX UNIQUE LABEL FINAL

1 == 1. 1 1 1 ==> 1

2 ==> 1. 2 ==> 1

3 == 3. 3 2 3 ==> 2

4 ==> 3. 4 ==> 2

5 ==> 1. 5 ==> 1

6 ==> 3. 6 ==> 2

7 ==> 1. 7 ==> 1

8 ==> 6 (==> 3.) 8 ==> 2

9 == 9. 9 3 9 ==> 3

10 ==> 7 (==> 1.) 10 ==> 1

11 == 11. 11 4 11 ==> 4

12 == 12. 12 5 12 ==> 5

13 == 13. 13 6 13 ==> 6

14 ==> 12. 14 ==> 5

15 ==> 13. 15 ==> 6Burkardt Image Algorithms

COMPONENTS: After Label Adjustment

Burkardt Image Algorithms

COMPONENTS: Color by Label

Burkardt Image Algorithms

COMPONENTS: The 3D Problem

Now that we’ve seen algorithms for the 1D and 2D cases, you
should have some idea of a possible way to attack the 3D case:

Starting at voxel (1,1,1), “count” through the voxels:

(1,1,1), (1,1,2), ..., (1, 1,nz),

(1,2,1), (1,2,2),,(1, 2,nz),

..., (1,ny,nz),

(2,1,1), (2,1,2), ..., (1, 1,nz),

... ... (nx,ny,nz).

Burkardt Image Algorithms

COMPONENTS: The 3D Problem

When you encounter a nonzero voxel:

If no back neighbors, increment L and use that to label this
voxel;

Otherwise, label this voxel with the minimum of the labels of
the three back neighbors;

If this voxel has multiple back neighbors with different labels,
make sure that all labels “point” to the minimum label;

Once you have assigned the labels, walk through the label array
looking for unique labels, and determine a relabeling for each label.
Use the unique labels to label the components.

Burkardt Image Algorithms

COMPONENTS: The 3D Problem (MRI Data)

Burkardt Image Algorithms

COMPONENTS: Summary

The components algorithm suggests one way in which a computer
vision system can mimic the brain’s ability to take what the eye
sees (spots of light) and organize it into patterns (stop signs,
armadillos, pickles).

Because we essentially number the pixels or voxels, we can choose
any component by number and easily change its position, size or
color within the image. We could also hide that component or
move it to a separate image all by itself.

In cases of medical photographs or 3D MRI scans, we can
automatically determine the number of components and their
sizes. This could be used to determine the volume of a tumor, or
the number of separate tumors.

Burkardt Image Algorithms

Image Algorithms

Overview

Representing an Image

The Portable Gray Map Format

Image Histograms

Contrast Stretching

Contrast Enhancement

Salt and Pepper Noise

Gaussian Noise

Edge Detection

Components

Projects

Burkardt Image Algorithms

Projects - Description is Due

By this time, you should have chosen a project and begun
working on it!

Please send an email to me, Professor Peterson, and to Olmo, with
a short writeup describing your project: TODAY!

We have two more weeks of lectures, and a final week of project
work and presentation.

Burkardt Image Algorithms

Projects

Archimedes Palimpsest: combining multiple images;

How “false color” images are made in astronomy;

Analyzing LANDSAT satellite photos;

Compression of Images;

Compression of Animated Images on Television;

Optical Character Recognition (OCR).

Burkardt Image Algorithms

