http://people.sc.fsu.edu/~jburkardt/presentations/geometry_homework2.pdf

## Homework \#13

Algorithms for Science Applications II
Assigned: Friday, 22 April 2011
Due: Friday, 29 April 2011

## This homework will not be assigned! Instead, you should finish up your projects!

The numerical values used in the six point quadrature rule are available on Blackboard, or in http://people.sc.fsu.edu/~jburkardt/latex/asa_2011_geometry_homework/triangle_quadrature_six.m

Problem 1: Quadrature Rules for the Unit Triangle
By the unit triangle we mean the triangle $\mathbf{T} 1$ whose vertices are $\mathrm{A} 1=(1,0), \mathrm{B} 1=(0,1), \mathrm{C} 1=(0,0)$. A common problem in calculus involves determining the integral of some function $f(x, y)$ over the unit triangle, which can be symbolized formally as:

$$
\int_{T 1} f(x, y)=\int_{0}^{1} \int_{0}^{1-x} f(x, y) d y d x
$$

A quadrature rule for the triangle $\mathbf{T} \mathbf{1}$ is a method of approximating integrals by supplying a set of $N$ points $\left(x 1_{i}, y 1_{i}\right)$ and corresponding weights $w_{i}$, where Area(T1) is, of course $\frac{1}{2}$, so that:

$$
\int_{T 1} f(x, y) \approx \operatorname{Area}(T 1) \cdot \sum_{i=1}^{N} w_{i} f\left(x 1_{i}, y 1_{i}\right)
$$

Here is a quadrature rule for $\mathbf{T} \mathbf{1}$ that uses 3 points:

| W | X 1 | Y 1 |
| :--- | :--- | :--- |
| $\frac{1}{3}$ | 0 | $\frac{1}{2}$ |
| $\frac{1}{3}$ | $\frac{1}{2}$ | 0 |
| $\frac{1}{3}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |

and a quadrature rule for $\mathbf{T} \mathbf{1}$ using 6 points:

| W | X 1 | Y 1 |
| :--- | :--- | :--- |
| 0.109951743655322 | 0.816847572980459 | 0.091576213509771 |
| 0.109951743655322 | 0.091576213509771 | 0.816847572980459 |
| 0.109951743655322 | 0.091576213509771 | 0.091576213509771 |
| 0.223381589678011 | 0.108103018168070 | 0.445948490915965 |
| 0.223381589678011 | 0.445948490915965 | 0.108103018168070 |
| 0.223381589678011 | 0.445948490915965 | 0.445948490915965 |

Using the 3 point and 6 point quadrature rules, estimate the following integrals over the unit triangle:

- $f(x, y)=1$ (your answer should be $\frac{1}{2}!$ );
- $f(x, y)=x^{2}+y^{2}$;
- $f(x, y)=\sin (x y)$.

Turn in: Your two estimates of each integral.

## Problem 2: Quadrature Rules for an Arbitrary Triangle

Now suppose that we are interested in approximating the integral of a function over an arbitrary triangle $T$. If we have a quadrature rule with weights W and points $(\mathrm{X} 1, \mathrm{Y} 1)$ for the unit triangle $T 1$, then we can adapt it for the triangle $T$ by converting each (X1,Y1) point in $T 1$ to an (X,Y) point in $T$, using the formula:

- $\mathrm{X}=\mathrm{A} 1(\mathrm{x})^{*} \mathrm{X} 1+\mathrm{B} 1(\mathrm{x}) * \mathrm{Y} 1+\mathrm{C} 1(\mathrm{x}) *(1-\mathrm{X} 1-\mathrm{Y} 1)$;
- $\mathrm{Y}=\mathrm{A} 1(\mathrm{y})^{*} \mathrm{X} 1+\mathrm{B} 1(\mathrm{y})^{*} \mathrm{Y} 1+\mathrm{C} 1(\mathrm{y}) *(1-\mathrm{X} 1-\mathrm{Y} 1)$;

Here, $A 1(x)$ means the $x$ coordinate of the $A 1$ vertex of the $T 1$ triangle, and so on.
Our resulting quadrature rule is now:

$$
\int_{T} f(x, y) \approx \operatorname{Area}(T) \cdot \sum_{i=1}^{N} w_{i} f\left(x_{i}, y_{i}\right)
$$

Let the triangle $T$ have vertices $A=(0,1), B=(3,0), C=(2,5)$ and:

- Transform the six point rule from the unit triangle $T 1$ to our new triangle $T$;
- Use this rule to estimate the integral of $f(x, y)=x^{2}$ over $T$.


## Turn in:

- A table of $X$ and $Y$ for the transformed six point rule over $T$;
- Your estimate for the integral of $f(x, y)$ over $T$.

