
Geometry Algorithms

“Geometry Algorithms”
https://people.sc.fsu.edu/∼jburkardt/presentations/

asa geometry 2011 fsu.pdf
..........

ISC4221C-01:
Algorithms for Science Applications II

..........
John Burkardt

Department of Scientific Computing
Florida State University

Spring Semester 2011
1 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

2 / 144

OVERVIEW: Geometry

We use computational geometry to decompose an object into
simple shapes that can be displayed in a computer animation.

3 / 144

OVERVIEW: Geometry

Computational geometry builds models that can be stressed or
crashed for realistic tests.

4 / 144

OVERVIEW: Geometry

Computational geometry allows us to control how we choose
sample points from a region, and how we combine those points
into triangles, in order to carry out an analysis.

5 / 144

OVERVIEW: Geometry

Computational geometry helps us create a model of a curved
surface, and shows us how to refine our grid near transition zones.

6 / 144

OVERVIEW: Geometry

The objects we just saw were broken into simpler objects.
This is the basis of computational geometry.

To do all these wonderful things with computational geometry, we
go back to the basic geometric objects, figure out how to
implement them on a computer, and then teach the computer,
step by step, the rules that allow us to assemble and understand
more complicated objects.

Over two weeks, we will be lucky to study some properties of
points, lines, triangles, and triangular meshes.

Computational geometry can easily fill a semester of study.

7 / 144

OVERVIEW: Geometric Tasks

We will sample common computational geometry tasks:

measurement of length, area, volume, distance, direction,
orientation;

discretization of curves and surfaces;

indexing or parameterizing the parts of an object;

nearest object;

intersection of two objects;

containment of one object in another;

parallel and orthogonal components;

decomposition of an object into basic objects;

transformations: shift, rotate, reflect, shear an object;

sampling a random object in a set.

8 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

9 / 144

POINTS: Locations

The “atoms” of geometry are points; every geometric object can
be thought of as a collection of points that satisfy some property.

Depending on what we are studying, our geometry can be 1D, 2D,
3D or a higher, abstract dimension. Unless we are studying a
special surface like the sphere, we will usually think of a point in
terms of its Cartesian coordinates. For example, the coordinates of
a 3D point might be described as (x , y , z); If we have several
points, we subscript the coordinates, so that z2 would be the z
coordinate of the second point.

Computationally, it is preferable to store the coordinates of a point
in a single variable; for instance, p = [x , y , z].

MATLAB allows a vector to be row or column vector. I prefer
points to be described as column vectors. In that case, we’d write
either p = [x ; y ; z] or else p = [x , y , z]′.

10 / 144

POINTS: What is a Line?

A line is the infinite set of points which...how do we explain it?
We know what a line is when we look at one, but that’s not good
enough.

We know that two points, say p1 and p2, determine a line; we
might say the line goes through one point and towards the other.
So any point on the line might be described by the process of
starting at p1 and going “in the direction” of p2. What exactly is
that direction?

You might recall that a geometric direction corresponds to a
mathematical vector, (not a computational one!) and that
typically a vector is determined by the difference between two
points. To get to p2 starting from p1 the direction vector is

~vp1,p2 = p2 − p1

11 / 144

POINTS: What is a Line?

Every point p on the line can be found by starting at p1 and
moving in the direction from p1 to p2.

Let’s use s to indicate how far we move along that direction.

Given any value of s, the corresponding point p(s) is:

p(s) = p1 + s ∗ ~vp1,p2
= p1 + s ∗ (p2 − p1)

= (1− s) ∗ p1 + s ∗ p2

12 / 144

POINTS: Examples

Choose p1 = (0,4), and p2 = (3,1). Then ~vp1,p2 = (3,-3).

s p1 + s * p2-p1 = p

--- ---- ---- ------ ---------

-1 (0,4) - 1 * (3,-3) = (-3, 7)

0 (0,4) + 0 * (3,-3) = (0, 4)

1/3 (0,4) + 1/3 * (3,-3) = (1, 3)

1/2 (0,4) + 1/2 * (3,-3) = (1.5, 2.5)

2/3 (0,4) + 2/3 * (3,-3) = (2, 2)

1 (0,4) + 1 * (3,-3) = (3, 1)

2 (0,4) + 2 * (3,-3) = (6, -2)

13 / 144

POINTS: P=P1+S*(P2-P1)

14 / 144

POINTS: Advantages of a Formula

Having this formula for a line is a huge advantage:

the formula can be regarded as the definition of the line;

we can compute points on a line;

we can solve for s given a desired x or y location;

we can guess how to define lines in 1D, 3D, or any dimension;

the value s is like a coordinate;

in any dimension, we only need 1 number to locate points.

We commonly refer to s as a parameter, a sort of index that allows
us to keep track of all the points on the line in an orderly way.

15 / 144

POINTS: The S Coordinate

The value of the s coordinate contains useful information:

It indicates that every line is really a one dimensional object,
because its points can be indexed by a single number;

Points with 0 ≤ s ≤ 1 are between p1 and p2; if we restrict
ourselves to these points, we have a line segment;

Points with s < 0 or 1 < s are to the “left” or “right”;

If we know how far p2 is from p1, that is, ||p2− p1||, then s
measures the (signed) distance from p1 to the point p(s) in
units of that basic distance.

When we get to triangles, we will see a similar coordinate system.

16 / 144

POINTS: Distance

Given points p1 and p2 and a value s, it’s easy to determine the
(x , y) coordinates of the point p(s) from our formula.

But suppose we start with the (x , y) coordinates of a point p that
we know is on the line. Can we determine s?

One approach uses the distance function d(∗, ∗) as follows:

The value of s is the (signed) ratio of the distance d from p1 to p
relative to the distance from p1 to p2.

d(p1, p2) =
√

(x2 − x1)2 + (y2 − y1)2

d(p1, p) =
√

(x − x1)2 + (y − y1)2

s =± d(p1, p)

d(p1, p2)

and we can figure out the plus or minus sign.
17 / 144

POINTS: Dot Product

A better way uses the dot product of two vectors:

~v1 · ~v2 = ||~v1|| ∗ ||~v2|| ∗ cos(α)

where α is the angle between the vectors, and

~v1 · ~v1 = ||~v1||2

This means that if we have set ~v1 =
−−−−→
p2 − p1 and ~v2 =

−−−−→
p − p1, then:

~v1 · ~v2
~v1 · ~v1

=
||~v1|| ∗ ||~v2|| ∗ cos(α)

||~v1||2

=
||~v2|| ∗ cos(α)

||~v1||
= s

And now cos(α) gives us the sign of s.
18 / 144

POINTS: Example

With p1 = (0, 4), and p2 = (3, 1), let p = (−2, 6).

Distance method:

d(p1, p2) =
√

9 + 9 =
√

18 = 3
√

2.

d(p1, p) =
√

4 + 4 =
√

8 = 2
√

2

s =± 2
√

2

3
√

2
= −2

3

Dot product:

v1 =p2− p1 = (3,−3)

v2 =p − p1 = (−2, 2)

s =
~v1 · ~v2
~v1 · ~v1

=
−6− 6

9 + 9
= −12

18
= −2

3

19 / 144

POINTS: MATLAB Computation of S

function s = line_parameter_s (p1, p2, p)

% P1 and P2 must be column vectors!

% P is a column vector.

v1 = (p2 - p1);

v2 = (p - p1);

s = (v1’ * v2) / (v1’ * v1);

return

end

20 / 144

POINTS: Interpretation of S

It’s natural to think of s as the distance of the point p from p1.

However, that can’t be quite right for two reasons:

scale: the s coordinate of p2 is 1, no matter how far it is;

sign: some points have negative s. Distance is never negative!

The s parameter is actually an signed, relative distance.

To compute the true distance, take the absolute value of s and
multiply by the distance from p1 to p2:

distance(p,p1) = | s(p) | * distance (p2,p1)

(Of course, if we have the coordinates of p1 and p, we can get the
distance directly.)

21 / 144

POINTS: MATLAB Computation of S

This works fine if we type

p1 = [0;4]; p2 = [3;1]; p = [2;2];

s = line_parameter_s (p1, p2, p);

but it will fail if we try to squeeze in several points at once!

p = [2,2; -3,7; 1.5,2.5; 6,-2]’;

??? Error using ==> minus

Matrix dimensions must agree.

Error in ==> line_parameter_s at 22

v2 = (p - p1);

But there’s no real reason the function can’t do all these
calculations at once.

And MATLAB always encourages us to write programs that handle
data in batches, rather than one data item at a time.

22 / 144

POINTS: MATLAB Computation of S

function s = line_parameter_s (p1, p2, p)

% P1 and P2 must be column vectors!

% P is a column vector or array of columns.

[m, n] = size (p); <--Need N.

v1 = (p2 - p1);

p1_array = repmat (p1, 1, n); <--[P1 | P1 | ... P1]

v2 = (p - p1_array); <--Subtract arrays.

s = (v1’ * v2) / (v1’ * v1);<--S is now a vector

return

end

23 / 144

POINTS: Accidentally Try 3D

By the way, why didn’t we have to specify that p1, p2 and p
were 2 dimensional points?

Ah, we don’t specify vector sizes (or shapes) because MATLAB
can figure that out (which leads to bad programming habits when
you try to do things in C or Fortran!).

What would happen if we accidentally put in 3D points?

s = line_parameter_s ([1;5;3], [4;2;9], [2;4;5])

0.3333

It still gives an answer...and it’s correct! QUIZ: How can we check?

Well, what will break our algorithm?

How about if the point p is not on the line?

24 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

25 / 144

OFFLINE: Distance for Off-Line Point

We started out by assuming that our point p was already on the
line. Presumably, our formulas will “break” otherwise. Let’s go
ahead, though, and feed in the point q = (7, 2):

Distance method:

d(p1, p2) =
√

9 + 9 =
√

18 = 3
√

2.

d(p1, q) =
√

49 + 4 =
√

53 =

”s” =±
√

53

3
√

2

This, it turns out, is the s coordinate of the point on the line
which is just as far away as point q. That is, they both lie on a
circle of radius s centered at p1.

26 / 144

OFFLINE: Dot Product for Off-Line Point

Now let’s try the dot product:

v1 =p2− p1 = (3,−3)

v2 =q − p1 = (7,−2)

”s” =
~v1 · ~v2
~v1 · ~v1

=
+21 + 6

9 + 9
=

27

18
=

3

2

This is much more interesting. It is the s coordinate of the point
on the line that is the nearest to q! That’s an interesting
geometric computation!

27 / 144

OFFLINE: Dot Product for Off-Line Point

28 / 144

OFFLINE: Distance from Point to Line

Using the dot product, we have been able to compute an s
coordinate for all points in the plane, in a way that is very similar
to Cartesian coordinates.

Now if we only know the s coordinate of a point, we still have a lot
of points to choose from. It sure would be nice to have a t
coordinate that would answer that question. Now t should be zero
if the point is on the line, and I guess it should be 1 if the point is
1 unit away, and so on.

So one way to go is to start with q, compute s, find the
corresponding nearest point p on the line, and then compute t as
the distance from p to q.

s = line_parameter_s (p1, p2, q);

p = p1 + s * (p2 - p1);

t = norm (p - q);

29 / 144

OFFLINE: A Perpendicular Axis

Now two vectors are perpendicular if their dot product is zero.

Given a (nonzero) 2D vector ~v = (vx , vy), one vector that is
perpendicular to ~v is ~w = (−vy ,+vx):

~v · ~w = vx ∗ wx + vy ∗ wy = −vx ∗ vy + vy ∗ vx = 0

Now let ~v be the unit direction vector of the line, that is,

~v = (p2− p1)/||p2− p1||

and use the formula to define a vector ~w perpendicular to ~v .
Moreover, let’s normalize ~w to have unit length.

The two points on the line already defined the direction vector
~v = p2− p1, which played the role of the x axis.

Now we have a perpendicular direction ~w , just like a y axis.

30 / 144

OFFLINE: Distance from Point to Line

A nonzero dot product equals the product of the vector lengths
and the cosine of the angle between them.

Let q be a point not on the line, and compute the dot product of
~w with the direction vector

−−−→
q − p:

~w · −−−−→q − p1 = ||w || ||q − p1|| cos(α) = ||q − p1|| cos(α) = t

If q is actually on the line, then t is zero. Otherwise, t is the
(signed) length of the side of a right triangle with vertex p1,
hypotenuse q − p1, and adjacent side that is part of the line
through p1 and p2.

Our new S and T axes decompose the vector
−−−→
q − p into parallel

and perpendicular parts. They almost behave like x and y axes,
except that we never properly scaled distances in the S direction.

So now, let us define a normalized coordinate ŝ = s/||p2− p1||.
31 / 144

OFFLINE: Distance of Point to Line

32 / 144

OFFLINE: Distance from Point to Line

Our unit direction vectors ~v and ~w satisfy:

~v · ~w =0

||~v || =1

||~w || =1

Any point q defines a vector
−−−−→
q − p1, and we can compute its ŝ and

t coordinates using the formulas of decomposition:

s =
−−−−→
q − p1 · ~v

t =
−−−−→
q − p1 · ~w

and formulas of composition:
−−−−→
q − p1 =ŝ ∗ ~v + t ∗ ~w

||−−−−→q − p1||2 =ŝ2 + t2

so we have an orthonormal Ŝ , T system with origin at p1.
33 / 144

OFFLINE: MATLAB Computation of T

function t = line_parameter_t (p1, p2, p)

% P1, P2, P must be column vectors;

% The spatial dimension must be 2.

v1 = (p2 - p1);

v2 = (p - p1);

nv = [-v1(2); v1(1)];

nv = nv / norm (nv);

t = nv’ * v2;

return

end

34 / 144

OFFLINE: Check

>> p1 = [0; 4]; p2 = [3;1]; q = [7;2];

>> t = line_parameter_t (p1, p2, q)

t = 3.5355

>> s = line_parameter_s (p1, p2, q)

s = 1.5000

>> p3 = p1 + s * (p2 - p1)

p3 =[4.5000; -0.5000]

>> norm (q - p3)

ans = 3.5355

QUIZ:: Can t be negative? What does this mean?

35 / 144

OFFLINE: A MATLAB Function

If the vector ~w is a unit normal vector, then so is −~w , and if we
had used that vector instead, all our t values would switch sign.

So the sign of the t parameter is arbitrary (we usually use the right
hand rule to pick ~w). But whichever normal vector we choose, the
sign of t divides all points into three classes: to the left of the line,
on the line, or to the right.

It’s easy to make a simplified copy of line parameter t(p1,p2,p)
called line side(p1,p2,p) returning:

+1 if p is to the left of the line;

0 if p is on the line;

-1 if p is to the right of the line.

Such an orientation function is handy when we look at triangles!

36 / 144

OFFLINE: Summary

We’ve run across some examples of classic geometric tasks:

parameterization: where is the point p on the line;

containment: is the point p on the line from p1 to p2?

distance: how far is the point q from the line?

nearness: which point p on the line is nearest the point q?

orientation: which side of the line is offline point q?

parameterization: where is the offline point q?

parallel and orthogonal: how we moved along the line, or
searched for nearest points.

mapping: we established a relationship between (x , y) and
(ŝ, t) coordinate systems.

37 / 144

OFFLINE: Summary

Think about the algorithms we have encountered:

distance: how far is the point q from the line? (|t|)
containment: is p on the line through p1 and p2? (is t 0?)

parameterization: where is p on that line? (use parameter s)

containment: is p between p1 and p2? (0 <= s <= 1)

nearness: which point p on the line is nearest to the offline
point q?; (use s coordinate of p)

orientation: which side of the line is offline point q? (sign of t)

parameterization: where is the offline point q; (s and t tell us)

parallel and orthogonal: the (s, t) coordinate system follows
the parallel and orthogonal directions of the line.

38 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

39 / 144

INTEGRALS: Random Samples

Monte Carlo algorithms work by sampling a set of data.

A Monte Carlo method for estimating the integral of a function
over the 1D interval p1 ≤ x ≤ p2 would need to pick points
randomly over this line segment.

Luckily, our way of describing a line as points p(s) fits this
perfectly. Not only do we have a formula for choosing points, but
the points between p1 and p2 are exactly those for which
0 ≤ s ≤ 1. That means we can call our random number generator
and take its output to be the values of s that determine our points.

This works the same whether our interval is 1D, or for some reason
is a line in 2D or higher dimensions.

40 / 144

INTEGRALS: Random Samples in 2D

Fifty random values between P1=[0,4] and P2=[3,1]:

41 / 144

INTEGRALS: Monte Carlo Line Integration

This code can estimate the integral of f (x) from p1 to p2:

function q = line_integral (n)

p1 = 0.0;

p2 = 3.0;

svec = rand (n, 1);

x = p1 + svec * (p2 - p1);

fvec = x .* x .* (4 - x) + 1;

q = (p2 - p1) * sum (fvec) / n;

return

end

42 / 144

INTEGRALS: Random Samples

The errors tend to decrease with the sample number.

These estimates were made with 1, 2, 4, 8, ..., 1024 samples.

43 / 144

INTEGRALS: Random Samples

The trend is clearer for the absolute value of the error.

44 / 144

INTEGRALS: Random Samples

The Monte Carlo method works in part by being able to rapidly
compute uniform random sample points from the line segment
[p1, p2].

It’s easy to compare Monte Carlo results with exact integration in
this case.

But when the region is a triangle, the interior of an ellipse, or the
surface of a sphere...or even a teapot, exact integration techniques
are not available. So ideas like the Monte Carlo sampling method
will be extremely useful.

This has also been our first example of a computational algorithm
that involves sampling.

45 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

46 / 144

TRIANGLES: Triangle SIDES?

To measure a right triangle side that goes from A=(xa,ya) to
B=(xb,yb), we take advantage of the theorem of Pythagoras:

AB^2 = AC^2 + BC^2

= (A - C)^2 + (B - C)^2

= (xa - xb)^2 + (yb - ya)^2

AB = sqrt ((xa - xb)^2 + (yb - ya)^2)

47 / 144

TRIANGLES: Triangle SIDES?

QUIZ: What are the sides of our example triangle?

48 / 144

TRIANGLES: Triangle ANGLES?

Let α, β and γ be the angles at vertices A, B and C.
The law of cosines for angle α says:

BC 2 = AB2 + AC 2 − 2 ∗ AB ∗ AC ∗ cos(α)

Formulas for all three angles are:

α = cos−1
(

AB2 + AC 2 − BC 2

2 ∗ AB ∗ AC

)
β = cos−1

(
AB2 + BC 2 − AC 2

2 ∗ AB ∗ BC

)
γ = cos−1

(
AC 2 + BC 2 − AB2

2 ∗ AC ∗ BC

)
QUIZ: What are the angles of our example triangle?

49 / 144

TRIANGLES: Triangle AREA?

In high school geometry, the formula for a triangle is simple:

Area =
1

2
∗ base ∗ height

50 / 144

TRIANGLES: Triangle AREA?

Such a formula doesn’t help when we don’t have a ruler and a
protractor, but rather a set of coordinates:

T = [A, B, C] = [xa, xb, xc] = [4, 8, 0]

[ya, yb, yc] [1, 3, 9]

51 / 144

TRIANGLES: Formulas for AREA

T = [A, B, C] = [xa, xb, xc] = [4, 8, 0]

[ya, yb, yc] [1, 3, 9]

Area = (1/2) * | (xa * (yb - yc)

- xb * (yc - ya)

+ xc * (ya - yb)) |

1 | xa xb xc |

= - * | det | ya yb yc | |

2 | 1 1 1 |

= 1/2 * | (A - C) X (B - C) | (vector cross product)

Quiz: What is the area of our example?

52 / 144

TRIANGLES: Signs and Orientation

Why did we need absolute values in each of the area formulas?

It has to do with the order of the vertices of the triangle. Given in
clockwise order, the basic area formulas give a negative result.
Counterclockwise (CCW) order gives a positive result.

It is a mathematical convention to list triangle vertices in CCW
order, in which case we can drop the absolute values.

On the other hand, we have also found something interesting:

triangle orientation = sign of (A - C) X (B - C)

Quiz: What is the orientation of our example?

53 / 144

TRIANGLES: Triangle CONTAINS Point?

We now come to a question that doesn’t seem to involve a
computation, namely, is a point P inside or outside of triangle T?

We can answer this question immediately if we draw a picture.
However, we need to find a way of answering this question that is
an algorithm, that is, computational and automatic.

If we can answer this question, we will have an idea how to answer
the same question in 3D (for a tetrahedron) and higher, abstract
dimensions, where drawing a picture would be out of the question.

So even though we think our eye can answer this question, we
don’t want to have to use our eye to examine a million cases, or to
“look” in 4D. A general algorithm will come in very handy!

54 / 144

TRIANGLES: A Walk Around the Block

Our triangle vertices are in clockwise order. Walking from vertex
A to B, C and on to A, what can we say about our left hand?

It’s always pointing into the triangle. Moreover, any point inside
the triangle will always be to our left. And any point in the
triangle will be “to the left of” the edges AB, BC, and CA.

And if a point is not inside the triangle, what can we say? It might
be to the left of one or two of the sides, but it will always be to the
right of at least one side.

Triangle Contains Point

A point P is inside a triangle T if, and only if, it is “to the left” of
all three sides of T.

55 / 144

TRIANGLES: A MATLAB Function

Recall our function for the location of a point relative to a line.

The value returned by line side(A,B,P) is:

+1 if P is to the left of the line through AB;

0 if P is on the line through AB;

-1 if P is to the right of the line through AB.

Suppose we call this function three times, to check the status of P
with respect to the lines through the segments AB, BC and CA!

56 / 144

TRIANGLES: QUIZ

Interpret these results:

AB BC CA Meaning?

P1 +1 +1 +1

P2 -1 +1 +1

P3 +1 -1 +1

P4 +1 +1 -1

P5 +1 -1 -1

P6 -1 +1 -1

P7 -1 +1 +1

P8 -1 -1 -1

There is something a little odd about one result.
57 / 144

TRIANGLES: Triangle Orientation

What we can tell from the +/- signs of the three measurements:

58 / 144

TRIANGLES: We could also check for zero values

AB BC CA Meaning?

P9 0 +1 +1 inside, but on side AB

P10 +1 0 +1 inside, but on side BC

P11 +1 +1 0 inside, but on side CA

P12 +1 0 0 what is this?

P13 0 +1 0

P14 0 0 +1

P15 0 +1 -1 where is this?

...

P21 -1 0 0 why can’t this happen?

...

P27 0 0 0 how could this be possible?

59 / 144

TRIANGLES: Triangle Orientation

What we can tell if we include 0:

60 / 144

TRIANGLES: MATLAB Line Side

function side = line_side (p1, p2, p)

v1 = (p2 - p1);

v2 = (p - p1);

nv = [- v1(2); + v1(1)]; <--counterclockwise!

t = nv’ * v2; <-- we don’t need to normalize nv.

side = (0 <= t);

return

end

61 / 144

TRIANGLES: MATLAB Triangle Contains

function contains = triangle_contains (t, p)

contains = line_side (t(1:2,1), t(1:2,2), p) && ...

line_side (t(1:2,2), t(1:2,3), p) && ...

line_side (t(1:2,3), t(1:2,1), p);

return

end

62 / 144

TRIANGLES: Test Triangle Contains

function triangle contains test ()

t = [4, 0; 3, 4; 0, 1]’;

p = [1, 4; 2, 1; 2, 3; 3, 2; 3, 4; 3, 5; 4, 1; 4, 5]’;

for j = 1 : 8

c = triangle_contains (t, p(1:2,j));

fprintf (1, ’ %10f %10f %2d\n’, p(1:2,j), c);

end

return

end

63 / 144

TRIANGLES: Test Triangle Contains

triangle_contains_test ()

X Y C

1.000000 4.000000 0

2.000000 1.000000 1

2.000000 3.000000 1

3.000000 2.000000 1

3.000000 4.000000 1

3.000000 5.000000 0

4.000000 1.000000 0

4.000000 5.000000 0

64 / 144

TRIANGLES: A Picture of Our Test

65 / 144

TRIANGLES: Centroids

The centroid or, loosely speaking, the “center of mass”, of a
triangle, is the unique point CM with the property that any line
through CM divides the triangle into two pieces of equal area.

You can locate the centroid in a drawing of a triangle very easily:
Connect each edge midpoint to the opposite vertex. All three lines
intersect at the centroid.

It sounds like computing the centroid will be hard (determine
formulas of lines, compute intersections), but for a triangle with
vertices A, B, and C, the formula for the centroid is amazingly
simple:

CM =
A + B + C

3

66 / 144

TRIANGLES: A Picture of the Centroid Calculation

67 / 144

TRIANGLES: The Centroid Calculation

A = (0, 0)

B = (10, 2)

C = (3, 8)

Mid(AB) = (A+B)/2 = (5, 1)

Mid(BC) = (B+C)/2 = (13/2, 5)

Mid(CA) = (C+A)/2 = (3/2, 4)

CM = (A+B+C)/3 = (13/3, 10/3) = (4.33, 3.33)

and we don’t really need to compute the midpoints to get the
centroid!

68 / 144

TRIANGLES: Random Samples

The key to sampling is a parameterization of the points.

Triangle points are linear combinations of vertices A, B and C .

We require the coefficients α, β, γ be nonnegative, and
α + β + γ = 1.

To pick a random point p in the triangle ABC , set:

r1 =rand();

r2 =rand();

α =1−
√

r1

β =
√

r1 ∗ r2

γ =
√

r1 ∗ (1− r2)

p =αA + βB + γC

69 / 144

TRIANGLES: Distance

For our last “trick” with triangles, let’s ask the simple question,
how far is a point p from a triangle?

To answer this question, we begin by computing the quantities
sAB, tAB, sBC, tBC, xCA and tCA, the s and t parameters for
the point relative to the lines AB, BC , and CA.

If all three t parameters are nonnegative, the point is in or on the
triangle, and so the distance is zero.

If just one value of t is negative, then the nearest point is on the
line, but the triangle includes just a segment of that line. If the
corresponding value of s is between 0 and 1, then the nearest point
is part of the line segment, and the distance is |t|. But if s < 0,
the nearest point is the first vertex, and if 1 < s, the nearest point
is the second.

70 / 144

TRIANGLES: Distance

The last possibility is that two values of t are negative.

This means that the nearest point is on one of the two sides, or
their common vertex.

We work by checking the two s values.

If both s values are “out of range” (that is, outside of [0,1]), then
the vertex is the closest point.

If just one s value is in range, then the corresponding side is the
closest, so the distance is the corresponding value of |t|.

And it cannot be the case that both s values are in range.

71 / 144

TRIANGLES: A Picture of the Distance Calculation

72 / 144

TRIANGLES: Summary of Algorithms

We have seen many triangle algorithms:

triangle angles();

triangle area();

triangle centroid();

triangle contains point();

triangle distance to point();

triangle orientation();

triangle perimeter(), (You can figure this one out!);

triangle sample();

triangle side lengths();

Many of these are building blocks for more complicated problems.

73 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

74 / 144

POLYGONS: Let’s Not Start Over!

Triangles are the simplest of the polygons, which include
squares, pentagons, hexagons, and so on.

Unlike triangles, however polygons with 3 < N vertices:

are “bendable”; knowing the sides doesn’t tell us the shape.

might not be convex; there may be “bites” in the shape.

can cross edges, if we allow “misbehaving” (we won’t!);

However, every well-behaved polygon of N sides can be
triangulated, that is, it can be decomposed into N-2 triangles,
simply by drawing N-3 non-intersecting “diagonals”, that is, by
connecting pairs of vertices of the polygon.

75 / 144

POLYGONS: A Polygon with 18 Vertices

There are many ways to triangulate this polygon.
They all end up with 16 triangles!

76 / 144

POLYGONS: Definition of CONVEX

I used the word convex a moment ago, and it will come up again
from time to time.

In the plane, a convex polygon is one that has no “dents”.

The strict definition: The object C is convex if and only if,
whenever two points p1 and p2 are elements of the object, so is
every point p that lies on the line segment between p1 and p2:

p = t ∗ p1 + (1− t) ∗ p2

0 ≤ t ≤ 1.

Circles, squares, regular pentagons are examples of convex shapes.

A star is not convex, nor are the letters of the alphabet, with the
possible exception of lowercase l and uppercase I when drawn in a
sans serif font!

77 / 144

POLYGONS: Let’s Not Start Over!

Rather than try to come up with new formulas for the analysis of
polygons, it makes sense to triangulate a polygon, apply our
formulas to the triangles, and then figure out how to put together
those results to say something about the original polygon.

If we can determine a triangulation of a polygon, then

the area is the sum of the triangle areas;

a point is in the polygon if it is in a triangle;

the distance to the polygon is the minimum of the distances
to any triangle;

the centroid of the polygon is computable;

78 / 144

POLYGONS: A ”Snake” Polygon

79 / 144

POLYGONS: A Triangulated ”Snake” Polygon

80 / 144

POLYGONS: Ideas for Triangulation

Once again, it’s easy to see how to do something, but really hard
to create an algorithm that works.

One approach starts with the idea of “Decrease and Conquer”;
that is, we replace the original problem with a partial answer and a
smaller problem.

Imagine the polygon was a kind of cake (with lots of corners!).
Shouldn’t it always be possible to slice one triangular piece off?
Doesn’t that reduce the number of vertices by one?

QUIZ: May there be some vertices we can’t immediately eliminate?
Must there always be at least one that we can?

If the polygon is convex, can we cut off any slice (vertex) we like?

81 / 144

POLYGONS: Polygons Have Ears

An ear of a polygon is a triangle that can be formed by three
consecutive vertices of the polygon in such a way that two edges of
the triangle are edges of the polygon, and the third edge is
completely contained inside the polygon.

An ear can be sliced off a polygon, reducing the vertices by 1.

We have the following very useful theorem:

If P is a simple polygon (no internal holes and no edge crossings)
with at least 4 vertices, then P is guaranteed to have at least two
distinct ears. [Meisters, 1975]

Moreover if P is convex, every 3 consecutive vertices form an ear.

Can you spot the ears on our “snake” polygon?

82 / 144

POLYGONS: Ear Slicing

The ear theorem means that every polygon can be triangulated.

We start with a polygon of N vertices, and 0 diagonals.
We locate an ear, defined by the consecutive vertices B, C, D.

We add the diagonal from B to D to our list.

We also remove C from the polygon, and decrease N by 1.

Now we have a polygon of N-1 vertices, and 1 diagonal.
If N is still greater than 3, we repeat the process.

After slicing off N-3 ears, we have 3 vertices left, forming a single
triangle, which is our last ear.

Thus we end up with N-2 triangles by creating N-3 internal
diagonal lines.

The list of diagonals is our triangulation of the original polygon.

83 / 144

POLYGONS: Ear Detection

We need to be clear about the “find an ear” step!

Suppose we have vertices A, B, C, D and E, which are consecutive
in the counterclockwise ordering. Then B, C and D form an ear if:

triangle BCD has positive area (= counterclockwise);

the (open) line segment BD doesn’t intersect any edge;

the line segment BD is “between” BA and BC;

the line segment DB is “between” DC and DE.

84 / 144

POLYGONS: Representing a Polygon

We represent a polygon as a linked list. We can delete any
vertex so that the remaining data represents the simplified polygon.

We must set up an array of things of vertex type.

Each vertex has fields called index, next, and prev.

We might store the polygon 1→ 2→ 3→ 4→ 1 by:

mypolygon

prev index next ear x y

4 1 2 1 0.0 0.0

1 2 3 1 1.0 0.0

2 3 4 1 1.0 1.0

3 4 1 1 0.0 1.0

Here the ear field is 1 if the vertex defines an ear.

85 / 144

POLYGONS: Removing an Ear

If we decide to remove the ear represented by vertices 2, 3 and
4, then we must remove vertex 3 from the polygon so we have
1→ 2→ 4→ 1 remaining.

Essentially, all we need to do is change the pointers:

mypolygon

prev index next ear x y

4 1 2 1 0.0 0.0

1 2 4 1 1.0 0.0

0 0 0 0 1.0 1.0

2 4 1 1 0.0 1.0

And now suddenly we have a triangle rather than a square!

86 / 144

POLYGONS: The Ear Removal Tasks

If we have decided that B, C and D form an ear then we need to

add diagonal B, D to our list;

remove vertex C from the polygon (reset C.index to 0);

reset B.next to D and D.prev to B;

reset B.ear if A, B, D has become an ear;

reset D.ear if B, D, C has become an ear.

87 / 144

POLYGONS: The Slicing Code

i2 = first;

while (diagonal_num < n - 3)

if (vertex(i2).ear)

i3 = vertex(i2).next; i4 = vertex(i3).next;

i1 = vertex(i2).prev; i0 = vertex(i1).prev;

vertex(i1).next = i3;

vertex(i2).index = 0;

vertex(i3).prev = i1;

vertex(i1).ear = diagonal (i0, i3, vertex);

vertex(i3).ear = diagonal (i1, i4, vertex);

diagonal_num = diagonal_num + 1;

diagonals(diagonal_num,1) = i1;

diagonals(diagonal_num,2) = i3;

end

i2 = vertex(i2).next;

end 88 / 144

POLYGONS: An Example Implementation

An example of a MATLAB code for carrying out the ear-slicing
algorithm for polygon triangulation is available at:

http://people.sc.fsu.edu/∼jburkardt/m src/triangulate/triangulate.html

and a C version is available at

http://people.sc.fsu.edu/∼jburkardt/c src/triangulate/triangulate.html

89 / 144

POLYGONS: Ear Slicing Example

If there’s time, let’s watch this happen as an animation!

90 / 144

POLYGONS: Computing Polygon Properties

Once we have the triangulation of a polygon, we can apply some
of the triangle algorithms to problems about polygons.

To do this, we have to save the triangles instead of just the
diagonals. This requires two changes:

Each time we find a diagonal I1, I3 by slicing off node I2, we
must add triangle I1, I2, I3 to the triangle list.

After the last diagonal is computed, we have a triangle
remaining, which we must append to the triangulation.

91 / 144

POLYGONS: Triangles, with diagonals in black

2 18 1

4 2 3

7 5 6

8 5 7

12 10 11

15 13 14

18 16 17

2 16 18

4 16 2

8 4 5

15 12 13

8 16 4

9 16 8

10 16 9

15 10 12

16 10 15 92 / 144

POLYGONS: Computing Polygon Properties

Some polygon algorithms don’t require a triangulation.

The side lengths can be computed simply by taking the norm of
the vector from one vertex to the next.

The perimeter is just the sum of the side lengths.

The angles can be computed in a straightforward manner. If we
have consecutive vertices A, B, and C, then recall the formula

v1× v2 =||v1|| · ||v2|| · sin(θ)

v1 · v2 =||v1|| · ||v2|| · cos(θ)

θ =atan2(v1× v2, v1 · v2)

Letting v1 = (C − B) and v2 = (A− B), the formula gives the
angle at vertex B.

93 / 144

POLYGONS: Computing Polygon Properties

The triangles making up a polygon can be used to compute
some geometric quantities:

1 the area of the polygon is the sum of the areas of the
triangles;

2 the centroid of the polygon can be computed as the sum of
the triangle centroids, each multiplied by its area, and then
divided by the total area;

3 a polygon contains a point if and only if one of the triangles
contains the point;

4 the distance from a point to a polygon is the minimum of
the distances to the triangles;

94 / 144

POLYGONS: Random sampling

Can our triangle algorithms do random sampling of a polygon?

If we have triangulated the polygon, we can sample the polygon by
sampling one of the triangles.

If one triangle has twice the area of another, then we should
probably sample it twice as often.

So the correct procedure is as follows:

1 let A(I) be the area of the I-th triangle, and ATOTAL the
total area;

2 choose a random value r1, and consider B = r1 ∗ ATOTAL;

3 Using no triangles, we have 0 area, and using them all we
have ATOTAL; therefore, there is some triangle J so that the
sum of areas 1 to J just reaches or exceeds B.

4 pick a random point from that triangle J;

95 / 144

POLYGONS: Summary of Algorithms

Our collection of polygon algorithms now includes:

polygon angles();

polygon area();

polygon centroid();

polygon contains point();

polygon distance to point();

polygon perimeter();

polygon sample();

polygon side lengths();

96 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

97 / 144

HULL: The “Shape” of a Set of Points

In many scientific applications, data is given at a scattered set of
points. To organize this data, one need is to try to describe the
geometric location of the points. Unless we are very lucky, the
points will not lie on the vertices of a square, or in a straight line,
or any other regular shape.

The first thing we might think to report is the range of the data.

Assuming the geometric data is two dimensional, then we could
report the minimum and maximum x and y values. This is like
putting a rectangle around the data. One thing that does is give us
a feel for the “area” covered by the data. However, since our
rectangle must line up with the x and y coordinate axes, it’s
almost surely not the smallest rectangle that could box in the data!

98 / 144

HULL: 57 Points

99 / 144

HULL

So we could imagine that we’re trying to fence in the data using
a rectangle that we can turn at an angle. If we’re paying for the
fence, we’d like to use the least length possible.

What if we allowed ourselves to use pentagons instead? The
minimum fence length (the perimeter) over all possible pentagons
must be as low, or lower, than what we can get with rectangles.

To drive the perimeter length as low as possible, we should
consider every possible polygon that encloses the data.

It’s clear that the “fence posts” will always occur at data points.

It should also be clear that the smallest perimeter requirement
implies that the hull will be convex.

The convex hull problem: find the convex polygon of smallest
perimeter which contains a given set of points.

100 / 144

HULL: 57 Points Fenced In

101 / 144

HULL: Things to Note

The convex hull of this data was computed by MATLAB’s
convhull command.

The convex hull of a finite set of points is a polygon: every vertex
is a data point, and every edge is a straight line segment.

In fact, if you had to build the cheapest fence that contained the
data, the bends in the fence would come at data points, just as we
see in the picture.

Looking at the picture, you can also imagine it to be a kind of
“wrapping” problem, that is, we could imagine a group of trees
that we are going to surround with a rope fence. When we pull the
rope as tight as possible, we get the convex hull.

In fact, the idea of wrapping the data will lead us to an algorithm.

102 / 144

HULL: Convexity

Although polygons are allowed to have dents or wiggles, the convex
hull of our data has no “dents” (and no internal holes either).

Quiz: Can you explain why this should be true?

The hull is called convex because if p and q are any points in the
shape, so is every point on the line between p and q.

Although a convex shape can be described by its boundary, it
actually is not just the boundary, but all points contained inside.

Thus, the letter “I is a convex shape, the letter “O” is not, but it
is the boundary of a convex shape, while the letter “A” is neither a
convex shape nor the boundary of one.

103 / 144

HULL: Convexity

A second way to define the convex hull of a set of points is that
it is the smallest convex shape that contains the points.

If a shape is convex, it is its own convex hull (this must be true!)

But wait a minute...a circle is convex, so it’s a convex hull. But we
said a minute ago that the convex hull is a polygon, made with
straight line segments. Is there a contradiction here?

The definitions of a convex shape and a convex hull can be
extended to higher dimensions.

104 / 144

HULL: Not just geometry!

Like many things in mathematics, the convex hull is not simply a
question about geometry!

We often have cases where we have a great deal of data available,
which we think of as samples from some larger set of possibilities.

One way to sample that larger set begins by constructing the
convex hull of the data. The convex hull is a polygon, so we can
triangulate it, and hence take sample values. By sampling within
the convex hull, our “simulated” data stays within the range of the
original data, but can return completely new values within that
range.

105 / 144

HULL: A data hull for sampling

106 / 144

HULL: The Wrapping Algorithm

We can always find one point on the convex hull: simply find the
point with the minimum x component. If there are several points
with the same minimal x component, choose the one with smallest
y component. That gets us started, with a data point we will call
vertex H1.

Now we have to determine the next vertex of the polygon. We
have N-1 datapoints to choose from. Let’s assume we are trying to
build the polygon by following the vertices in the counterclockwise
direction. So we have N-1 possible edges, from H1 to each of the
unused datapoints.

The correct edge (H1,H2) is the unique line through H1 to some
vertex V with the property that all data points lie to the left of it.

107 / 144

HULL: Find Edge 0

108 / 144

HULL: Find Edge 1

109 / 144

HULL: Find Edge 2

110 / 144

HULL: Find Edge 3

111 / 144

HULL: Find Edge 4

112 / 144

HULL: Finished

113 / 144

HULL; Summary

For a convex hull calculation in MATLAB, use a command like

k = convhull (x, y)

k indexes the points which form the convex hull. From k we have
the polygon containing the points, hence the area, the perimeter,
the ability to sample, and so on.

To see a plot of the data points and their hull, use:

plot (x, y, ’.’);
k = convhull (x, y)
hold on
plot (x(k), y(k), ’-r’)
hold off

The command convhulln() is available for higher dimensions.

114 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

115 / 144

DELAUNAY: The Point Set Problem

Suppose we draw a number of points on the plane. It is certainly
possible to draw a line connecting two of the points. Now let’s
draw another line...except that we are not allowed to cross the first
line. That should still be easy. Surely we can draw many lines, but
just as surely, there will come a point when we cannot draw any
more lines without crossing one we already drew.

It may surprise you to realize that, for a given set of points, there
are many final results possible, but in every case, if we cannot draw
any more lines, then all the points on the plane are now vertices of
triangles.

We have now triangulated a set of points. This is similar to the
problem of triangulating a polygon, but now we do not start with a
bounding polygon, and we imagine we might have many points do
deal with, so efficiency is important.

116 / 144

DELAUNAY: A Set of 16 Points

117 / 144

DELAUNAY: A Triangulation of 16 Points

118 / 144

DELAUNAY: What is a “good” triangulation?

We drew the lines of our triangulation at random. If we tried a
second time, we’d get a different picture. There are actually many
ways to triangulate a set of points in the plane. Given that fact,
it’s likely that some triangulations are “better” than others, but
that depends on what we want to do with our triangulations!

If we think about the connecting lines as “roads”, we might prefer
a triangulation that uses the shortest total length.

If we think about the triangles as representing patches of territory,
we might dislike triangles that have a very small angle.

For graphics applications, and for many computational purposes,
the avoidance of small angles is a very common criterion.

119 / 144

DELAUNAY: What is a “good” triangulation?

The Delaunay triangulation of a set of points is the (usually
unique) triangulation which does the best job of avoiding small
angles.

More strictly speaking, consider all possible triangulations of a set
of data points. For each triangulation T , let θ(T) be the smallest
angle that occurs in any triangle of that triangulation. Then a
triangulation T ∗ is a Delaunay triangulation if

θ(T) ≤ θ(T ∗)

for all triangulations T .

120 / 144

DELAUNAY: A Triangulation of 16 Points

121 / 144

DELAUNAY: A Delaunay Triangulation of 16 Points

122 / 144

DELAUNAY: MATLAB Calculation

To compute the triangles that form a Delaunay triangulation of
a set of data points, use the MATLAB command

tri = delaunay (x, y)

To display the triangulation,

tri = delaunay (x, y)
triplot (tri, x, y)

123 / 144

DELAUNAY: 3D Surfaces

Often, measurements of a 3D surface are available at an irregularly
scattered set of points.

If we can organize the (X,Y) data into a triangular mesh, then over
each triangle, we can draw a flat surface defined by the three
corresponding Z values.

Doing this for each triangle in the mesh, we can create a 3D image
of the surface, where before we simply had point data.

load seamount (...a built in XYZ dataset)
tri = delaunay (x, y)
trisurf (tri, x, y, z)

124 / 144

DELAUNAY: A 3D Image from XYZ Point Data

125 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

126 / 144

INTEGRALS: Now the Region is the Problem!

When you learned integration in Calculus, you probably began
with the idea that it was simply “the inverse” of differentiation.
Why someone would want to differentiate a formula and then
integrate it back was not clear.

Perhaps later you were told a much more suggestive interpretation
of integration: integration carries out the summation of “very
many” “very small” terms.

Thus, we approximated the integral of a function (the area under
its curve) by a sum over many subintervals, with the true integral
being the limit as these subintervals become arbitrarily small.

We saw many unusual functions to integrate, but the integration
region itself was usually simple: an interval, or perhaps a box, or
very occasionally a surface of rotation...which turned out to be just
an interval plus a “twist”.

127 / 144

INTEGRALS: Simple Function, Weird Geometry!

Real life problems require us to use Calculus in new ways.

Computing the area of this hand is the same as integrating
f (x , y) = 1. The difficulties come not from the function, but the
unusual region.

128 / 144

INTEGRALS: Simple Function, Weird Geometry!

Keeping in mind that we’re really integrating f (x , y) = 1, we
figure we can estimate the area by triangulating the region,
computing the area of each triangle, and taking the sum.

129 / 144

INTEGRALS: Integrating F(X,Y)=1 is Easy

But now suppose that I wanted to compute the volume of this
hand, and that for any point (x , y) I can measure the height or
thickness of the hand, which I can regard as the function f (x , y).

Volume =

∫
hand

f (x , y)dx dy

An accurate estimate of this integral will approximate the volume
of the hand.

I knew how to integrate the function f (x , y) = 1, because that was
just the area. But now I have an integral of a complicated function
f (x , y) over a complicated region.

What do I do?

130 / 144

INTEGRALS: Approximate Integration over Triangles

When we computed the area, we broke the region up into
triangles. That idea is still the right way to go, because it reduces
the complicated geometry to a sum of simple geometries.

We are left with the problem of approximating the integral of a
function over a general triangle.

For special cases where the triangle has two sides aligned with the
x and y axes, we can come up with exact integration formulas.
But for the hand volume problem, this is not realistic to expect.

Instead, we will turn to some very useful formulas which allow us
to estimate the integral of a function over any triangle as a
weighted average of its value at a few prescribed points.

This technique is known as quadrature.

131 / 144

INTEGRALS: Quadrature Rules

A quadrature rule is a set of n points (xi , yi) and weights wi

which can be used to estimate the integral of a function f (x , y)
over the unit triangle T01:∫

T01
f (x , y) dx ≈ Area(T01) ·

n∑
i=1

wi · f (xi , yi)

132 / 144

INTEGRALS: A Rule of Precision 1

By averaging the function value at the vertices, we get a rule
which approximate the integral, and is actually exactly right if
f (x , y) is equal to a constant, or a linear function.

Points: Weights:

------------------------ ------------------------

x = [1, 0, 0]; w = [1/3, 1/3, 1/3];

y = [0, 1, 0];

133 / 144

INTEGRALS: A Rule of Precision 1

Another nice thing about the vertex rule is that it’s obvious how
to use the same rule on a general triangle.

Since the vertex rule is only “precise” for constants and linears, it
is natural to seek rules that are “more precise”, that is, which get
the exact answer when the function is any polynomial up to some
given degree.

Using just 6 function values, we can devise a rule through degree
4, so that it can integrate exactly any polynomial like:

f (x , y) =a

+bx + cy

+dx2 + exy + fy2

+gx3 + hx2y + ixy2 + jy3

+kx4 + lxy3 + mx2y2 + nxy3 + oy4

134 / 144

INTEGRALS: A Rule of Precision 4

Points: Weights:

------------------------ ------------------------

a = 0.816847572980459;

b = 0.091576213509771;

c = 0.108103018168070; u = 0.109951743655322;

d = 0.445948490915965; v = 0.223381589678011;

x = [a, b, b, c, d, d]; w = [u, u, u, v, v, v];

y = [b, a, b, d, c, d];

135 / 144

INTEGRALS: A MATLAB Code for the Unit Triangle

a = 0.816847572980459;

b = 0.091576213509771;

c = 0.108103018168070;

d = 0.445948490915965;

u = 0.109951743655322;

v = 0.223381589678011;

xvec = [a; b; b; c; d; d];

yvec = [b; a; b; d; c; d];

wvec = [u; u; u; v; v; v];

fvec = f (xvec, yvec);

area = 0.5;

q = area * wvec’ * fvec;

136 / 144

INTEGRALS: A Rule of Precision 4

Here is a plot of the quadrature points as they are arranged in
the unit triangle T01.

This means we can now approximate integrals over the unit
triangle, but what do we do for integrals over an arbitrary triangle
ABC, which is what we actually need?

137 / 144

INTEGRALS: Linear Map to a General Triangle

We’ve solve the problem on the unit triangle T01, but of course
our actual region is made up of all kinds of general triangles, a
typical one being TABC with vertices A, B and C .

Luckily, we can translate our results by using the following linear
map, which maps each (x , y) ∈ T 01 to (X ,Y) ∈ TABC :

(X ,Y) = A ∗ x + B ∗ y + C ∗ (1− x − y)

To see that the formula works, check these results:

(x,y) (X,Y)

(1,0) A
(0,1) B
(0,0) C

(1/3,1/3) (A+B+C)/3 (the centroid)

138 / 144

INTEGRALS: A MATLAB Code for the General Triangle

A = [ax; ay];

B = [bx; by];

C = [cx; cy];

Xvec = ax * xvec + bx * yvec + cx * (1 - xvec - yvec);

Yvec = ay * xvec + by * yvec + cy * (1 - xvec - yvec);

Fvec = f (Xvec, Yvec);

Area = triangle_area (A, B, C);

q = Area * wvec’ * Fvec;

139 / 144

INTEGRALS: The Precision 4 Rule in a General Triangle

TABC = { (4,0), (1,3), (0,1) }:

140 / 144

Geometry Algorithms

Overview

The Points on a Line

Points NOT on a Line

Estimating Integrals over an Interval

Triangles and their Properties

Triangulating a Polygon

The Convex Hull

Triangulating a Point Set by Delaunay

Estimating Integrals over a Triangle

Conclusion

141 / 144

CONCLUSION: We’ve Shown You the Mountains

We have come a long, long way this semester, though we’ve only
guided you to the the foothills of many interesting mountains.

142 / 144

CONCLUSION: Remember Some of those Mountains!

143 / 144

CONCLUSION: The Summit is Up to You

We hope the knowledge and tools we’ve shown you will enable
you to climb the mountains you choose to challenge!

144 / 144

